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Classical-driving-assisted quantum synchronization in non-Markovian environments
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We study the quantum phase synchronization of a driven two-level system (TLS) coupled to a structured
environment and demonstrate that quantum synchronization can be enhanced by the classical driving field.
We use the Husimi Q function to characterize the phase preference and find the in-phase and anti-phase
locking phenomenon in the phase diagram. Remarkably, we show that the in-phase classical driving enables
a TLS to reach stable anti-phase locking in the Markovian regime. However, we find that the synergistic
action of classical driving and non-Markovian effects significantly enhances the initial in-phase locking. By
introducing the S function and its maximal value to quantify the strength of synchronization and sketch the
synchronization regions, we observe the typical signatures of the hollowed Arnold tongue in the parameter
regions of synchronization. In the hollowed Arnold tongue, the synchronization regions exist both inside and
outside the tongue while unsynchronized regions only lie on the boundary line. We also provide an intuitive
interpretation of the above results by using the quasimode theory.
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I. INTRODUCTION

Because of the direct or indirect interactions, the com-
ponents of a system may adjust their own local dynamics
to a common rhythm. This phenomenon is well known as
synchronization [1]. The original study about synchronization
could be dated back to 1657 when Christian Huygens found
“the sympathy of two clocks,” i.e., two pendulums always
swung at the same frequency albeit in opposite directions to
each other [2]. Examples of synchronization are widespread
in multidisciplinary studies and in particular in physics, such
as the coupled oscillators [3]. At present, the study of synchro-
nization behavior in various kinds of real complex systems has
become one of the active topics in different disciplines [4].

Unlike the ubiquity of synchronization in the classical
world, the study of synchronization in the quantum regime
has garnered increasing interest only recently [5–35]. Im-
portant advances have been made toward understanding
quantum synchronization by considering the quantum ver-
sion of classically synchronous systems, for instance, Van
der Pol oscillators [36,37]. Following this, the extension of
synchronization to genuinely quantum systems without clas-
sical counterparts has been considered in atomic system [38],
spin system [17], Bose-Einstein condensates [39], and su-
perconducting circuit system [40]. The studies of quantum
synchronization generally fall into two categories: Sponta-
neous synchronization (or mutual synchronization) and forced
synchronization. In the case of spontaneous synchronization,
the interested system becomes synchronized in the tran-
sient evolution of dynamical systems due to the interaction
between the subsystems or an external environment. There-
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fore, environmental noise plays a significant role in enabling
spontaneous synchronization in open quantum systems. Sur-
prisingly, noise-induced synchronization has been reported in
Refs. [41–43]. This phenomenon highlights the constructive
role of environmental noise in synchronization. In contrast to
spontaneous synchronization, forced synchronization usually
emerges with externally driven forces. This was considered in
Refs. [44,45], in which the behavior of one and two super-
conducting qubits coupled to a driven dissipative oscillator is
demonstrated, and in Refs. [16,24], where the forced phase
synchronization in low-dimensional quantum systems is in-
vestigated. It is worth noting that whether a two-level system
(TLS) could be synchronized has experienced a theoretical
debate. The main disagreement is whether there is a valid limit
cycle in TLSs [16]. In Ref. [24], the authors predicted that
such a valid limit cycle indeed exists in the stationary mixed
state of the TLS because each of those possible pure states that
make up the mixed state would precess around the z axis in the
Bloch sphere. This theoretical prediction was subsequently
confirmed by experiments in a trapped-ion system [31].

Any realistic quantum system inevitably interacts with
external environments. Therefore, the influence of environ-
mental noise on forced synchronization is an intriguing
problem that should be evaluated. Recently, non-Markovian
environments have drawn particular attention in quantum
science and technology since the relevant environment’s cor-
relation time is not too small compared with the system’s
relaxation time in many physical systems, in particular, ar-
tificial synthesis of materials [46–48]. In fact, the valuable
research of non-Markovian environments is the existence of
information backflow from the environment (named as non-
Markovian effects) [49–53]. The influence of non-Markovian
effects on the dynamics of entanglement, quantum dis-
cord, and quantum Fisher information has been extensively
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explored in the past decades [54–60]. Remarkably, the re-
lationship between the degree of non-Markovianity and the
onset of spontaneous synchronization of the qubit pair has
been established by Karpat et al. [28]. In a recent paper [32],
the authors discuss the synchronization of a single qubit em-
bedded in a non-Markovian environment, and phase locking
can be found outside the Arnold tongue region, which is in
contrast with the previous studies where the synchronization
happens within the tongue region [16,24]. Note that the dis-
cussions in Ref. [32] are limited to considering the influence
of non-Markovian effects on spontaneous synchronization.
However, what has been lacking thus far is a systematic
study of the classical driving that could bring about quantum
synchronization in non-Markovian environments. We believe
this is an interesting problem since it gathers the center in-
gredients of both forced synchronization and spontaneous
synchronization.

Motivated by the above consideration, we will analyze a
simple model consisting of a driven TLS coupled to a zero-
temperature environment with Lorentzian spectral density,
in order to discuss the role of classical driving in quan-
tum synchronization and study the mechanism of in-phase
synchronization in the non-Markovian regime. To this aim,
we use the Husimi Q function to characterize the quan-
tum synchronization phenomenon. We show that there is
anti-phase synchronization in Markovian regime in the pres-
ence of in-phase classical driving (the phrase “in-phase”
means the phase difference between the TLS and the clas-
sical driving is close to zero). Intriguingly, the results in
non-Markovian environments are different. We find that the
phenomenon of in-phase locking occurs in long time dy-
namics with the assistance of classical driving. Two factors
would be responsible for the in-phase synchronization in
non-Markovian environments: The classical driving and the
non-Markovian effects. The non-Markovian effects provide
the feasibility of in-phase synchronization, while the clas-
sical driving provides a feasible way to enhance it. We
systematically investigate the parameter regions of synchro-
nization and observe characteristic signatures of the hollowed
Arnold tongue in the non-Markovian regime, which indi-
cates that the synchronization regions exist both inside and
outside the tongue. The physical mechanism behind it can
be explained by the quasimode theory. We argue that our
model could be naturally generalized to the case of two
driven TLS interacting with two independent non-Markovian
environments.

This paper is organized as follows: In Sec. II, we intro-
duce the model and give the analytic solutions under the
rotating-wave approximation. In Sec. III, we investigate the
features of synchronization of a driven TLS by calculating
the Husimi Q function. We show that long time, robust, in-
phase synchronous dynamics occurs in the non-Markovian
regime with the assistance of classical driving. In Sec. IV,
we display how the synchronization region is affected by
other factors, such as the Rabi frequency, the strength of non-
Markovian effects, and the detuning. In Sec. V, we show that
the underlying mechanism of classical-driving-enhanced in-
phase synchronization could be interpreted by the quasimode
theory. Finally, we give a brief discussion and summarize our
main results in Sec. VI.

II. DESCRIPTION OF THE MODEL

The model that we considered in this paper describes a TLS
coupled to a zero-temperature bosonic environment. The TLS
with frequency ω0 is driven by a classical single-mode field
E (t ) = E0 cos(ωLt ). Note that we have assumed the phase of
the classical field is φL = 0. The Hamiltonian of system is
described by (h̄ = 1)

HS = ω0

2
σz + �

2
(σ+e−iωLt + σ−eiωLt ). (1)

The Rabi frequency is � = −degE0 with deg being the tran-
sition dipole moment. |e〉 and |g〉 are the excited and ground
states of the TLS. σ j ( j = x, y, z) are the Pauli operators and
σ± = (σx ± iσy)/2. Considering the interaction between sys-
tem and environment, the total system is described by the
following Hamiltonian:

H = HS +
∑

k

ωkb†
kbk +

∑
k

(gkσ+bk + g∗
kb†

kσ−), (2)

where b†
k and bk are the creation and annihilation operators

of the kth mode of the environment with frequency ωk . The
coupling strength between the TLS and the kth mode is gk .

Using a unitary transformation Ur = e−iωLσzt/2, we can
transfer the Hamiltonian into the rotating reference frame. The
effective Hamiltonian can be written as

Heff = �

2
σz + �

2
σx +

∑
k

ωkb†
kbk

+
∑

k

(gkeiωLtσ+bk + H.c.), (3)

where � = ω0 − ωL denotes the detuning between the TLS
frequency ω0 and classical driving field frequency ωL. In
the dressed-state bases, the effective Hamiltonian will be ex-
pressed as

Heff = ωD

2
ρz +

∑
k

ωkb†
kbk

+ cos2 η

2

∑
k

(gkeiωLtρ+bk + H.c.), (4)

with the dressed frequency ωD = (�2 + �2)1/2. The new
operators ρz = |E〉〈E | − |G〉〈G| and ρ+ = |E〉〈G| are de-
fined by the dressed states |E〉 = cos η

2 |e〉 + sin η

2 |g〉, |G〉 =
− sin η

2 |e〉 + cos η

2 |g〉 with η = tan−1(�/�).
We assume that the environment is initially in the vacuum

state, then there is no more than one excitation in the total
system. The Hilbert space will be restricted to the following
subspace spanned in the dressed bases:

|ϕ0〉 = |G〉S ⊗ |0̃〉E ,

|ϕ1〉 = |E〉S ⊗ |0̃〉E , (5)

|ϕk〉 = |G〉S ⊗ |1̃k〉E ,

where |0̃〉E = ⊗N
k=1 |0k〉E denotes the vacuum state, and

|1̃k〉E = ⊗N
j=1, j �=k |0 j〉E |1k〉E denotes that there is one
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excitation in the kth mode of the environment. Notice that
|ϕ0〉 is immune to the environment, only the evolution of
|ϕ1〉 is dominated by Eq. (4). The dynamical evolution can
be mapped as

|ϕ1〉 → q(t )|ϕ1〉 +
∑

k

qk (t )|ϕk〉, (6)

with the normalization |q(t )|2 + ∑
k |qk (t )|2 = 1.

Solving the Schrödinger equation, we have

q̇(t ) = − cos4 η

2

∫ t

0
dτ f (t − τ )q(τ ), (7)

where the integral kernel f (t − τ ) can be expressed in terms
of the spectral density function J (ω) of the environment
as [61]

f (t − τ ) =
∫

dωJ (ω) exp [i(ωD + ωL − ω)(t − τ )]. (8)

In the above, we have assumed that the environment has a
continuum of frequencies such that they can be characterized
by the spectral density function J (ω). Clearly, the solution of
Eq. (8) highly depends on the explicit form of J (ω). We focus
on the Lorentzian spectral density of the form

J (ω) = γ0λ
2

2π

1

(ω0 − ω − δ)2 + λ2
, (9)

where δ = ω0 − ωc is the detuning between the TLS fre-
quency ω0 and the center frequency of the Lorentzian
spectrum ωc. λ is the spectral width which is related to the
environmental correlation time τE = λ−1, while γ0 is the cou-
pling strength between the TLS and the environment which
is connected to the decay rate of the TLS. According to the
relationship between the parameters λ and γ0, we can define
the weak- and strong-coupling regimes. In the weak-coupling
regime (γ0 < λ/2), the dynamics of the TLS is Markovian. On
the contrary, the dynamics of the TLS will be non-Markovian
in the strong-coupling regime (γ0 > λ/2).

Substituting Eq. (9) into Eq. (8), we can obtain the an-
alytical form of correlation function f (t − τ ) by Laplace
transform:

f (t − τ ) = γ0λ

2
exp [−K (t − τ )], (10)

with K = λ + i� − iδ − iωD. Then the probability amplitude
q(t ) can be expressed as

q(t ) = e− Kt
2

[
cosh

(
�t

4

)
+ 2K

�
sinh

(
�t

4

)]
, (11)

with � = [4K2 − 2γ0λ(1 + cos η)2]1/2.
Therefore, the evolution map of the TLS in the dressed

bases will be

|ϕ0〉 → |ϕ0〉,
|ϕ1〉 → q(t )|ϕ1〉 +

√
1 − |q(t )|2|ϕk〉, (12)

where |ϕk〉 = {∑N
k=1 qk (t )|1̃k〉E/[1 − |q(t )|2]1/2}.

III. CLASSICAL-DRIVING-ASSISTED QUANTUM
SYNCHRONIZATION

With above state map in mind, the dynamics of the TLS
for an arbitrary initial state can be obtained by tracing the
environment’s degrees of freedom:

ρ(0) =
(

ρ00(0) ρ01(0)
ρ10(0) ρ11(0)

)
→ ρ(t ) =

(
ρ00(t ) ρ01(t )
ρ10(t ) ρ11(t )

)

(13)

in the bases of {|e〉, |g〉}. The elements have the explicit ex-
pressions

ρ00(t ) = ρ00(0)

[
cos2 η

2
− cos η sin2 η

2
|q(t )|2 + A

]

+ ρ01(0)

[
−1

4
sin 2η|q(t )|2 + B

]

+ ρ11(0)

[
cos2 η

2
− cos η cos2 η

2
|q(t )|2 − A

]

+ ρ10(0)

[
−1

4
sin 2η|q(t )|2 + B∗

]
, (14)

ρ01(t ) = ρ00(0)

[
−1

2
sin η + sin η sin2 η

2
|q(t )|2 + B

]

+ ρ01(0)

[
1

2
sin2 η|q(t )|2 + cos4 η

2
q∗(t )

+ sin4 η

2
q(t )

]

+ ρ11(0)

[
−1

2
sin η + sin η cos2 η

2
|q(t )|2 − B

]

+ ρ10(0)

[
1

2
sin2 η|q(t )|2 − A

]
, (15)

with ρ11(t ) = 1 − ρ00(t ), ρ10(t ) = ρ∗
01(t ) and A = 1

4 sin2

η[q(t ) + q∗(t )], B = 1
2 sin η[cos2 η

2 q∗(t ) − sin2 η

2 q(t )].
To discuss synchronization, we employ the Husimi Q func-

tion as a measure to evaluate the phase preference of the TLS.
The Husimi Q function is one of the simplest distributions of
quasiprobability in phase space, which is defined for any TLS
state ρ as

Q(θ, φ) = 1

2π
〈θ, φ|ρ|θ, φ〉, (16)

where |θ, φ〉 = cos θ
2 |1〉 + sin θ

2 exp(iφ)|0〉 are the eigenstates
of the operator �̂σ · �̂n with �n = (sin θ cos φ, sin θ sin φ, cos θ ).
The Husimi Q function provides a phase portrait, which al-
lows us to visualize any state ρ in terms of the coherent states
|θ, φ〉. According to Eqs. (13)–(15), the explicit form of the
Husimi Q function can be written as

Q(θ, φ, t ) = 1

2π

[
ρ11(t ) cos2 θ

2
+ 1

2
ρ10(t ) sin θeiφ

+ 1

2
ρ01(t ) sin θe−iφ + ρ00(t ) sin2 θ

2

]
. (17)
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FIG. 1. The transient synchronization characterized by the Husimi Q function under the classical driving. (a)–(c) In the Markovian regime
with λ = 10γ0. (d)–(f) In the non-Markovian regime with λ = 0.1γ0. The other parameters are � = 2γ0, � = 0, and δ = 0.

In the following text, we discuss the phase synchronization
of the driven TLS assuming that the initial state is

|ψ (0)〉S = 1√
2

(|g〉 + |e〉). (18)

As a preliminary exploration, in Fig. 1, we first show
the transient synchronization characterized by the Husimi Q
function in the presence of classical driving. We compare the
results in both non-Markovian and Markovian environments
and show how in-phase locking preserves in one case but does
not occur in the other case. In Figs. 1(a)–1(c), the transient
dynamics of the Q function are shown in the Markovian
regime. It is clearly shown that the initial phase preference
peaked at φ = 0 with θ = π/2 rapidly turns to be dipped
at the same point. Similarly, the initially dipped points (φ =
±π, θ = π/2) change to peaked points. This is a phenomenon
of anti-phase locking since the phase difference between the
TLS and classical driving field is close to π . Notice that our
result is significantly different from that obtained in Ref. [32],
where the initial phase preference decreases and is eventually
wiped out as time passes. Accordingly, the distribution of Q
function eventually becomes uniform along the φ axis in their
paper [32]. The only difference is that we have considered
a driven TLS. As we will see in Fig. 2(a), the phenomenon
of anti-phase locking is present with the classical driving and
absent without the classical driving. Figures 1(d)–1(f) show
the transient dynamics of the Q function in the non-Markovian
regime. In contrast with the Markovian case, the Q function
shows a dynamical in-phase locking. The initial phase prefer-
ence preserves for a long time with the assistance of classical
driving.

To observe the effect of classical driving on phase locking
clearly, we would like to describe the phase preference not
only qualitatively but also quantitatively. Following the works
done in Refs. [16,24], we introduce a synchronization measure
S(φ) by integrating over the angular variable θ :

S(φ) =
∫ π

0
dθ sin θQ(θ, φ) − 1

2π

= Re[ρ01(t )] cos φ + Im[ρ01(t )] sin φ

4
. (19)

Notice that S(φ) is zero if and only if there is no phase
synchronization between the TLS and the classical driving
field, i.e., the uniform distribution of Q function. On the other
hand, a nonzero value of S(φ) implies the existence of phase
locking. Specifically, a positive value of S(φ) indicates the
in-phase locking while a negative of this measure means the

FIG. 2. The synchronization measure S(φ) as a function of γ0t
(a) in the Markovian regime with λ = 10γ0 and (b) in the non-
Markovian regime with λ = 0.1γ0. The other parameters are φ = 0,
� = 0, and δ = 0.
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FIG. 3. The hollowed Arnold tongue. (a) The maximum of S(φ) as function of the detuning δ = ω0 − ωc and the coupling strength γ (in
units of γ0) in the non-Markovian regime with λ = 0.1γ0. (b) The maximum of S(φ) as function of the detuning δ = ω0 − ωc and the spectral
width λ. The white line is the boundary line of the hollowed Arnold tongue. The other parameters are γ0t = 100, � = 2γ0, � = 0.

anti-phase locking. It is natural to expect that the sign of S(φ)
would change over varied φ, but the corresponding relation-
ship between in-phase locking (anti-phase locking) and S > 0
(S < 0) does not change because the in-phase or anti-phase
relation between the TLS and the classical driving is defined
by the phase difference of them. It is in-phase locking when
the phase difference is nearly zero while anti-phase locking
when the phase difference is close to π .

Figure 2 would be useful for understanding the synchro-
nization dynamics exhibited in Fig. 1. We show the dynamics
of S(φ, t ) with respect to different strengths of classical driv-
ing. The first conclusion is that indeed, in both Markovian and
non-Markovian regimes, no phase locking is expected when
there is no classical driving (i.e., the blue solid lines in Fig. 2).
We can observe the rapid decay of S(φ, t ) in the Markovian
regime in Fig. 2(a). In the absence of classical driving, it turns
to be zero, which is in accordance with the conclusion in
Ref. [32]. The reason is that no stable limit cycle exists in this
case. The stationary state of the TLS is |g〉, which remains at
the south pole of the Bloch sphere. Such a state cannot provide
a valid limit cycle for synchronization because it is lying
exactly on the rotation axis [16]. However, when the classical
driving is performed on the TLS, the coexistence of driving
and damping ensures a stationary state which, in the Bloch
representation, lies on the meridian of the x-z plane except for
the south and north poles. Thus, the limit cycle is constructed
under the driving since the stationary state can precess around
the z axis once we move back to the nonrotating frame [24].
We observe that the phase preference undergoes an asymptot-
ical change from in-phase locking to anti-phase locking under
the classical driving in Fig. 2(a). This also can be understood
from the steady-state solution corresponding to the initial state
of Eq. (18). In the long-time limit, the state of TLS reduces
to |ψ (t → ∞)〉 = cos η

2 |g〉 − sin η

2 |e〉. Thus, the phase differ-
ence between the TLS and the classical diving field is shifted
from zero (in-phase locking) to π (anti-phase locking), which
also can be confirmed by Figs. 1(a)–1(c).

Figure 2(b) shows the dynamics of S(φ, t ) in the non-
Markovian regime. In the absence of classical driving,
the synchronization measure S(φ, t ) vanishes after a few
damped oscillations induced by the non-Markovian effects
(i.e., the information backflow). It is interesting to note that

classical driving can dramatically enhance the in-phase lock-
ing in the non-Markovian regime. The larger the Rabi
frequency is, the better the in-phase locking. The underlying
reason is that the presence of classical driving will shift the
resonant frequency of the TLS, which reduces the informa-
tion exchange between the TLS and the environment. Then
the outflow of the information from the TLS is suppressed.
Particularly, such suppression is much more striking in the
non-Markovian regime, which ensures the in-phase-locking
phenomenon. This means that the phenomenon of in-phase
locking should not be attributed solely to either classical driv-
ing or non-Markovian effects, but the combination of them.
The non-Markovian effects offer the feasibility of in-phase
locking while the classical driving provides a feasible way
to enhance it. The inset of Fig. 2(b) indicates that it is also
anti-phase locking in the non-Markovian regime in the long
time limit because the stationary state of the driven TLS is the
same in both Markovian and non-Markovian baths.

IV. SYNCHRONIZATION REGIONS AND
THE HOLLOWED ARNOLD TONGUE

To deeply understand the synchronization, we have to
study how the synchronization regions are determined by the
other parameters, such as the coupling strength, the spectral
width, the Rabi frequency, and the detuning δ = ω0 − ωc.
Considering S(φ) depends on the value of φ, which only
captures the phase preference in a specific orientation. The
maximum of S(φ) varying φ from −π to π would be better to
represent the synchronization strength.

In Fig. 3(a), we show how the synchronization region is
governed by the detuning between the TLS frequency ω0

and the spectral center frequency ωc for different coupling
strength γ in the non-Markovian regime. To vary the coupling
strength, we consider the coupling strength γ in spectral den-
sity J (ω) varying in units of γ0. The contour plot of maximal
S(φ) is similar to the Arnold tongue-like phase diagrams [62].
It is worth mentioning that the presence of classical driving
makes the synchronization regions different from those found
in previous literature, in which the synchronization region
only exists either inside or outside the tongue. However, in
our model, it is remarkable that the synchronization regions
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FIG. 4. The half Arnold tongue. (a) The maximum of S(φ) as function of the Rabi frequency � and the coupling strength γ (in units of
γ0) in the non-Markovian regime with λ = 0.1γ0. (b) The maximum of S(φ) as function of the Rabi frequency � and the spectral width λ. The
white line is the boundary line of the half Arnold tongue. The other parameters are γ0t = 100, δ = 0, � = 0.

exist both inside and outside the tongue. We name this phase
diagram the hollowed Arnold tongue. The hollowed Arnold
tongue takes the white lines as the boundary line, on which
there is no synchronization [i.e., Max[S(φ)] = 0]. In the outer
area of the boundary line, the region of synchronization in-
creases with the decrease of the γ . This is straightforward
as the weak coupling between TLS and the environment fa-
vors enhancing the in-phase synchronization. However, the
trend inside the tongue is exactly the opposite of the outside
situation, which implies that the region of synchronization
becomes larger with stronger coupling. The reason for this
counterintuitive phenomenon is that we have traversed all
possible values of φ ∈ [−π, π ] to find the phase preference
regardless of whether it is in-phase synchronization or anti-
phase synchronization. It is in-phase synchronization on the
outside of the tongue and anti-phase synchronization on the
inside of the tongue. Namely, the locked phases inside and
outside the tongue are different. Another intriguing feature is
that the central line of the tongue region is not at δ = 0, but
at δ = � − (�2 + �2)1/2, which is shifted by the classical
driving field. This could be understood from the quasimode
theory, as we show in Sec. V.

The maximum of S(φ) as function of the detuning δ and
the spectral width λ is shown in Fig. 3(b). We observe a
triangular-shaped Arnold tongue. In the external area of the
tongue, it appears to indicate that decreasing the spectral
width can improve the resulting in-phase synchronization. On
the other hand, the increase of the spectral width will enlarge
the anti-phase synchronization region inside the tongue. This
antagonism, as we explained above, comes from the different
phase preferences.

Figure 4(a) is plotted to show how the contour plot of max-
imal S(φ) is determined by the parameters of Rabi frequency
� and the coupling strength γ , while Fig. 4(b) is determined
by the Rabi frequency � and the spectral width λ. Notice
that the synchronization region is in a half Arnold tongue
distribution because the Rabi frequency is non-negative. Once
again, we find the synchronization regions exist both inside
and outside the half tongue. As we expect, the in-phase syn-
chronization becomes more pronounced with the increase of

Rabi frequency. These features can be nicely confirmed by the
half Arnold tongue, shown in Figs. 4(a) and 4(b) for the given
values of γ and λ. The increase of Rabi frequency will drive
the synchronization region from anti phase locking to in-phase
locking. Although we have only shown the patterns of Arnold
tongue at γ0t = 100 in Figs. 3 and 4, the basic features of the
hollowed Arnold tongue and half Arnold tongue always exist
at different times except γ0t = 0 and γ0t = ∞.

V. PHYSICAL INTERPRETATION

In this section, we try to understand the phenomenon of
classical-driving-assisted quantum synchronization in non-
Markovian environment in a more intuitive physical insight.
For the Hamiltonian shown in Eq. (4), we can move to a
frame rotating with the frequency of the driving by applying a
unitary transformation U = exp[iωLρzt/2]:

Heff = ω′
0

2
ρz +

∑
k

ωkb†
kbk +

∑
k

(g′
kρ+bk + H.c.), (20)

where ω′
0 = ω0 + (�2 + �2)1/2 − � and g′

k = cos2(η/2)gk .
This effective Hamiltonian has the same form as the Hamil-
tonian of spontaneous decay of a TLS. The only difference is
that Eq. (21) is written in the dressed state bases {|E〉, |G〉}.

According to the quasimode theory [63–65], there is only
one discrete quasimode for the Lorentz spectral distribution of
the environment. Therefore, the quasimode Hamiltonian can
be divided into three parts:

Hquasi = HSE + Hmemory + Hdissipation, (21)

with

HSE = 1

2
ω′

0ρz + ωcD†D +
∫

νC†(ν)C(ν)dν,

Hmemory =
√

γ0λ

2
(ρ+D + ρ−D†), (22)

Hdissipation =
√

λ

π

∫
dν[D†C(ν) + DC†(ν)],
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FIG. 5. The schematic diagram of quasimode picture of a driven
TLS coupled to a non-Markovian environment. The TLS is coupled
to the discrete quasimode, which is in turn coupled to the continuum
quasimodes.

where D and C(ν) are the annihilation operators of the discrete
quasimode and the continuum quasimode of frequency ν,
respectively. Hmemory denotes the coupling between the TLS
and the discrete quasimode, while Hdissipation represents the
interaction between the discrete and continuum quasimodes.

The schematic diagram of quasimode picture is illustrated
in Fig. 5. The original modes of the non-Markovian envi-
ronment have been transformed into two parts: The discrete
and continuum quasimodes which behave as coupled quantum
harmonic oscillators. The discrete mode can be understood
as the resonant quasimode of a cavity, while the continuum
modes are the external quasimodes outside the cavity. The dis-
crete quasimode functions as a memory between the TLS and
the dissipative continuum quasimodes. The coupling between
the TLS and the discrete quasimode could be depicted by the
Jaynes-Cummings model. Dissipation only emerges from the
interaction between the discrete and continuum quasimodes
which is directly proportional to the spectral width λ.

Now we shall explore the physical mechanism of in-phase
locking in non-Markovian environments. As we discussed
in Fig. 2(b), the combination of classical driving and non-
Markovian effects are responsible for the enhancement of
in-phase locking in non-Markovian environments. Figure 5
tells us that the discrete quasimode functions as a memory.
The information flows spontaneously from the TLS to discrete
quasimode and in turn to continuum quasimodes. The pres-
ence of classical driving can increase the detuning between the
TLS and discrete quasimode. The effective detuning between
the TLS and discrete quasimode yields to

�eff (�,�, δ) =
√

�2 + �2 − � + δ, (23)

which is proportional to the Rabi frequency �. The effec-
tive resonant coupling occurs when �eff = 0 or δ = � −
(�2 + �2)1/2, which determines the central line of the tongue
in Fig. 3.

It is well known that the large effective detuning shall
reduce the coupling between the TLS and the mode of the field
[66]. The result is the suppression of information flow from
the TLS to the discrete quasimode. However, the presence of
classical driving is only one-half of the story. As shown in
Eq. (21), the dissipation is dominated by the spectral width
λ. In the Markovian regime (λ  γ0), the information stored
in the memory (i.e., the discrete quasimode) decays exponen-
tially into the continuum quasimodes. That is why classical
driving is not valid for in-phase locking in the Markovian
regime. On the contrary, in the non-Markovian regime λ � γ0,
the dissipative interaction is weak and the information could

be stored for a long time. It will exchange back and forth
between the TSL and discrete quasimode before it completely
flows into the continuum quasimodes. With the assistance of
classical driving, the information could be well protected, as
shown in Fig. 2(b). Therefore, we can confirm the conclusion:
The non-Markovian effects offer the feasibility of in-phase
synchronization while classical driving provides a practical
method to enhance it.

VI. CONCLUSIONS AND DISCUSSION

In summary, we have investigated the quantum phase syn-
chronization of a driven TLS coupled to a zero-temperature
bosonic environment. In the Markovian regime, we have
shown that the presence of a classical field will drive the
phase preference to the φ = π direction, which is known
as anti-phase locking. However, the initial phase preference
could be locked for a quite long time in the non-Markovian
environment with the assistance of classical driving. Such
a phenomenon of in-phase locking should be attributed to
the synergistic action of classical driving and non-Markovian
effects. To quantify the strength of synchronization and de-
pict the synchronization regions, we have introduced the S
function and its maximal value as synchronization measures.
We have systematically discussed how the synchronization
regions are determined by different systemic parameters and
observed the typical features of the Arnold tongue for a syn-
chronized system. The remarkable result in our model is that
the Arnold tongue is hollowed. The synchronization regions
exist both inside and outside the tongue while the unsyn-
chronized region marks out the boundary of the tongue. We
point out that the locked phases inside and outside the tongue
are different. Finally, we have provided an intuitive physical
interpretation for the classical-driving-assisted quantum phase
synchronization according to the quasimode theory. These
findings provide valuable tools for synchronizing in the open
quantum systems via reservoir engineering.

In the previous discussion, we have restricted our analysis
to a specific initial state (18) of the TLS. Some discussion of
other initial states seems necessary, such as |ψ (0)〉S = α|g〉 +
βeiφs |e〉, where φs is the phase of TLS and α2 + β2 = 1.
In fact, the weight parameter α does not have any sub-
stantial effect on phase synchronization. We notice that the
phase parameter φs can be divided into two categories: Ini-
tially in phase with the classical driving when φs ∈ (0, π/2)
and initially anti-phase with the classical driving when φs ∈
(π/2, π ]. For the former, it is straightforward to conclude that
the results are completely similar to the original, except that
the values of Q and S change a little, but do not change in
positive or negative signs. However, when φs ∈ (π/2, π ], the
results will be different because the initial phase relationship
between the TLS and the classical driving has become anti-
phase. The TLS will evolve directly from the initial state to
the anti-phase steady state without going through a transition
from in-phase locking to anti-phase locking. Accordingly, the
synchronization measure S will always be negative, which
means that there is only anti-phase locking and no in-phase
locking in both Markovian and non-Markovian baths. Thus
our conclusions related to in-phase locking and hollowed
Arnold tongue will be not valid in the latter case.
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