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Band structures and skin effects of coupled nonreciprocal Su-Schrieffer-Heeger lattices
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We pay attention to the influences of the nonreciprocal coupling on the band structures and skin effects in
the coupled Su-Schrieffer-Heeger (SSH) lattices. It is shown that the nonreciprocal coupling leads to the non-
Hermitian skin effect in a substantial way. Besides, it widens the parameter space of the zero-energy modes in
the band gap, and modifies the transition manner from the topologically trivial to topologically nontrivial phase.
When the nonreciprocal coupling exceeds its critical value, the zero-energy modes will split, giving rise to the
appearance of new nonzero- or complex-energy modes. What is more, differently from the chain configuration,
the nonreciprocal coupling makes purely imaginary energy modes emerge in the band gap of the SSH-ring
configuration. Next in the presence of hopping disorder, we observe that the zero-energy modes are relatively
robust, whereas the imaginary part of energies displays the nonmonotonic changes. It can be thus believed that
all these findings promote understanding the influences of nonreciprocal couplings on the types and properties
of isolated modes in the SSH lattices.
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I. INTRODUCTION

The fundamental assumption of quantum mechanics is that
all physical observations must be represented by the Hermi-
tian operators in the Hilbert space [1–4], which leads to real
energy eigenvalues and guarantees conservation of probabil-
ity. This shows that as a Hamiltonian operator (H = H†) to
describe the physical system, its Hermitian property can en-
sure that the energy is real. For non-Hermitian Hamiltonians,
since this condition is not satisfied, its energy is complex.
However, in 1998 Bender and Boettcher found that non-
Hermitian systems can still possess completely real energy
spectra, i.e., non-Hermitian operators with parity-time (PT )
reversal symmetry [5–7]. As the theory was put forward,
non-Hermitian Hamiltonians with PT symmetry have been
one of the hot topics in quantum physics. The researchers
tried to introduce PT -symmetric imaginary potentials with
gain and loss into topological systems, and observed the oc-
currence of new phenomena in various structures, such as
the one-dimensional (1D) Su-Schrieffer-Heeger (SSH) chain,
Kitaev model, trimer lattice, graphene, and two-dimensional
(2D) SSH lattice [8–18]. On the experimental side, PT sym-
metry can be simulated by various physical systems. As a
typical case, the PT -symmetric systems can be achieved in
optical [19,20] and topological photonic systems [21–23].
With the deepening of research, PT symmetry has also been
applied in many fields, such as single-mode lasing action in
PT -symmetric microcavity arrangements [24], perfect cavity
absorber lasers [25,26], and metamaterials with extraordinary
properties [27,28].
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During the development of non-Hermitian research, it
has been found that in 1D systems, eigenstates with open
boundary conditions are localized near the boundary of the
system in the form of exponential decay, which is called
the non-Hermitian skin effect [29–33]. The appearance of
this phenomenon indicates that the open boundary spec-
trum of the system is different from the periodic boundary
spectrum, and the bulk-boundary correspondence of the sys-
tem completely collapses [29,34,35]. Due to the breaking
of the bulk-boundary correspondence, it is not feasible to
use topological invariants under periodic boundary condi-
tions to describe the topological properties of such systems.
Therefore, Wang et al. proposed the non-Bloch energy band
theory in 2019 [29]. The proposal of this theory is to expand
the application range of energy band theory. Subsequently,
concepts have been proposed and used, such as the general-
ized Brillouin zone (GBZ) [36–38], non-Bloch bulk-boundary
correspondence [29], and non-Bloch topological invariants
[29,36]. With the continuous advances of the theory, the de-
velopment of experiment has been promoted. At present, the
non-Hermitian skin effect and non-Bloch energy band theory
have been realized and applied experimentally, including cold
atoms, quantum optical systems, and optical grid systems
[39–42]. More recently, Helbig et al. have reported the ex-
perimental observation of the bulk-boundary correspondence
(BBC) violation, i.e., non-Hermitian skin effect, by construct-
ing a nonreciprocal SSH topolectrical circuit [43].

The great progresses in experiment inspire us to think of
more interesting phenomena by designing SSH-derived struc-
tures. In this work we study the coupled nonreciprocal SSH
lattice by introducing the nonreciprocal coupling parameter γ .
Our purpose is to clarify its influences on the band variations.
And then, after performing calculation on the chain and ring
configurations, we observe that the nonreciprocal coupling
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FIG. 1. Schematic diagram of the coupled nonreciprocal Su-
Schrieffer-Heeger (SSH) lattice. The red and blue circles represent
the sublattices A and B. The black and pink arrows denote the in-
tracell hopping terms t1(2)

u and t1(2)
d in the upper and lower branches.

The green (single) line is the intercell hopping term t2, and the yellow
and blue (dashed) lines are the coupling coefficients between the two
branches.

leads to the non-Hermitian skin effect in a substantial way,
and widens the parameter space of the zero-energy modes,
which are accompanied by the modification of the topological
phase transition manner. As a typical case, when the nonre-
ciprocal coupling exceeds its critical value, the zero-energy
modes will split, leading to the appearance of new nonzero
modes or complex-energy states in the band gap. Moreover,
differently from the chain configuration, the nonreciprocal
coupling makes purely imaginary energy modes emerge in the
band gap of the SSH-ring configuration. In addition, when the
intercell-hopping disorder is taken into account, it is shown
that the zero-energy modes are robust for the case of weak
disorder, whereas the imaginary part of energies displays the
nonmonotonic changes in this process. All these results can
be helpful in understanding the band structures and respective
states in the nonreciprocal SSH lattices.

II. THEORETICAL MODEL

The general structure of the 1D coupled nonreciprocal SSH
lattice that we consider is illustrated in Fig. 1. As shown in
this figure, each unit cell hosts two distinct sites, denoted as A
and B (i.e, the blue and red dots). The Hamiltonian of such a
coupled nonreciprocal SSH lattice can be written as

H = Hu + Hd + Hud . (1)

The first and second terms, i.e., Hu and Hd , are the Hamiltoni-
ans of the upper and lower branches, which are taken as

Hu =
Nu∑

n=1

(
t1
u c†

A,ncB,n + t2
u c†

B,ncA,n
)

+
Nu−1∑
n=1

(t2c†
B,ncA,n+1 + H.c.),

Hd =
Nd∑

n=1

(
t1
d c†

A,ncB,n + t2
d c†

B,ncA,n
)

+
Nd −1∑
n=1

(t2c†
B,ncA,n+1 + H.c.). (2)

c†
α,n (cα,n) is the creation (annihilation) operator at site α of the

nth unit cell in each part of the SSH lattice (α = A, B). Nu is

the number of unit cells in the upper branch, and Nd is the unit-
cell number in the lower branch. t1(2)

u = tu + t0e∓γ represents
the intersite hopping in the upper branch, whereas t1(2)

d = td +
t0e∓γ corresponds to the intersite hopping in the lower branch.
Besides, t2 describes the intercell hopping coefficient, and γ

denotes the nonreciprocal strength. It is evident that when γ =
0, the Hamiltonian describes the Hermitian SSH chain.

The third term Hud corresponds to the coupling between
the two branches of the SSH lattice, which is given as

Hud = t3c†
B,Nu

cA,Nu+1 + t4c†
B,Nu+Nd

cA,1 + H.c. (3)

t3 and t4 are the coupling coefficients between the two
branches. When only t4 is taken to be zero, this system
transforms into the chain configuration. Instead, when both
t3 and t4 are not equal to zero, it exactly describes the ring
configuration. In terms of parameter settings, we would like
to take tu, td , t2, t3, t4, and γ to be the real numbers.

According to the Hamiltonian expressions above, we are
allowed to write out the matrix form of the Hamiltonian in the
real space, i.e., H = �†Hr�, including

Hr =
[

Hu Hud

H∗
ud Hd

]
, (4)

and � = (�u, �d )T , where �u = (ψa,1, ψb,1, . . . , ψa,Nu ,

ψb,Nu ) and �d = (ψa,Nu+1, ψb,Nu+1, . . . , ψa,Nu+Nd , ψb,Nu+Nd ).
For the elements of Hr , they can be expressed as

Hα∈u,d =

⎡
⎢⎢⎢⎢⎢⎣

0 t1
α 0 0 · · ·

t2
α 0 t2 0 · · ·
0 t2 0 t1

α · · ·
0 0 t2

α 0 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

2Nα×2Nα

,

Hud =

⎡
⎢⎢⎢⎣

0 · · · · · · t4
...

. . .
. . . 0

0 . . .
. . .

...

t3 · · · · · · 0

⎤
⎥⎥⎥⎦

2Nu×2Nd

. (5)

Based on the previous works [37,38,44], we can calculate
the eigenenergy equation and the conditions of topological
phase transition in our structure. First of all, we calculate the
bulk band eigenenergy equation. The eigenenergy and wave
function expressions in the real space can be obtained by solv-
ing the Schrödinger equation H |�〉 = E |�〉 in which |�〉 =∑Nu+Nd

n=1 (ψa,nc†
A,n + ψb,nc†

B,n)|0〉. ψa(b),n is the wave function
of sublattice A (B). This equation consists of a series of equa-
tions, including the bulk-state equations

t1
αψb,n + t2ψb,n−1 = Eψa,n,

t2
αψa,n + t2ψa,n+1 = Eψb,n. (6)

For n ∈ [1, Nu], the t1
α and t2

α can be written as t1
u = tu + t0e−γ

and t2
u = tu + t0eγ . For n ∈ [Nu + 1, Nu + Nd ], t1

α (t2
α ) is t1

d =
td + t0e−γ (t2

d = td + t0eγ ). In this equation, ψa,n and ψb,n are
decoupled from each other. For the bulk band wave functions,
we take an ansatz as a linear combination:

ψυ,n =
{ ∑

j β
n
u, jφ

( j)
υ , n ∈ [1, Nu],∑

j β
n−Nu
d, j ϕ

( j)
υ , n ∈ [Nu + 1, Nu + Nd ],

(7)
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where υ = A, B. By substituting Eq. (7) into Eq. (6), the bulk
eigenequation can be obtained:(

t1
α + t2β

−1
α, j

)
φ

( j)
B

(
ϕ

( j)
B

) = Eφ
( j)
A

(
ϕ

( j)
A

)
,(

t2
α + t2βα, j

)
φ

( j)
A

(
ϕ

( j)
A

) = Eφ
( j)
B

(
ϕ

( j)
B

)
. (8)

In nonreciprocal systems, we know that the eigenen-
ergy equation of non-Bloch Hamiltonian H (β ) is written as
H (β )|�̃〉 = E |�̃〉. According to the above equation, we set
|�̃〉 = (φ( j)

A , φ
( j)
B )T = (ϕ( j)

A , ϕ
( j)
B )T . Thus, we obtain the ma-

trix form of H (βα, j ) as

H (βα, j ) =
[

0 t1
α + t2β

−1
α, j

t1
α + t2βα, j 0

]
. (9)

βα, j is the solution of the equation det[H (βα, j ) − E ] = 0.
Therefore, the eigenenergy equation can be written as

t2(tα + t0e−γ )βα, j + t2(tα + t0eγ )
1

βα, j

+ [
t2
α + 2tαt0 cosh(γ ) + t2

0 + t2
2 − E2

] = 0. (10)

From Eq. (10), we find that the eigenenergy equation is the
quadratic equation of β. This means that the upper and lower
branches have two solutions, i.e., βu,1 (βu,2) and βd,1 (βd,2).
Also, we are allowed to get the relationship of the two solu-
tions as βα,1βα,2 = tα+t0eγ

tα+t0e−γ .
Next, we calculate the case of the boundary condition.

Equation (7) should be suitable for the boundary conditions,

and when they are brought into the Schrödinger equation at
the boundary, the nonzero solution of βα, j can be figured
out. The boundary conditions are exactly the domain wall
boundary conditions, so the expressions of the boundary equa-
tion are

t1
u ψb,1 + t4ψb,Nu+Nd = Eψa,1, (11)

t2
u ψa,Nu + t3ψa,Nu+1 = Eψb,Nu , (12)

t1
d ψb,Nu+1 + t3ψb,Nu = Eψa,Nu+1, (13)

t2
d ψa,Nu+Nd + t4ψa,1 = Eψb,Nu+Nd . (14)

Substituting the general solution of Eq. (7) when j = 1, 2
into Eqs. (11)–(14), we get the four linear equations, that is,

−t2φ
1
b − t2φ

2
b + t4β

Nd
d,1ϕ

1
b + t4β

Nd
d,2ϕ

2
b = 0, (15)

− t2β
Nu+1
u,1 f1φ

1
b − t2β

Nu+1
u,2 f2φ

2
b + t3βd,1g1ϕ

1
b + t3βd,2g2ϕ

2
b = 0,

(16)

t3β
Nu
u,1φ

1
b + t3β

Nu
u,2φ

2
b − t2ϕ

1
b − t2ϕ

2
b = 0, (17)

t4 f1βu,1φ
1
b + t4 f2βu,2φ

2
b − t2g1β

Nd +1
d,1 ϕ1

b − t2g2β
Nd +1
d,2 ϕ2

b = 0.

(18)

Thus, the condition for the linear equation to have
nontrivial solutions is written as HC
 = 0, where 
 =
(φ1

b , φ
2
b , ϕ

1
b , ϕ

2
b )T and

HC =

⎡
⎢⎢⎢⎢⎣

−t2 −t2 t4β
Nd
d,1 t4β

Nd
d,2

−t2β
Nu+1
u,1 f1 −t2β

Nu+1
L,2 f2 t3βd,1g1 t3βd,2g2

t3β
Nu
u,1 t3β

Nu
u,2 −t2 −t2

t4 f1βu,1 t4 f2βu,2 −t2g1β
Nd +1
d,1 −t2g2β

Nd +1
d,2

⎤
⎥⎥⎥⎥⎦. (19)

In these equations, f1(2) = φ
j
a

φ
j
b

and g1(2) = ϕ
j
a

ϕn
b

are the coeffi-

cients calculated from Eq. (8). The specific expressions are

f j = (tu + t0e−γ )βu, j + t2
Eβu, j

= E

(tu + t0eγ ) + t2βu, j
, (20)

g j = (td + t0e−γ )βd, j + t2
Eβd, j

= E

(td + t0eγ ) + t2βd, j
. (21)

By calculating det[HC] = 0, we obtain the relationship of
the four solutions βα, j . In the situation of N → ∞ and E → 0,
one can figure out the topological phase transition conditions
in the generalized Brillouin zone. On the one hand, in the
chain configuration where t2 = t3 and t4 = 0 with γ �= 0, the
topological phase transition conditions are respectively

tu =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−t0 cosh(γ ) −
√

t2
2 cosh2(γ ) − t2

0 ,

t2
2 /(td + t0eγ ) − t0eγ ,

td − 2t0 sinh(γ ),
(t2

2 − tdt0e−γ − t2
0 )/(td + t0eγ ).

(22)

On the other hand, in the ring configuration with t2 = t3 = t4
and γ �= 0, the topological phase transition conditions change

to be

tu =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(t2
2 − tdt0eγ − t2

0 )/(td + t0e−γ ),
(t2

2 − tdt0e−γ − t2
0 e−2γ )/(td + t0e−γ ),

(t2
2 − tdt0eγ − t2

0 e2γ )/(td + t0eγ ),

−t0 cosh(γ ) −
√

t2
2 cosh2(γ ) − t2

0 .

(23)

One can surely judge the conditions of band closing according
to the properties of βα, j . Now, from the phase transition con-
ditions, we can readily observe that such two configurations
have different topological phase transition conditions.

Following the analysis of the phase transition conditions,
we would like to investigate the topological properties of
this system by judging the Hamiltonian symmetry. In Kawa-
bata’s and Gong’s works [45,46], they provide the symmetry
classes in non-Hermitian systems. Therefore, we can clarify
the symmetry in the real space from the expression of Hr .
First, for the chain configuration with t2 = t3 and t4 = 0, it
only satisfies the particle-hole symmetry (PHS†) and sublat-
tice symmetry (SLS), which are described as CH∗

r C−1 = −Hr

and SHrS−1 = −Hr , respectively. Operators PHS† and SLS
are both defined as C(S ) = INu+Nd ⊗ σz, in which σz is the
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z component of the Pauli matrix, and I is the unit matrix.
Thus in this case, the system belongs to the D† class. Second,
regarding the ring configuration when t2 = t3 = t4, such a
system turns out to be of the time-reversal symmetry TRS†,
i.e., T HT

r T = Hr . Here the operator T is written as T =
I2 ⊗ off-diag(1, 1, 1, . . . , 1)2Nu , in which

off-diag(1, 1, 1, . . . , 1)2Nu =

⎛
⎜⎜⎝

0 · · · 0 1
0 · · · 1 0

0 . .
. 0 0

1 · · · 0 0

⎞
⎟⎟⎠

2Nu∗2Nu

.

In addition to the above results, one can find that the ring
configuration has the particle-hole symmetry (PHS†), i.e.,
CH∗

r C−1 = −Hr with C = INu+Nd ⊗ σz. Meanwhile, it satisfies
the chiral symmetry, i.e., �H†

r �−1 = −Hr in which � = I2 ⊗
off-diag(−1, 1,−1, . . . , 1)2Nu . Therefore, the ring configura-
tion can be found to belong to the BDI† class. By calculation,
it can be ascertained that the real part of eigenenergies is not
equal to zero except the phase transition points, and the system
has its real-line gap. Now with help of the above analysis and
the conclusion in the previous works, we know that the system
has the Z2 and Z class topological invariants in the chain and
ring configurations, respectively.

III. NUMERICAL RESULTS AND DISCUSSION

Based on the theoretical deduction in Sec. II, we proceed
to calculate the band structures of two configurations of the
coupled nonreciprocal SSH lattice, namely, the chain config-
uration where t3 �= 0 and t4 = 0 and the ring configuration
(t3 �= 0 and t4 �= 0). To carry out numerical calculation, we
take t0 = 1.0 in this context. Namely, all the parameters that
describe intersite couplings are in units of t0 in this work.

Before our discussion, we would like to present the
eigenenergy spectra of the single non-Hermitian SSH chain,
as shown in Fig. 2. The specific derivation is depicted in
the Appendix. It can be found that even in the presence of
nonreciprocal factors, the system undergoes the process of gap
closure and reopening with the increase of t̃ (t̃ is related to the
intracell hopping). Namely, the transition points occur at t̃ =
−2.09 and t̃ = 0, respectively. Between these two transition
points, zero-energy modes come up. For the imaginary part of
energy, it appears in the region of −1.35 < t̃ < −0.74. The
numerical results are consistent with the theoretical deriva-
tion. Figure 2(c) shows the t̃-|β| curves under the condition
of γ = 0.3 and t2 = 1.0. The blue (solid) and green (dashed)
lines represent |β1| and |β2|, respectively. We find that the
system obeys the relationship of |β1| = |β2| = r; i.e., |β1| and
|β2| meet at t̃ = −2.09 and t̃ = 0. This result is quite consis-
tent with the band-closing points in Fig. 2(a). In Fig. 2(d), we
plot the probability density spectrum. It can be found that the
bulk states are mainly located on the left side of the chain, and
they are gradually suppressed to the center of the chain. For
the zero-energy modes, they are localized seriously at j = 1.
All these results should be attributed to the non-Hermitian
skin effect.

FIG. 2. (a), (b) Real and imaginary parts of the eigenenergies of
the single non-Hermitian SSH chain, under the condition of γ = 0.3.
Other parameters are taken to be N = 20 and t2 = 1.0. Red (bold)
lines describe the zero mode. (c) t̃-|β| curves in the case of γ = 0.3
and t2 = 1.0. The blue (solid) and green (dashed) lines represent |β1|
and |β2|. (d) The probability density spectra in the case of t̃ = −1.1.

A. Chain configuration (t3 �= 0 and t4 = 0)

We start by discussing the energy band characteristics of
the chain configuration. Figure 3 plots the real and imaginary
parts of energy bands under the condition of Nu = Nd = 20.

FIG. 3. Energy spectra of the chain configuration with the change
of tu, where (a) γ = 0.1, (b) γ = 0.5, and (c) γ = 0.8. The left
column is the real part of the eigenenergies, and the right column
is the corresponding imaginary part. The red (bold) lines represent
the real and imaginary parts of the zero-energy modes. The other
parameters are set as Nu = Nd = 20, t2 = t3 = 1.0, td = 0.8, and
t4 = 0.
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FIG. 4. Eigenenergy spectra and probability density spectra. The parameters are set as (a) tu = −2.0, (b) tu = −1.5, (c) tu = −1.35, (d)
tu = 1.0. The black (bold) lines represent the probability distribution of the zero-energy modes or nonzero-energy modes produced after
splitting, and the green lines describe the probability distribution of the bulk states. Other parameters are set as Nu = Nd = 20, td = 0.8,
γ = 0.8, and t2 = t3 = 1.0.

From the spectra of the real and imaginary parts of energy,
one can find that γ has different regulatory effects on the bulk
states and zero-energy modes of this system. As shown in
Fig. 3(a) where γ = 0.1, the energy gap is closed at the points
tu = −1.95 and tu = −0.25, respectively, and zero-energy
modes come up between these two critical points (illustrated
by the red line). From the spectrum of the imaginary part
of the energy, it can be observed that the imaginary part
appears in the range of tu ∈ [−1.1,−0.9]. This indicates that
the nonreciprocal coupling induces the appearance of complex
eigenvalues in the bulk states. Alternatively, the imaginary
part of the zero-energy modes is always equal to zero, which
means that the eigenenergies of the zero-energy modes are
always purely real in such a case. Next as γ increases, the
range of the zero-energy mode gradually increases, and the
range of the corresponding imaginary part also increases grad-
ually, as shown in Fig. 3(b). When γ increases to 0.8 [see
Fig. 3(c)], zero-energy modes exist in the ranges of −2.5 <

tu < −1.8 and −0.9 < tu < −0.15. However, in the range
of −1.8 < tu < −0.9, the zero-energy modes split into two
nonzero-energy modes, and at the same time, two nonzero-
energy modes separate from the bulk states, resulting in four
nonzero-energy modes in the gap. For the bulk-state ener-
gies, the imaginary part of them extends in the range of tu ∈
[−2.25,−0.525]. Thus, with the increase of γ , the imaginary
part of the bulk-state energies appears in wider ranges, accom-
panied by the enhancement of its magnitude. Meanwhile, the
range of the zero-energy modes is divided. To sum up, we can
understand that the nonreciprocal coupling parameter γ has a
significant regulatory effect on the appearance of zero-energy
modes and the bulk-state energies.

To further understand the zero-energy and nonzero-energy
modes shown in Fig. 3, in Figs. 4(a)–4(d) we present the
eigenenergy spectra and wave function probability density
distribution of four cases, i.e., tu = −2.0, tu = −1.5, tu =

−1.35, and tu = 1.0, respectively. Relevant parameters are the
same as those in Fig. 3(c). In Fig. 4(a), we see that fourfold
zero-energy modes exist in the gap of this system. From the
wave function probability density distribution, we can also
find that the doubly degenerate zero-energy modes are local-
ized at the left end (black line). The bulk states tend to be
localized on the two sides of the chain, which can be exactly
described as the non-Hermitian skin effect (green line). For
the case of tu = −1.5 [see Fig. 4(b)], it can be seen from the
eigenenergy spectra that there are four nonzero-energy modes
in the gap, and the newly generated nonzero-energy modes
have no imaginary part of energy. It can be seen in Fig. 3
that this result should be attributed to the splitting of the zero-
energy modes and the entrance of the bulk states into the gap.
The wave function spectra Fig. 4(b) (i) and (ii) correspond
to the cases of E = ±0.3346 and E = ±0.1034, respectively.
Although the four nonzero-energy modes also have a tendency
to be localized on the left side of the system, the wave func-
tions show the exponential decay trend. The local effect of
bulk states is also similar to that in Fig. 4(a). On the other
hand, in Fig. 4(c) when tu = −1.35, the four nonzero-energy
modes merge in pairs, resulting in the formation of doubly
degenerate nonzero-energy modes. At this time, the eigenen-
ergies of the isolated state are E = ±0.2086 ± 0.0304i, and
the imaginary part of the eigenenergies appears. It can be
observed from the wave function result that the local effect
of the nonzero-energy modes is very weak at this time,
whereas the bulk states mainly display the trend of localiza-
tion on the right side of the system. In Fig. 4(d), it is shown
that in the case of tu = 1.0, the system has no zero-energy
modes and is located in the topologically trivial region. From
the probability density distribution of the wave function, it can
be found that the bulk band states are localized at the the range
of j = 2Nu and j = 2(Nu + Nd ). The system has exhibited
the non-Hermitian skin effect. Based on the above results,
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FIG. 5. Absolute-value minimum of Re(E ) (left column) and
Im(E ) (right column) in the tu-td parameter plane, where (a) γ = 0.1,
and (b) γ = 0.8. Other parameters are chosen to be Nu = Nd = 20
and t2 = t3 = 1.0.

we know that the zero-energy modes on the topologically
nontrivial region are all doubly degenerate, and the bulk states
exhibit the characteristics of the non-Hermitian skin effect.

The results in Figs. 3 and 4 suggest that when td = 0.8,
doubly degenerate zero-energy modes are allowed to exist
in the gap. With the help of |E |2 = [Re(E )]2 + [Im(E )]2,
we know that if Re(E ) = 0 and Im(E ) = 0, zero-energy
modes will emerge. Nevertheless if Re(E ) = 0 but Im(E ) �=
0, purely imaginary energy modes will be induced. Next,
if Re(E ) �= 0 and Im(E ) �= 0, there will be no zero-energy
modes in the gap. In this way, the parameter space of the
zero-energy modes can be well judged.

In Fig. 5, we plot the absolute-minimum phase diagram
of Re(E ) and Im(E ) on the parameter plane formed by the
change of tu and td . Relevant parameters are the same as those
in Fig. 3. Figure 5(a) shows the case of γ = 0.1. It can be
found that the parameter range for the zero-energy modes
is tu ∈ [−1.95,−0.25] with td ∈ [−1.95,−0.25], whereas the
other ranges correspond to the nonzero-energy case; namely,
they belong to the bulk states. With the increase of γ , it
expands the parameter range for the zero-energy modes. Be-
sides, the imaginary-part spectra of zero-energy modes are
still zero. When γ is further increased, the parameter range
for the zero-energy mode becomes more complicate. Taking
the case of γ = 0.8 as an example, in Fig. 5(b) we see that
compared with the first case, the range of zero-energy modes
is reduced, and the reduced range has been framed by the
white dotted line in the figure. According to the previous
conclusions, the nonzero-energy ranges in the white dotted
rings are caused by the nonzero-energy modes generated by
splitting of zero-energy modes. In addition, the real-part range
framed by the white dotted ring is larger than the yellow range
of the imaginary part. This means that the eigenenergy of the
newly emerged isolated state is partly purely real and partly
complex. For instance, in the case of td = 0.8, the eigenenergy

FIG. 6. (a) Absolute value minimum of Re(E ) (left column)and
Im(E ) (right column) in the tu-γ parameter plane. (b), (c) Band
diagram with the variation of γ . The parameters are chosen as (b)
tu = −0.5, (c) tu = −1.5. Other parameters are taken to be Nu =
Nd = 20 and t2 = t3 = 1.0. The red (bold) lines mark the real and
imaginary parts of the zero-energy modes.

of this state in tu ∈ [−1.8,−1.375] is real, and its complex
eigenenergy occurs in the range of tu ∈ [−1.375,−1.3]. It can
be understood from the above results that γ induces nonzero-
energy modes with complex energies in this system, as well
as new doubly degenerate zero-energy modes.

Figure 6 shows the phase diagram of the absolute minimum
values of Re(E ) and Im(E ) on the γ -tu parameter plane, and
the energy band with the change of γ when tu is equal to
−0.5 and −1.5, respectively. From the phase diagram [see
Fig. 6(a)], we find that in the presence of finite γ , the range of
zero-energy modes gradually increases; that is, the dark-blue
range in the figure becomes wider. Until γ = 0.7, nonzero-
energy modes begin to appear at tu = −1.1. As γ continues
to increase, the range of nonzero-energy modes increases,
whereas the range of zero-energy modes decreases gradually.
According to the energy band results above, there are nonzero-
energy modes in the gap in such a case. When γ is further
increased gradually, the zero-energy modes transform into the
complex-eigenenergy states, and at this time, it transforms
into the doubly degenerate complex-energy modes in the band
gap. For example, in Fig. 6(b) where tu = −0.5, we see that
degenerated zero-energy modes always exist in the gap. Alter-
natively, in the case of tu = −1.5, in Fig. 6(c) it is shown that
there are doubly degenerate zero-energy modes in the gap in
the region of γ � 0.73. Thereafter, the zero-energy modes and
the bulk states split into four nonzero-energy modes. When
γ = 0.81, they merge into two complex-energy modes with a
finite imaginary part of the energy.
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FIG. 7. Absolute value minimum of Re(E ) (left column) and
Im(E ) (right column) in the tu-td parameter plane, where (a) γ = 0,
(b) γ = 0.3, and (c) γ = 0.8, respectively. Other parameters are
taken to be Nu = Nd = 20 and t2 = t3 = t4 = 1.0.

Up to now, we can sum up the influences of the nonre-
ciprocal coupling parameter γ on the band structure of the
coupled nonreciprocal SSH-chain configuration: (1) Introduc-
ing γ makes the system become a nonreciprocal structure, and
the complex energies appear in the system. Meanwhile, the
larger γ certainly leads to the enhancement of the imaginary
part of energies. (2) γ can induce the transition from the topo-
logically trivial to topologically nontrivial phase, resulting
in doubly degenerate zero-energy modes in the energy gap.
(3) When γ reaches its critical value, the doubly degenerate
zero-energy modes will be modified and then transformed into
the nonzero-energy modes.

B. Ring configuration (t3 �= 0 and t4 �= 0)

In this subsection, we continue to discuss the ring configu-
ration in which t3 �= 0 and t4 �= 0. In order to study the effect
of the degree of nonreciprocity on the zero-energy modes, in
Fig. 7 we plot the phase diagrams of the minimum values of
Re(E ) and Im(E ) on the tu-td parameter plane under different
γ . In this figure, the black region corresponds to Re(E ) = 0 or
Im(E ) = 0, whereas other regions correspond to Re(E ) �= 0
or Im(E ) �= 0. We can readily observe that the change of
γ also has a significant effect on the band structure of the
ring configuration. For the result in Fig. 7(a), it describes the
Hermitian case (reciprocity) where γ = 0. One can find that
similarly to the chain configuration, there are still real zero en-
ergies. However, the difference consists in that when tu and td

FIG. 8. Spectra of eigenenergy of our system as functions of tu,
where (a) γ = 0.1, (b) γ = 0.3, and (c) γ = 0.8. The left column
is the real part of energy, and the right column is the corresponding
imaginary part. The red (bold) lines correspond to the real and imag-
inary parts of the zero-energy and purely imaginary energy modes.
The other parameters are Nu = Nd = 20, t2 = t3 = 1.0, td = 0.8, and
t4 = 1.0.

are in the range of [−1.8,−0.2] simultaneously, it is no longer
zero energy, which leads to the decrease of the zero-energy
region compared with the chain configuration. In the presence
of γ , the parameter range of zero-energy modes undergoes
changes. When γ = 0.3, the parameter range of zero-energy
modes is larger than the Hermitian case [new zero-energy
region is marked by the white dotted line in Fig. 7(b)]. From
the phase spectra of the imaginary part, it can be observed that
the region of Re(E ) = 0 but |E | �= 0, framed by the white
dashed line, indicates that these new zero-energy modes are
purely imaginary energy modes. With the increase of γ , the
purely imaginary energy region (white dashed line) is further
extended, and gradually occupies the region of zero-energy
modes in the original system. With the further increase of
γ , e.g., γ = 0.8, we find that the region of nonzero-energy
modes appears, as shown in the red (dotted) circle in Fig. 7(c).
Like the chain configuration, this part corresponds to the
purely real nonzero and complex eigenenergy modes, respec-
tively. Therefore, with the appearance of γ , the topologically
trivial and nontrivial regions in the system can be induced to
display purely imaginary energy modes, and the larger γ is
more helpful to enlarge the region where purely imaginary
energy modes exist. The nonreciprocal strength plays its more
abundant role in regulating the zero-energy modes of the ring
configuration. To study the influence of nonreciprocity degree
of the system on the energy spectra more specifically, Fig. 8
shows the real and imaginary energy spectra of tu for different
γ at td = 0.8. We find that for the bulk states, they always have
the imaginary part of energy, which is different from the chain
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FIG. 9. Eigenenergy spectra and probability density spectra. The
parameters are (a) tu = −1.0, (b) tu = −1.4, and (c) tu = −2.0.
The black (bold) lines represent the probability distribution of the
zero-energy modes or nonzero-energy modes produced after split-
ting. Other parameters are Nu = Nd = 20, td = 0.8, γ = 0.8, and
t2 = t3 = t4 = 1.0.

configuration, and the maximum value of the imaginary part
Im(E )max = γ . For the zero-energy modes, as γ increases,
the region of real part of energy gradually increases. How-
ever, the imaginary energy spectra have different phenomena
with the increase of γ . When γ < 0.25, similar to the chain
configuration, the imaginary part of the zero-energy mode is
always zero. For the case of γ > 0.25, the imaginary part of
the zero-energy state begins to appear at the position where tu
is close to zero, and the range of the imaginary part gradually
increases with the increase of γ . The phenomena indicate that
the purely imaginary energy modes appear in the system. The
above specific results are shown in Figs. 8(a) and 8(b). Next
when γ increases to 0.8, in Fig. 8(c) we find that between
tu = −1.75 and tu = −1.25, the zero-energy modes split into
two isolated states. In the range of tu ∈ [−1.25, 0.35], they
appear as the purely imaginary energy modes, and in the range
of tu ∈ [−2.5,−1.75] they transit from the purely imaginary
energy modes to the zero-energy modes. The above results
show that γ can induce the appearance of complex eigenen-
ergies and zero-energy modes with purely imaginary energy,
as well as the transition from topologically trivial regions to
topologically nontrivial regions.

Similarly to the chain configuration, to better determine
the characteristics of the zero-energy modes and the bulk
states, in Figs. 9(a)–9(c) we present the eigenenergy spectra

and wave function probability density distribution at tu =
−1.0, tu = −1.4, and tu = −2.0, respectively. The black line
in the probability density of the wave function represents
the probability distribution of the zero-energy and nonzero-
energy modes. For tu = −1.0 in Fig. 9(a), the eigenenergies
of the two purely imaginary energy modes in the gap are
E = 0 ± 0.326i. From the probability distribution of the wave
function, we can observe that the wave function of the purely
imaginary energy modes are mainly localized near j = 2Nu,
showing an exponential decay trend along the direction of j =
2(Nu + Nd ). For the bulk states, most of them are localized at
j = 2Nu and j = 2(Nu + Nd ). Figure 9(b) shows the energy
spectra and probability density of tu = −1.4. According to the
previous results, the zero-energy modes are split into nonzero-
energy modes, and the two nonzero-energy modes present
purely real eigenenergies. The right-side probability density
spectrum corresponds to the wave function distributions of
E = ±0.1085. One can see that the nonzero-energy modes
exhibit the skin effect localized at j = 1, but the locality is
very weak. For tu = −2.0 in Fig. 9(c), the existence of de-
generate zero-energy modes in the gap can be observed from
the eigenenergy spectra. From the probability distribution of
the wave function, it can also be observed that the degenerate
zero-energy modes exhibit the obvious skin effect; that is, the
localization is at j = 1. For bulk states, it also shows a trend
of localization around j = 1 or j = 2(Nu + Nd ), which also
satisfies the skin effect.

Through the analysis of the energy band structure and
probability density of different regions, we have gotten a
better understanding of the characteristics of the zero-energy
modes and the bulk states. There are two types of zero-energy
modes in the system: Doubly degenerate zero-energy modes
with skin effect and two purely imaginary energy modes. At
the same time, due to zero-energy splitting, two nonzero-
energy modes with skin effect tend to be generated. From the
above results, it can be seen that γ induces complex-energy
spectra and zero-energy modes. In order to explore the driv-
ing effect of the γ -contributed nonreciprocity degree on the
energy spectra, we plot the phase diagram of the minimum
values of Re(E ) and Im(E ) on the tu-γ plane, as well as the
energy-band spectra in the real space following the variation
of γ . From Figs. 10(a)–10(c), we find that for the case of γ ∈
[0, 0.25], the range of zero-energy modes increases gradually
with the increase of γ [i.e., phase II in Fig. 10(c)]. The other
regions are located in the topologically trivial phase [phase
I in Fig. 10(c)]. Until γ = 0.25, the purely imaginary energy
modes appear in the gap [phase III in Fig. 10(c)], and the range
also increases gradually as γ increases. In addition, we also
observe that when γ is increased to 0.73, the nonzero-energy
modes [phase IV in Fig. 10(c)] appear in the gap, which
is generated by zero-energy mode splitting. Complex-energy
eigenstates [phase V in Fig. 10(c)] begin to appear in the
gap when γ > 0.81. During this process, the range of zero-
energy modes gradually decreases. Figures 10(d)–10(f) show
the band structures in the case of tu = −1.0, tu = −1.5, and
tu = −2.1, respectively. It can be found that when tu = −1.0,
with the increase of γ , there are first the doubly degenerate
zero-energy modes and then two purely imaginary energy
modes in the gap. For tu = −1.5, the real zero-energy modes
always exist in the range of γ < 0.74, and then split into
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FIG. 10. (a), (b) Absolute-value minimum of Re(E ) (left col-
umn) and Im(E ) (right column) in the tu-γ parameter plane. (c) The
phase diagram of the modes in the gap. (d)–(f) Band diagrams with
the change of γ . The parameters are (d) tu = −1.0, (e) tu = −1.5,
and (f) tu = −2.1. Red (bold) lines mark the real and imaginary parts
of zero-energy modes. Relevant parameters are set as Nu = Nd = 20
and t2 = t3 = t4 = 1.0.

the nonzero-energy modes in the following. As γ increases
to 0.81, they are converted to complex-energy modes. In
the case of tu = −2.1, it can be observed that the system
transits from topologically trivial to topologically nontrivial
phase following the change of γ , and accordingly, the doubly
degenerate zero-energy modes appear in the gap. Likewise,
when γ increases to 0.9, the zero-energy mode splitting comes
into being.

Based on the above results, we would like to summarize
the regulation effect of γ on the energy spectrum of our con-
sidered ring configuration: (1) It induces the splitting of the
zero-energy modes to form the nonzero-energy modes. (2) It
enhances the transition from the topologically trivial to topo-
logically nontrivial phase, accompanied by the appearance
of the doubly degenerate zero-energy modes in the gap. (3)
It promotes the doubly degenerate zero-energy modes in the
topologically nontrivial region to transform into two purely
imaginary energy modes.

C. Roles of disorder

It is known that disorders usually play nontrivial roles
in modifying the band structures of quantum systems. In
view of this fact, in Fig. 11 we explore the changes of the

FIG. 11. (a)–(c) Energy spectra influenced by the different-
strength disorder. The spectra are the average over 100 disorder
results. In (a)–(c), the disorder is applied according to the manner
of t ′

2 = t2 + dwn with wn ∈ [−1.0, 1.0] and d being the disorder
parameter. The parameters are set as (a) tu = −1.0, (b) tu = −1.4,
and (c) tu = −2.0. The other parameters are t2 = t3 = t4 = 1.0 and
Nu = Nd = 20.

eigenenergy spectra due to the presence of disorders. Our
main purpose is to clarify the robustness of edge states and
skin effects to disorders. According to the previous works, the
robustness to disorders is a very important property of edge
states. Therefore, we numerically investigate the robustness
of edge states and skin effects to disorders, by taking the ring
configuration as an example. In this work, we consider the
case of off-diagonal disorder, by introducing the disorder in
the intercell hopping terms, that is, t ′

2 = t2 + dwn, where n is
the cell index, wn is uniformly distributed between −1.0 and
1.0, and d is the disorder strength. Figure 11 presents the
energy spectra influenced by the increase of disorder strength
d , in the ring configuration. Figures 11(a)–11(c) correspond to
the purely imaginary energy modes, nonzero-energy modes,
and doubly degenerate zero-energy modes of Figs. 9(a)–9(c),
respectively. For the bulk states, their bands are widened
following the increase of disorder strength d . However, the
isolated modes undergo different changes in this process. It
can be observed in Fig. 11(a) that for two purely imaginary
energy modes, when d < 0.6, they are robust to weak disorder
even though the details of imaginary part are modified. In
comparison, the four isolated modes are not robust to disorder
and integrate into the bulk bands as the disorder strength d
increases. Next, regarding the doubly degenerate zero-energy
modes, they have better robustness to weak disorder. During
the increase of the disorder strength, the widening of the bulk
bands causes these modes to be merged. Therefore, we can
conclude that both purely imaginary energy modes and doubly
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FIG. 12. Probability density spectra with the different strengths
of disorder, when tu = −1.0 [(a), (b)] and tu = −2.0 [(c), (d)]. The
strength of disorder is taken to be (a), (c) d = 0.4, and (b), (d) d =
0.8, respectively. Other parameters are t2 = t3 = t4 = 1.0 and Nu =
Nd = 20. The spectra are the average over 100 disorder results.

degenerate zero-energy modes are robust to weak disorder,
whereas the degenerate zero-energy modes are more robust
in comparison. This provides new content for identifying the
isolated modes in the gap.

In order to study the effect of disorder on non-Hermitian
skin effect and edge states, we present the probability density
of the wave function of the ring configuration for different
strengths of disorder. Figures 12(a) and 12(b) correspond to
the probability density of the case of tu = −1.0 with γ = 0.8.
From Fig. 9(a), we know that two purely imaginary energy
modes exist in the gap and the wave function of the purely
imaginary energy modes are mainly localized near j = 2Nu.
For such purely imaginary modes, from the black (bold) lines,
we can find that as γ increases, the locality of the wave
function can be affected. For example, when d = 0.4, the
wave function is still mainly localized around j = 40, with
exhibiting the exponential decay near j > 40. However, when
d = 0.8, the locality effect of the wave function is destroyed
obviously. This result indicates that disorder has a certain neg-
ative effect on the skin effect of the purely imaginary energy
modes. Regarding the bulk states, the disorder destroys the
non-Hermitian skin effects as well. With the enhancement of
disorder, the wave function of the bulk states gradually shows
the tendency to spread along the SSH lattice. Figures 12(c)
and 12(d) show the probability density of bulk states and
zero-energy modes at tu = −2.0. From Fig. 9(c), the system
has two degenerate zero-energy modes which are localized on
the left side for d = 0. With the increase of the strength d , it
can be observed that although the trend of probability density
of bulk states is similar to the result of tu = −1.0, the zero-
energy modes are still localized on the beginning side, which
seems to be independent of disorder. This exactly suggests
that the zero-energy modes are robust to weak disorder. Based
on the above results, we can find that disorder has a serious
damage to the skin effect of bulk states. This also makes it
easier to better distinguish between purely imaginary energy
modes and the zero-energy modes.

Finally, we would like to introduce the averaged inverse
participation rate (IPR), for the sake of presenting the detailed
analysis about the effect of disorder on the locality of wave
functions. According to the previous works [44,47,48], it is
defined as

IPR = 1

L

L∑
n=1

IPRn = 1

L

L∑
n=1

1

PRn

FIG. 13. (a) Phase diagram for the IPR with the change of d and
1/L. (b) Red (upper) and pink (lower) lines represent the IPR of L =
80 and L = 640, respectively. (c) The red (first), pink (second) and
light blue (third) lines denote the IPR of d = 1.2, d = 0.5, and d =
0, respectively, when γ = 0.8. The black (bottom) line is the IPR
of d = 0 when γ = 0. Other parameters are t2 = t3 = t4 = 1.0. The
spectra are the average over 100 disorder results.

(24)

= 1

L

L∑
n=1

∑
l |�n(l )|4∑
l |�n(l )|2 ,

where IPRn (PRn) is the inverse participation rate (participa-
tion rate) and �n is the nth right eigenvector of H [44,47–
53]. L is the size of the considered system. For Hermitian
or non-Hermitian systems, IPRn (PRn) is often used to deter-
mine the locality of �n. It is known that for extended states,
IPRn � 1/L and tends to be equal to zero as L → ∞. On the
other hand, the inverse participation rate of the localized states
will tend to be a nonzero and finite value with the increase
of the system’s size, i.e., L. Accordingly, it has been found
that IPRn = 1 (PRn = 1) for the completely localized states
[49–51]. Such theories have also been applied to the systems
with disorders [50,51].

Following the above theory, in Fig. 13 we present the IPR
of the ring configuration by considering the different parame-
ters. From this figure, we find that for a certain length L (L =
2Nu + 2Nd ), the value of IPR shows the nonlinear change be-
havior following the increase of the disorder strength. First, in
the presence of weak disorder, increasing the disorder strength
leads to a gradual decrease of IPR. This directly means the
weakening of the localization of the respective states involved.
When disorder continues increasing, the values of IPR for
strong disorder have a significant upward trend compared with
those in the weak-disorder region. As shown by the case of
L = 80 in Fig. 13(b), IPR decreases from 0.237 to 0.224 as
the strength of disorder increases to d = 0.72. Alternatively,
when d further increases, IPR is gradually enhanced to 2.7.
Next, the result of L = 640 displays the similar phenomenon
[see the pink line in Fig. 13(b)]. In addition, it can be observed
that the size increase of the SSH lattice is inversely propor-
tional to the growth of the value of IPR. With the increment
of the lattice size, IPR gradually decreases to its nonzero
value at the same disorder strength. In Fig. 13(c), we plot
the relationship between IPR and 1/L. It is shown that for
the case of γ = 0.8, with the increase of L, IPR gradually
arrives at 0.2 when d = 1.2. According to the previous theo-
retical conclusion, it can be seen that the localization of the
respective states does not disappear with the increase of the
lattice size. In comparison, when d = 0 and γ = 0 (the black
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line), IPR gradually approaches 0 when L → ∞, which ex-
actly corresponds to the description of extended states. This is
consistent with the theoretical results. Therefore, by analyzing
the averaged inverse participation rate, the regulatory effect of
disorder on the locality of the different states can be further
understood.

According to the disorder results, we can make the fol-
lowing conclusion, especially for the band structures and skin
effect: (1) For the isolated modes, the degenerate zero-energy
modes are more robust in comparison with others. (2) Dis-
order can regulate the skin effects of the isolated modes and
bulk states. Compared with the isolated modes, the skin effect
of the bulk states suffers from more negative influence of
disorder.

IV. SUMMARY

In summary, we have constructed the SSH lattice with
domain wall boundary conditions and introduced the nonre-
ciprocal coupling parameter γ to this coupled structure, to
clarify the band variations and skin effects. After exploring its
influence on the band structures of chain and ring configura-
tions, we have found that the nonreciprocal coupling plays its
nontrivial role in governing the non-Hermitian skin effect for
both configurations. To be specific, it widens the parameter
space of the zero-energy modes, and modifies the transition
manner from topologically trivial to topologically nontrivial
phase. When the nonreciprocal coupling is increased to its
critical value, the zero-energy modes will be separated from
each other, and then new nonzero- or complex-energy modes
will be allowed to appear in the band gap. What is more,
differently from the chain configuration, the nonreciprocal
coupling makes purely imaginary energy modes arise in the
band gap of the SSH-ring configuration. All these results sug-
gest the nontrivial effect of nonreciprocal mechanism on the
band structure and edge states of our considered SSH lattice.
On the other hand, if intercell-hopping disorder is incorpo-
rated, it shows that the zero-energy modes are more robust
than the other modes, whereas the imaginary part of energies
undergoes the nonmonotonic changes. Based on the numerical
results, we believe that this work is helpful in understanding
the influences of nonreciprocal couplings on the types and
properties of isolated modes in the SSH lattices.
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APPENDIX: TOPOLOGICAL PHASE CONDITION
IN SINGLE NON-HERMITIAN SSH CHAIN

In the following, we would like to check the case of the
single non-Hermitian SSH chain, with the help of theory in
Sec. II. Accordingly, the structural parameters can considered
to be t3 = t4 = 0, tα = t̃ , and Nα = N ; meanwhile, � can be

written as � = (ψa,1, ψb,1, . . . , ψa,N , ψb,N )T . It can be readily
found that the eigenvalue equations should also be simplified,
including the bulk equations and boundary equations:

(t̃ + t0e−γ )ψb,n + t2ψb,n−1 = Eψa,n, (A1)

(t̃ + t0eγ )ψa,n + t2ψa,n+1 = Eψb,n, (A2)

(t̃ + t0e−γ )ψb,1 = Eψa,1, (A3)

(t̃ + t0eγ )ψa,N = Eψb,N . (A4)

According to Eq. (8), ψa,n and ψb,n satisfy ψa(b),n =∑2
1 βn

j φ
j
a(b) = βn

1φ1
a(b) + βn

2φ2
a(b). Together with Eqs. (A1) and

(A2), they lead to [(t̃ + t0e−γ ) + t2β
−1
j ]φ j

b = Eφ
j
a and [(t̃ +

t0eγ ) + t2β j]φ
j
a = Eφ

j
b . Therefore, we can get the character-

istic equation of the non-Hermitian SSH chain, i.e.,

t2(t̃ + t0e−γ )β j + t2(t̃ + t0eγ )
1

β j

+ [
t̃2 + 2t̃ t0 cosh(γ ) + t2

0 + t2
2

] = E2. (A5)

Its two solutions are β1(2) = {−x +
(−)

√
x2 − 4t2

2 [t̃2 + 2t̃ t0 cosh(γ ) + t2
0 ]}/[2t2(t̃ + t0e−γ )],

where x = t̃2 + 2t̃ t0 cosh(γ ) + t2
0 + t2

2 − E2 with β1β2 =
t̃+t0eγ

t̃+t0e−γ . At the limit of E → 0, the expressions of β1 and β2

are approximated as

β1|E→0 = − t̃ + t0eγ

t2
, β2|E→0 = − t2

t̃ + t0e−γ
. (A6)

Substituting Eq. (10) into Eqs. (A3) and (A4), we get

βN+1
1 [(t̃ + t0eγ ) + t2β2] = βN+1

2 [(t̃ + t0eγ ) + t2β1]. (A7)

In the situation of N → ∞, the condition for Eq. (A7) is
|β1| = |β2|, for the bulk states. Together with β1β2 = t̃+t0eγ

t̃+t0e−γ ,

they lead to |β j | =
√

| t̃+t0eγ

t̃+t0e−γ |. When the parametric relation-
ship satisfies |β j (E → 0)| = r, the open-boundary continuum
will reach zero energy. And then, we have

t̃ = −t0 cosh(γ ) ±
√

t2
0 cosh2(γ ) − t2

0 + t2
2 , (A8)

or

t̃ = −t0 cosh(γ ) ±
√

t2
0 cosh2(γ ) − t2

0 − t2
2 . (A9)

They exactly describe the critical positions of the topologi-
cal phase transition. According to the relation of β, we set
β = reik , where r =

√
|t̃ + t2

0 eγ /t̃ + t0e−γ | and k ∈ [0, 2π ].
Together with the characteristic equation, we get

E2(k) = t̃2 + 2t̃ t0 cosh(γ ) + t2
√

(t̃ + t0eγ )(t̃ + t0e−γ )

[sgn(t̃ + t0e−γ )eik + sgn(t̃ + t0eγ )e−ik] + t2
0 + t2

2 .

(A10)

When t̃ satisfies the condition that −t0 cosh(γ ) −
t0

√
cosh2(γ ) − 1 < t̃ < −t0 cosh(γ ) + t0

√
cosh2(γ ) − 1,

the system has the complex eigenenergies, whereas in the
other regions the eigenenergies are real.
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