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Pontryagin-optimal control of a non-Hermitian qubit
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Open-system quantum dynamics described by non-Hermitian effective Hamiltonians have become a subject of
considerable interest. Studies of non-Hermitian physics have revealed general principles, including relationships
between the topology of the complex eigenvalue space and the breakdown of adiabatic control strategies. We
study here the control of a single non-Hermitian qubit, similar to recently realized experimental systems in which
the non-Hermiticity arises from an open spontaneous emission channel. We review the topological features of
the resulting non-Hermitian Hamiltonian and then present two distinct results. First, we illustrate how to realize
any continuous and differentiable pure-state trajectory in the dynamics of a qubit that are conditioned on no
emission. This result implicitly provides a work around for the breakdown of standard adiabatic following in
such non-Hermitian systems. Second, we use Pontryagin’s maximum principle to derive optimal trajectories
connecting boundary states on the Bloch sphere, using a cost function which balances the desired dynamics
against the controller energy used to realize them. We demonstrate that the latter approach can effectively find
trajectories which maintain high state purity, even in the case of inefficient detection.
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I. INTRODUCTION

The dynamics of non-Hermitian (NH) systems have been
an area of growing theoretical and experimental interest over
the past two decades [1–8]. NH Hamiltonians arise naturally
in the context of many open (nonconservative) systems. In
contrast with Hermitian Hamiltonians, NH Hamiltonians may
generically have complex eigenvalues and biorthogonal left
and right eigenvectors. A number of unique effects can be
understood in terms of the Riemann sheet topology of com-
plex eigenvalues in parameter space; this topology is defined
foremost by the presence of exceptional points (EPs), where
there is a convergence of both the complex eigenvalues and
eigenvectors of the NH Hamiltonian [9,10]. In particular,
parameter loops that encircle EPs in NH systems may lead
to dynamics exhibiting gain or loss effects that can break
principles of adiabatic following [11–17] and manifest chi-
ral behavior [10,18–24]. There is now considerable literature
about non-Hermitian systems in general, emphasizing both
topological aspects of complex non-Hermitian spectra that
may be understood statically [10,23] and investigations of the
corresponding dynamics [25–29].

One particular realization of NH physics arises in the
conditional dynamics of open quantum systems [30–36]. Ex-
plorations of such systems have illustrated the applicability
of many of the concepts from the classical context and raised
fundamentally new issues and potential applications. In this
quantum context, two approaches to studying NH systems
are apparent: topological properties of the NH Hamiltonian
or Liouvillian [32,33,37] have been the subject of consider-
able interest, while the open and conditional quantum state
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dynamics underlying those NH properties may be directly
understood via quantum trajectory theory [38–42]. In the limit
of slowly varying control parameters, the adiabatic principle
suggests a clear connection between the system dynamics and
NH topology. However, since the adiabatic principle is of
limited applicability in NH systems [12], this slow limit does
not offer a complete correspondence between the two, and
the connection of an NH system’s dynamics to the underlying
topology is not straightforward. For this fundamental reason,
and for practical considerations as well, the development of
NH quantum control protocols that act effectively on shorter
timescales is an important challenge for the field. To this end,
we note there have been recent proposals employing perturba-
tive approaches [43], NH shortcuts to adiabaticity [44–46], as
well as an investigation of experimentally realizable periodic
controls [36].

We propose here an alternative approach, based on the use
of the Pontryagin maximum principle, which is ubiquitous in
the classical quantum control theory literature [47–50]. We
show that this can be usefully applied to the control of NH
quantum systems, investigating, in particular, the behavior
of Pontryagin control for a relatively simple example of a
single qubit with an effective NH Hamiltonian arising from
its spontaneous emission channel (see Fig. 1). This NH qubit
system is similar to that studied in recent experiments [31,34–
36], and as we show in this work, it proves to be a good testing
ground for coherent control in the context of a NH quantum
system with EPs.

The rest of the paper is organized as follows. We review the
system dynamics, define the non-Hermitian Hamiltonian, and
review its topological properties in Sec. II. In Sec. III, we take
advantage of the relative simplicity of our chosen system and
demonstrate that it is straightforward to derive the controller
paths needed to force the system along any continuous and
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FIG. 1. We sketch a possible realization of the scheme we con-
sider. Unitary operations characterized by the Rabi rates � are
applied to a qubit. An effective non-Hermitian Hamiltonian arises
due to the qubit’s spontaneous emission. The dynamics conditioned
on emission or nonemission of a photon are accessible if that emis-
sion is captured by a cavity or transmission line whose output is
monitored by a photocounter. Detection with efficiency η can be
modeled by imagining that a beamsplitter between the system and
detector causes some photons to be lost.

differentiable pure state trajectory. In Sec. IV we formulate
a cost function and then apply Pontryagin’s principle to de-
rive the corresponding optimal trajectories the NH qubit can
follow to connect boundary states over a desired evolution
time. In particular, we illustrate that, by using Rabi rotations
as a control knob, arbitrary qubit-state manipulations can be
implemented under the NH dynamics, under both ideal (unit
efficiency) detection of, or postselection on, photon emission.
Furthermore, decoherence under partially conditional dynam-
ics (i.e., those arising from inefficient detection of emitted
photons) can be substantially mitigated. In Sec. V we provide
a discussion of our results and potential future research based
on the ideas presented here.

II. NON-HERMITIAN JUMPLESS QUBIT DYNAMICS

We now consider the dynamics of a qubit that can spon-
taneously emit a photon into its environment with some
probability, but does not actually emit. These dynamics are
accessible, e.g., if the qubit emits into a readout cavity and
transmission line that route any photons to a photodetector.
The dynamics of interest are then those which occur between
any detector clicks, i.e., we focus on those dynamics which are
inferred with knowledge that no photon was emitted through
the open decay channel. These dynamics are thus conditioned
on the outcomes of the photon-counting measurements. This
can also be realized in practice through postselection using
a third level [31]. The required continuous monitoring of the
decay channel by photon counting [42] is illustrated in Fig. 1
and described in greater detail in Appendix A. We include
the measurement efficiency η, which allows us to consider
imperfect photon counters, as well as to interpolate between
the case where the detector is present and when it is absent.

The conditional evolution of the qubit density matrix ρ is
given by a modified Lindblad master equation

ρ̇ = i ρ Ĥ† − i Ĥ ρ + (1 − η)L̂ ρ L̂† + η ρ tr(L̂ ρ L̂†), (1)

where L̂ = √
γ σ̂− represents decay of the qubit into its en-

vironment at rate γ (or, equivalently, with characteristic time

T1 = γ −1), η ∈ [0, 1] is the photon detection efficiency, and

Ĥ = 1

2

(
�x σ̂x + �y σ̂y + �z σ̂z

) − i

2
γ σ̂+σ̂−

= 1

2

(
�z − i γ �x − i �y

�x + i �y −�z

)
(2)

is a non-Hermitian effective Hamiltonian that includes both
unitary controls Ĥ = 1

2 � · σ̂q and NH decay dynamics. Equa-
tion (1) gives the standard Lindblad master equation for η = 0
(no detection). We shall be most focused on the no-click decay
dynamics accessible with ideal detection (η = 1) since the NH
effective Hamiltonian Ĥ is most closely associated with this
ideal case. The dynamics (1) can equivalently be written as
a dynamical system in the Bloch coordinates q = (x, y, z)�
according to q̇ = tr(σ̂q ρ̇), where σ̂q are Pauli matrices. We
will often refer to these dynamics using the shorthand nota-
tion q̇ = F (q,�), noting that we may decompose the total
dynamics into a sum of the jumpless NH dynamics (� = 0),
plus the unitary part (� �= 0), according to

q̇ = F (q,� = 0)︸ ︷︷ ︸
F0

+� × q = F (q,�). (3)

The right eigenvalues of Ĥ read

λ± = − i

4
γ ± 1

4

√
4�2 − γ 2 − 4i γ �z = − i

4
γ ± 1

4

√
J ,

(4)
with corresponding right eigenvectors

|λ±〉 = N {(2�z − iγ ± √
J )|e〉 + 2(�x + i�y)|g〉} (5)

(where N is a normalization factor). The left eigenvalues are
the complex conjugates of the right eigenvalues. While |λ+〉
and |λ−〉 are no longer necessarily orthogonal to one another,
the left and right eigenvectors do obey a biorthogonality re-
lation [8]. A pair of EPs appear as the solutions with J = 0,
satisfying �z = 0 and 4(�2

x + �2
y ) = γ 2. The EPs are located

on the equator of the Bloch sphere and manifest as fixed points
there when the Rabi drive � tries to excite the qubit at a
rate that exactly balances the conditional decay dynamics γ

(e.g., at z = 0 and x = 1, ż = 0 is achieved by �y = −γ /2,
which lies on the ring of EPs defined by �2

x + �2
y = γ 2/4).

In the typical quantum-optical or circuit QED situations that
are well suited to realizing our physical situation, it is much
more straightforward to modify � precisely and quickly than
to change γ . We will consequently proceed by assuming γ to
be fixed, while treating � as a dynamic control knob. Notice
that the eigenvalues λ± have a rotational symmetry in �x and
�y; we may consequently define �̃ to be a drive vector in the
equatorial xy Bloch plane and then understand the complex
eigenspectrum by visualizing it as a function of �̃ and �z.
Figure 2 shows the real and imaginary parts of λ± in this
parameter space.

Dynamics with a complex eigenspectrum differ qualita-
tively from those of Hermitian systems with real eigenvalues.
Even a naïve writing of the (unnormalized and non-trace-
preserving) evolution e−i Ĥ t ∼ exp[−i λ± t] = exp[−�± t −
i 	± t] reveals that, while the real parts of λ± lead to ef-
fective eigenenergies 	± ≡ Im[i λ±], the imaginary parts
�± ≡ Re[i λ±] behave as effective gain or loss parame-
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FIG. 2. We plot the real parts of the right eigenvalues λ± of Ĥ (i.e., 	±, top row), and the imaginary parts of λ± (i.e., �±, bottom row). We
fix γ , and all other rates (�, 	, and �) are here expressed in units of γ . The resulting pair of Riemann sheets appear together on the left and
then the real and imaginary parts of each individual sheet are shown on the right. We mark the pairs of EPs with markers • and choose to place
our branch cut between the two EPs along the �z = 0 line. Notice that a closed parameter loop enclosing one or both EPs (n = 1, 2) will force
n exchanges(s) between whether �+ or �− is larger; this is a topological property of the complex spectrum that is associated with the failure
of adiabatic control protocols when encircling EPs. This system differs from that of Ref. [31] only in minor details.

ters. Their significance becomes clear when considering
the possibility of adiabatic control [e.g., by fixing γ and
then modifying the NH eigenstates by varying �(t ) slowly
compared to γ ]. One finds that quasiadiabatic following is
possible, but only of the stable right eigenstate (where the
more stable one at any given time is defined by having
the smaller loss parameter) [12]. In our current example we
generically will have one right eigenstate closer to |e〉 and
the other closer to |g〉 (this is true except at the EP); the
right eigenstate closer to |g〉 will be the stable one, at the
expense of the other. Adiabatic following will be broken
along any control trajectory that exchanges the stability of
the two eigenstates. Such a stability exchange is topologically
guaranteed when performing closed-loop encircling of an EP
[10]. As such, the difference between the relative losses �±
along a parameter trajectory concisely explain many of the
NH phenomena reported in the literature, including break-
ing adiabaticity [12] and chiral state exchange [10,18–21,23].
In our present example this means that adiabatic following
works only in the lower half of the Bloch sphere (closer
to |g〉) and will fail on a timescale T1 if we try to switch
hemispheres.

The system (1) we introduced is one of the simplest possi-
ble NH quantum systems one could devise. It is nevertheless
surprisingly rich, containing spectral and dynamical features
unique to NH systems, as well as being experimentally fea-
sible [31]. This system is consequently an ideal sandbox
for investigating NH physics and quantum control strategies
[11,46].

III. BASIC CONTROL: FORCING THE QUBIT STATE
ALONG A PRESET TRAJECTORY

Above we describe two distinct pictures of the same sys-
tem: On the one hand, we have a qubit with a complex
eigenvalue spectrum containing exception points and exhibit-
ing a variety of behaviors that can be explained using the
biorthogonal NH eigenstates. On the other hand, quantum
trajectory theory tells us that the system dynamics may be
straightforwardly expressed by the dynamical system (1) or
(3) across timescales; this picture implicitly contains features
of the NH topology, but can be applied without careful analy-
sis of that complementary topological NH structure [42].

To illustrate the power of the later viewpoint, we show
that we may straightforwardly force our qubit to follow any
pure-state trajectory we wish, assuming perfect conditional
evolution (obtained with the measurement efficiency η = 1).
In this case, our state q will be a unit vector pointing from
the origin towards a point on the surface of the Bloch sphere
and � will necessarily be an orthogonal vector generating
rotations on the surface via the cross product in Eq. (3).
We have dynamics q̇ = F (q,� = 0) + � × q; suppose we
now solve for the drive � that forces the qubit to follow a
desired pure-state target trajectory Q(t ) on the surface. We
assume that Q(t ) is continuous and differentiable, such that
Q̇ exists over the entire time domain of interest. For such a
pure-state trajectory, q will point to the surface of the Bloch
sphere, while Q̇ will be a tangent vector along the surface
of the sphere; it follows that � = � �̄ must be a mutually
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orthogonal vector pointing along the direction

�̄ = q × (Q̇ − F0)

|q × (Q̇ − F0)|

∣∣∣∣
q → Q

, (6)

where we use the overbar to denote a unit vector, � = |�|
is the magnitude, and F0 is a shorthand for the conditional
dynamics due to decay only. This expression suggests that
we may implement a controlled unitary characterized by �

that “makes up the difference” between the conditional decay
dynamics and the target trajectory. The magnitude can be
obtained by rearranging q̇ = F0 + � × q = Q̇ and using the
fact that q, Q̇ − F0, and � are all mutually orthogonal by
construction. In summary then, we may drive the system along
an arbitrary pure-state trajectory Q(t ) by applying the drive

� = Q × [Q̇ − F0(Q)] (7)

for the ideal η = 1 case. An example of these dynamics is
shown in Fig. 3. Note that for the more general case of mixed
states or η < 1, a generalization of Eq. (7) as per � = q ×
(Q̇ − F⊥

0 )/|q|2 may be used. Here F⊥
0 is the component of

F = F⊥
0 + F (R)

0 that is tangent to the sphere of radius |q|; the
remaining radial component F (R)

0 cannot be directly cancelled
by a unitary operation, with the result that q(t ) is no longer
constrained to follow the target trajectory Q(t ) perfectly at all
times. Note also that pinning the qubit to a desired pure state
emerges naturally from this analysis as a simple subcase of
the dynamics under perfect measurement efficiency η = 1.

Even though the example in Fig. 3 includes a switch be-
tween hemispheres of the Bloch sphere, this trajectory does
not necessarily imply a parameter loop that encloses an EP.
We illustrate this in Fig. 3(d), with a set of trajectories corre-
sponding to dynamics at differing speeds along the specific
spatial trajectory shown in Fig. 3(a). It is evident that EP
enclosure depends here on the speed at which we follow the
path, with encircling occurring only for the slower loops.
Nevertheless, these different parameter trajectories all result
in identical dynamics on the Bloch sphere over their respective
time intervals [i.e., the path shown in Fig. 3(a)]. While the EP
and its attendant topology characterize the dynamics in the
adiabatic limit (variations in � much slower than T1), other
dynamical effects obscure those topological features when
there is not an adiabatic-like separation of timescales.

Finally, we remark that the solutions (7) include the ca-
pability to realize something like a “shortcut to adiabaticity,”
even in the case where the actual adiabatic following fails, in
this sense: First, we may define any parameter trajectory �0

and then find the Bloch trajectory Q0(t ) which corresponds
to the motion of a NH eigenstate under �0. We can then
use Eq. (7) to compute a new parameter trajectory �1, which
drives the qubit along Q0(t ) over any timescale.1 Similarly,
we could also use Eq. (7) to accelerate the NH dynamics that
the system exhibits in response to a slowly varying � (slow

1Since the NH eigenstate depends on �, we will not necessarily
be following the real-time NH eigenstate of �1; we will just be
following the NH eigenstate path that was defined by the other
parameter path �0. This will be the case for any control additions
which modify the eigenstates of the Hamiltonian.

FIG. 3. We illustrate a sample target trajectory Q = [X,Y, Z]� =
1√
2
[sin(2π t/T ), 1, cos(2π t/T )]� on the surface of the Bloch sphere

in (a). We are able to exactly follow this (b) contrived target trajectory
via a (c) smooth controller trajectory, both of which are evaluated
here for final time T = 1 [T1]. In (d) we plot the contours of � (gray),
with the branch cut in black and EPs in red. The �(t ) trajectories for
T = 2 [T1] (green), T = 3 [T1] (cyan), T = 4 [T1] (blue), T = 5 [T1]
(purple), and T = 6 [T1] (magenta) are superposed over the contour
plot. Note that, to keep the figure two-dimensional, we summarize

azimuthal unitary motion by the magnitude |�̃| =
√

�2
x + �2

y . We

may understand the oscillation of �y in (c) as correctly compensating
for the changes in the gain-loss ratio required to maintain the desired
trajectory.

enough to have adiabatic motion plus modifications primarily
due to the NH topology described in the previous section).

IV. PONTRYAGIN OPTIMAL CONTROL: COST
FUNCTIONS AND EXTREMIZATION

We demonstrated above that we can easily force our system
to follow particular dynamics. We now change emphasis and
consider the controls that follow optimal dynamics between
arbitrary boundary states with respect to some cost func-
tion, which we derive via the Pontryagin action extremization
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method. In other words, instead of specifying a target tra-
jectory Q(t ), we will now only specify an initial qi and a
final target state Q f and derive the optimal dynamics which
connect them.

Pontryagin optimal control [49,50] assumes that we have
(1) some dynamical equations q̇ = F (q,�) encoding the sys-
tem dynamics and their relationship to any available control
knobs (here the Rabi drive � takes on the latter role) and (2)
some cost function S resembling an action functional. The
aim is then to derive controller trajectories that extremize the
cost S while also satisfying the dynamical constraint F . As
we have a dynamical equation (3), we need only specify the
cost against which we want to optimize. Generically, we wish
to find controller trajectories �(t ) that take us rapidly from
some initial state qi to a chosen final state Q f , while using our
drive power �2 efficiently. We may consequently write a cost
function of the form

S =
∫ T

0
dt (� · q̇ − H ), (8a)

where the Hamiltonian

H = � · F (q,�) − α

2
(q − Q f )2 − β

2
�2 (8b)

includes the Lagrange multipliers (costates) � that constrain
solutions to the dynamics of interest, as well as penalties for
being far away from the target final state and for using high
drive power. The costates are not physical; they enter only
as a computational tool to derive the Pontryagin-optimized
dynamics. We remark that under no circumstances should the
object H used for optimization be confused with the quantum
operators Ĥ = Ĥ† or Ĥ �= Ĥ†. The coefficients α and β are
introduced in Eq. (8b) so that we may tune the relative weights
of the different cost terms that we choose to include.

Pontryagin’s principle then manifests as action extremiza-
tion, i.e., taking δS = 0 leads to

∂�H = q̇ = F , (9a)

∂qH = −�̇, (9b)

∂�H |�=�� = 0, (9c)

which are necessary conditions for optimality. We have
Hamilton’s equations of motion, plus a condition for deriving
optimal controller trajectories ��(t ). Details of the optimal
dynamics appear in Appendix B. It is straightforward to solve
this last equation and find that optimal controller trajectories
obey �� = 1

β
q × �. Plugging in this optimal Rabi drive �

then yields the Hamiltonian

H � = 1

2β
{q2 �2 − (q · �)2} + � · F0 − α

2
(q − Q f )2.

(10)
The solutions of Hamilton’s dynamical equations gener-

ated by H �, initialized for a particular initial qi and all
possible �i, form a Lagrangian manifold (LM) of candidate
solutions [51]; if a globally optimal solution for given final
boundary conditions exists, it can be found in this solution
manifold. Note that for constant α, β, and γ , an optimal
solution necessarily conserves its Pontryagin energy E = H .
The main challenge in solving the optimal dynamics Eq. (9)

is in finding solutions that match the particular boundary
conditions qi and q(T ). That boundary value problem in the
coordinate space can equivalently be formulated as an initial
value problem in terms of the initial values of the states qi

and the costates �i. We shall describe solutions to Eq. (9)
on a LM that is defined from a subset of initial costates �i

for a given initial qi. Specifically, the LM containing all �i

contains all possible optimal solutions originating at the given
qi. This LM can be understood as a tool to translate between
the initial value formulation of the control problem and the
boundary value formulation because there will always be at
least one initial costate �i that generates a path on the LM
leading to any attainable q(T ). The LM thus provides a way
of understanding the mapping between the initial costates and
attainable final states at later times. This tool was previously
used in a similar way to describe quantum trajectories fol-
lowing an optimal readout [52–54] and is discussed further
in Appendix B.

The values of the coefficients α and β do impact the types
of solutions that we can get. In Appendix B we show that
α effectively determines how fast the costates � change as
a function of the distance from the target state. The form
of the optimal Rabi drive clearly indicates that β effectively
scales how the costates � translate to a controller trajectory,
i.e., β just rescales the strength of the controlled unitary dy-
namics relative to the decay dynamics of F0. In less precise
but more suggestive terms, a larger value of α allows the
controlled-state trajectory to accelerate faster, while a large
β tempers the impact of erratic costate dynamics on the actual
controller dynamics. We shall consequently occasionally refer
to α and β as the controller’s “agility” and “temperance,”
respectively, with an understanding that these parameters can
partially counterbalance each other in practice. For simplicity
we will typically set the temperance β = 1 in the examples
below. This is because a constraint on the maximum available
E plays a similar role and we necessarily already have to
limit that energy in numerical simulations by choosing a finite
volume of initial costates �.

A. Pure-state control

We demonstrate here that it is possible to solve the control
problem framed above numerically in the case η = 1 and
thereby obtain controller and dynamical solutions which map
arbitrary initial qubit states qi to arbitrary final qubit states Q f

on a desired time frame, (i.e., in a time T ) within the context
of the NH dynamics (1). Figure 4 illustrates two pertinent
examples. Figure 4(a) shows that we can drive a transition
from |g〉 to |e〉 against decay, and Fig. 4(b) shows that we
can drive a transition between two orthogonal states on the
equator of the Bloch sphere. Both transitions can be driven
on timescales faster than the average spontaneous emission
time γ −1 with modest drive power. We furthermore find that
for both initial conditions the associated LM covers the entire
Bloch sphere “on its way” to the target state, indicating that
for sufficiently large �2 or |�|, i.e., for sufficiently fast Rabi
driving, there are no forbidden pure states that our control
scheme cannot access.

Assessing the examples of Figs. 3 and 4, and the underly-
ing methods, we arrive at the following conclusions. Despite
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FIG. 4. We plot samplings of the Lagrangian manifold (LM) in
two different situations. Each point in a sampled LM represents the
state at time T that is generated by a different initial co-state �i,
such that the resulting plot of the sampled LM shows the extent of
the possible optimal solutions on their way to the target state Q f . The
surface of the Bloch sphere is represented via Mollweide projection
in both plots. (a) Plot of the LM after time T = 2/3 [γ ], initialized at
|g〉, with η = 1, α = 2, β = 1, and target state |e〉. Panel (a) implies
that if an unwanted jump to |g〉 were detected, there exist optimal
solutions to reset the state in the next interval of no-jump evolution
over a relatively short time and using modest control drive param-
eters. (b) Plot of the LM after T = 1/2 [γ ], from a state initialized
at y = −1, with dynamics targeting the orthogonal state y = +1. In
both cases we are able to drive the transition of interest in reasonable
times and find complete coverage of the Bloch sphere soon after the
time shown, indicating that there is a controller path reaching every
pure final state under the conditions shown (even on the way to a
different target state). Smaller values of E (bluer regions) generically
correspond to control trajectories with smaller |�|, i.e., trajectories
with low E tend to be the slower ones that will reach a target
state over longer time intervals. Conversely, larger E values (redder
regions) correspond to the fastest control paths that we allow, sitting
on the leading edge of the manifold. The LM is bounded by a range
of initial conjugate momenta (co-states) expressed in spherical coor-
dinates, specifically, �θ (0) ∈ [−5, 5] and �φ (0) ∈ [−5, 5] for both
panels above. Expansion of this initial � volume would reveal faster
coverage of the Bloch sphere and solutions over shorter time intervals
(at the expense of higher Rabi power). Animations of the evolving
LMs appear in the Supplemental Materials. The temporal context of
the snapshots above is best understood via such animations.

the apparent complexity of the present system when viewed
through the lens of a non-Hermitian Hamiltonian, there are
actually no substantial barriers impeding pure-state control of

the ideal (η = 1) system state if we approach it instead as a
dynamical system. Particularly, we have, in this case, been
able to solve for the drive that forces the system along an exact
desired pure-state trajectory and further shown that we may
formulate reasonable cost functions against which to derive
optimized state dynamics and the controls that generate them.
We do this with a relatively simple cost function, but nothing
prevents us from investigating other cost functions that are
motivated by more specific tasks.

B. Mixed-state control and inefficient conditioning

We continue by considering the less straightforward case
with inefficient photon detection η < 1. Inefficient detection
or postselection implies a loss of information that dissipates
into environmental degrees of freedom without being de-
tected and generically leads to mixed quantum states [42].
This presents a clear challenge for control [55,56]. In par-
ticular, many high-purity qubit states may not be accessible
to moderate-time control trajectories because unitary controls
cannot directly “undo” the decoherence caused by inefficient
detection (i.e., an observer’s control abilities are limited if
they possess only incomplete knowledge about the system
of interest). This is apparent in Fig. 5, where we repeat the
examples of Fig. 4 but with an imperfect detector efficiency
η = 0.5. A decay channel, in particular, will tend to mix the
qubit state over short times if we are near |e〉, but will then
repurify the qubit over timescales much longer than T1 without
a drive (i.e., |g〉 is a pure state and the system will either
jump there or asymptotically approach it if left alone). We
can consequently begin to qualitatively understand the route
towards reaching high-purity target states with poor detection
efficiency. Here, in addition to elements of the ideal analysis
above, there ought to be an implicit benefit to control trajec-
tories which go through the ground state (or near it) so as to
minimize decoherence over the course of the evolution.

To that end, an ideal trajectory to reach |e〉, which is the
most difficult state to reach, is one that stays near |g〉 to retain
purity for a relatively long time during its evolution and then
rapidly accelerates towards |e〉 at the last possible moment.
We elaborate on this point in Appendix B. It is natural to ask
whether our optimization scheme can actually come up with
a solution for the trajectory just described. The answer is that
it can, and such a solution is explicitly shown in Fig. 6. The
coefficient α turns out to play a meaningful role at this point:
Increasing the “agility” allows the controller to change direc-
tion faster (see Appendix B), which is helpful in minimizing
decoherence. In particular, Fig. 6 shows that the difficulties
in performing the operation |g〉 → |e〉 illustrated in Figs. 5(a),
5(b), and 5(c) can largely be overcome by increasing α (see
the SM [75] for further examples).

V. DISCUSSION AND OUTLOOK

We demonstrated here an instance where optimal control
theory may be successfully applied to a non-Hermitian quan-
tum system. We focused on a relatively simple system (a
decaying qubit) whose dynamics can be completely under-
stood via quantum trajectory theory (see [42] and references
therein) and whose pure-state dynamics are straightforwardly
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FIG. 5. Panels (a) and (d) repeat the manifold integrations of
Figs. 4(a) and 4(b), respectively, using all the same parameters except
that we now have inefficient conditioning η = 0.5. Mixing due to
the now partially monitored decay is evident primarily close to |e〉,
making pure states in the vicinity of |e〉 the most difficult to reach
with modest values of |�|. Panels (b) and (c) show the optimally con-
trolled trajectory which comes closest to the target state |e〉 at T =
1 [T1] and the controller trajectory �(t ) generating it. It is evident that
this trajectory struggles to terminate at z � 0.5, highlighting the dif-
ficulty in reaching the excited state when inefficient photodetection is
used. We will show in Fig. 6 below that this effect can be mitigated by
allowing for higher Pontryagin energy and greater controller agility
α. Panels (e) and (f) show the state trajectory and controller trajectory
moving from | − y〉 to |y〉 over a duration T = T1. Panel (e) shows
a relatively high-fidelity operation, in stark contrast with panel (b).
This is because we select here boundary conditions which can be
reached by a trajectory which spends much of its time near |g〉,
where the purity loss due to decay is relatively small. Further details
appear in Appendix B. Animations of the evolving LMs appear in
the Supplemental Materials [75].

controllable. This has allowed us to analyze the concep-
tual aspects of non-Hermitian physics relative to our control
schemes from a strong foundation. We used this system to
review a number of phenomena that are generic to non-
Hermitian Hamiltonians in quantum mechanics (exceptional
points, biorthogonal eigenstates, and so on), and then demon-
strated that complementary and powerful control methods
arise straightforwardly when the same system is approached
from a quantum trajectory perspective instead.

FIG. 6. We repeat Figs. 5(b) and 5(c), this time with an expanded
LM �θ ∈ [−10, 10] and �φ ∈ [−10, 10], completely unconditional
dynamics η = 0, and a longer duration t = 3 T1. Panels (a), (b) use
α = 2 in (a), (b), and panels (c), (d) increase the agility to α = 10.
(The temperance is β = 1 in all cases). It is evident that despite
the significantly worsened (now nonexistent) detection, and longer
evolution time compared with Fig. 5, we can actually get closer to
|e〉. By allowing the controller use of greater power and the latitude
to make more rapid adjustments, the optimization scheme is then
able to keep a pure state near |g〉 until accelerating rapidly towards
|e〉 at the end. Thus, the larger initial manifold and α values allow our
controller to find trajectories in which decoherence is meaningfully
mitigated. Further details appear in Appendix B and in Fig. 7.

Our results here constitute a particular type of feedback
control [57]. The construction of a non-Hermitian Hamilto-
nian is conditioned on the readout (i.e., on the absence of
photon emission events), but retains many of the desirable
features of open-loop control between emission events. In
particular, controls for extended times between jumps may be
precomputed. We might consequently characterize our work
above as an exploration of “open-loop conditional quantum
control.” Despite the importance of the measurement record,
we do not require feedback to be computed instantaneously, as
occurs in many feedback problems requiring nondifferentiable
controller trajectories that respond to diffusive conditional
dynamics at each time interval [40,41,56–58].

We further note that conditional evolution of an open
quantum system often admits a description in terms of a
NH Hamiltonian, such that general features of our approach
may apply to a wide class of related problems. In particular,
we developed a pathway towards mitigating the impacts of
inefficient detection in this context, with demonstrated effi-
cacy in a simple example. Our present work further suggests
research avenues to consider for control of more complex
non-Hermitian quantum systems by probing the intersection
between dynamical and topological pictures of the system.

Much of the present interest in NH physics revolves around
topological aspects of the spectrum [23,25,59]. Such proper-
ties may be evaluated with respect to NH eigenvalue Riemann
sheets as parameters are varied (as in, for example, Fig. 2),
but connecting these ideas to the actual dynamical response of
the system across arbitrary timescales and in general remains
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a challenge for the field. We view our application of Pon-
tryagin’s principle to a NH quantum system as one of many
emerging strategies for the control of NH physics, which seek
to avoid the limitations of adiabatic following in this context.
The approach presented here is complementary to other efforts
addressing non-Hermitian quantum control, including experi-
mental work [36] and theoretical studies based on perturbation
theories [43] or shortcuts to adiabaticity [44–46,60,61]. Fur-
ther development of a Pontryagin control approach for NH
systems and the unification of topological NH concepts with
a dynamical picture due to quantum trajectory theory are
promising avenues for continued research. Ultimately, we
see this work as one element of a toolbox which may, to-
gether with other methods, lead to comprehensive control of
non-Hermitian quantum systems that takes advantage of their
unique physics for tasks of interest to quantum information
science.
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APPENDIX A: NO-JUMP QUBIT DYNAMICS WITH A
DECAY CHANNEL

We derive here our non-Hermitian Hamiltonian and the
associated conditional dynamics, using a Bayesian descrip-
tion of continuously monitored sponataneous emission (see
[42,62] and references therein). Physically, we assume that a
qubit emits into a readout cavity (i.e., a fast decaying cav-
ity) and/or transmission line, where the values of the qubit
transition frequency and the density of environmental states
result in emission at a rate γ (or timescale T1 = 1/γ ), with
the characteristic exponential decay of the excited state pop-
ulation (i.e., we assume that the types of approximations first
made by Weisskopf and Wigner [63] apply). In this setting,
the emitted photons can be captured with high efficiency and
then be routed to a detection device, such that the conditional
evolution is accessible. See Fig. 1.

It is then phenomenologically appropriate to consider a
separable initial state of a qubit and output line leading to a
detector, namely, (ζ |e〉 + υ|g〉) ⊗ |0〉, evolving to

ζ (
√

e−γ 	t |e, 0〉 +
√

1 − e−γ 	t |g, 1〉) + υ|g, 0〉 (A1a)

after a time 	t . This can equivalently be written as( √
e−γ 	t 0√

1 − e−γ 	t â† 1

)(
ζ

υ

)
⊗ |0〉, (A1b)

where â†|0〉 = |1〉 represents the emission of a photon and the
matrix form highlights the action on the qubit state. Kraus
operators can be obtained by selecting a final state of the line,
which we will associate with a measurement outcome, leaving
behind an operation on the qubit state only. We introduce a
notion of loss between qubit and detector via insertion of a
beamsplitter relation â† → √

η â†
s + √

1 − η â†
� , which states

that an emitted photon may go to a monitored signal port â†
s

with probability η, or may be lost in transit with probability
1 − η. We will henceforth refer to η as the measurement
efficiency. This process generalizes Eq. (A1b) to( √

e−γ 	t 0√
1 − e−γ 	t (

√
η â†

s + √
1 − η â†

� ) 1

)
︸ ︷︷ ︸

M

(
ζ

υ

)
⊗ |00〉.

(A2)

Note that the existing similar experiments emphasizing NH
dynamics use a third qudit level and postselection [31,34–
36] instead of continuous photocounting for practical reasons.
This is, however, conceptually the same as the picture laid
out here since postselection on no jumps having occurred to
a third level at some time is equivalent to conditioning on an
emission event not having occurred in any of the timesteps
leading up to that moment.

We now adapt these expressions to describe the conditional
evolution of the qubit. Three distinct outcomes are possible
for a measurement over a finite timestep 	t , each represented
by a Kraus operator: The detector may click due to photon
emission, as represented by the operator

M̂10 = 〈1s 0�|M|0 0〉 =
(

0 0√
η(1 − e−γ 	t ) 0

)

≈
√

	t
√

η γ σ̂− + O
(
	t

3
2
)
, (A3a)

or the detector may not click, which is due to either no photon
being emitted

M̂00 = 〈0s 0�|M|0 0〉 =
(√

e−γ 	t 0
0 1

)

≈ Î + 	t

(−γ /2 0
0 0

)
︸ ︷︷ ︸

Ẑ

+O(	t2),
(A3b)

or to a photon being emitted but going unobserved due to
imperfect detection

M̂01 = 〈0s 1�|M|0 0〉 =
(

0 0√
(1 − η)(1 − e−γ 	t ) 0

)
,

≈
√

	t
√

(1 − η) γ σ̂− + O
(
	t

3
2
)
. (A3c)

We define L̂ ≡ √
γ σ− such that M̂10 ≈ √

	t
√

η L̂ and
M̂01 ≈ √

	t
√

1 − η L̂. The operators above represent a com-
plete set of outcomes in that together they complete a positive
operator-valued measure (POVM), satisfying

M̂†
00M̂00 + M̂†

01M̂01 + M̂†
10M̂10 = Î. (A4)

Notice that Eq. (A4) holds both for the general forms of
these matrices and for the operators approximated to O(	t ).
Equation (A4) further implies that Ẑ = − 1

2 L̂†L̂, which is an
expected and general property of such jump operators.

We are now in a position to describe the conditional qubit
dynamics (i.e., the dynamics of the qubit that can be inferred
from the “click” or “no-click” outcome of the photodetector
monitoring the spontaneous emission channel with efficiency
η). In the event of a click, we infer a jump of the qubit density
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matrix ρ to |g〉〈g|, according to

ρ(t + 	t ) = M̂10 ρ(t )M̂†
10

tr(M̂10 ρ(t )M̂†
10)

= |g〉〈g|. (A5)

Note that after detecting a jump the final state |g〉 is obtained
irrespective of our estimate of the state prior to the detector
click. However, we are much more interested in the dynamics
that arise when the detector does not click; these dynamics
come from the state update

ρ(t + 	t ) = M̂00 ρ(t )M̂†
00 + M̂01 ρ(t )M̂†

01

tr(M̂00 ρ(t )M̂†
00 + M̂01 ρ(t )M̂†

01)
, (A6)

which includes a weighted average over the two subprocesses
that lead to the no-click outcome. We may take this expression
and rewrite it as a dynamical equation for the density matrix
by making expansions to O(	t ). In the notation above, we
find

ρ̇ = Ẑ ρ + ρ Ẑ† + (1 − η)L̂ ρ L̂†

−ρ tr(Ẑ ρ + ρ Ẑ† + (1 − η)L̂ ρ L̂†)

= (1 − η)L̂ ρ L̂† − 1
2 L̂†L̂ ρ − 1

2ρ L̂†L̂︸ ︷︷ ︸
Linear (may be written as a Liouvillian)

+ η ρ tr(L̂ ρ L̂†)︸ ︷︷ ︸
Nonlinear

,

(A7)

which is appropriate between any detector clicks. We write
a trace-preserving equation of motion, which consequently
explicitly includes a nonlinear term that enforces conservation
of probability (i.e., a normalization). In the absence of the
nonlinear term, the equation can be written in a linear (Li-
ouvillian) form [32,33]. The nonlinear trace-preserving term
arises when η > 0 because the probability of the associated
event of no detector click is not equal to 1. We identified
Ẑ = − 1

2 L̂†L̂ for L̂ = √
γ σ̂− and see that the Lindblad master

equation is recovered for the unmonitored case (i.e., for the
unconditional dynamics that arise from η = 0).

We then arrive at the expressions used in the main text
by adding unitary qubit rotations defined by a Rabi drive �

to the dynamics above (these unitaries function as a control
Hamiltonian throughout the main text), resulting in

ρ̇ = i[ρ, Ĥ ] + (1−η)L̂ρ L̂†− 1
2 L̂†L̂ ρ− 1

2ρ L̂†L̂+η ρ tr(L̂ρ L̂†),

(A8a)

with Ĥ = 1
2 (�x σ̂x + �y σ̂y + �z σ̂z ). (A8b)

Note that such an expression is intrinsically conceived in the
limit of small timesteps. The lack of commutation between the
control unitary Û = e−i Ĥ 	t with any of the Kraus operators
M̂ may be neglected to O(	t ), but will typically contribute
nontrivially to O(	t

3
2 ) and beyond.

With these assumptions in place, the equation of motion
can be recast as a dynamical system in the qubit’s Bloch
coordinates [q̇ = tr(σ̂q ρ)], specifically as

ẋ = Fx(q,�) = 1
2γ x(η(z + 1) − 1) + z �y − y �z, (A9a)

ẏ = Fy(q,�) = 1
2γ y(η(z + 1) − 1) + x �z − z �x, (A9b)

ż = Fz(q,�) = 1
2γ (1 + z)(η(z + 1) − 2) + y �x − x �y,

(A9c)

for q ≡ (x, y, z)� and � ≡ (�x,�y,�z )�. We may equiv-
alently separate out the parts of the dynamics due to the
measurement (leading terms) and the Rabi drive, according
to

q̇ = F (q,�) = γ F̃ (q) − q × �, (A9d)

where F̃ (q) = 1
γ
F0, i.e., F̃ are the uncontrolled conditional

dynamics with the decay timescale factored out.
We may then regroup some terms in Eq. (A8a) to identify

the non-Hermitian Hamiltonian of primary interest. Specifi-
cally, the dynamics of (A8a) may equivalently be expressed
as

ρ̇ = i ρ Ĥ† − i Ĥ ρ + (1 − η)L̂ ρ L̂† + η ρ tr(L̂ ρ L̂†),
(A10a)

where we have defined

Ĥ = Ĥ − i

2
L̂†L̂ = 1

2

(
�z − i γ �x − i �y

�x + i �y −�z

)
, (A10b)

and use L̂ = √
γ σ̂−. Equation (A10a) is simply a rewriting of

Eq. (A8a) in terms of the NH Hamiltonian.

APPENDIX B: PONTRYAGIN OPTIMAL CONTROL:
DETAILS AND EXTENDED DISCUSSION

1. Pontryagin maximum principle

Our use of Pontryagin’s principle for optimal control re-
volves around an action that is generically of the form

S = f (qT ) +
∫ T

0
dt [p · q̇ − H (q, p, u)], (B1)

where q are state coordinates as in the main text, p are the
costates (i.e., conjugate “momenta,” or Lagrange multipliers,
directly analogous to �), and u are some controller variables.
Optimization involves solving δS = 0, where δS

= δ f (qT ) +
∫ T

0
{ δ[p · q̇] − δH (q, p, u)},

= p · δq|T0 + ∂ f

∂qT

δqT +
∫ T

0
dt{δp · q̇ − ṗ · δq − δH },

(B2)

with

δH = ∂H

∂q
δq + ∂H

∂p
δp + ∂H

∂u
δu. (B3)

The equations

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
,

∂H

∂u
= 0 (B4)

arise straightforwardly from requiring that the integral contri-
bution goes to zero, independent of the variations δq, δp, and
δu.

This mathematical approach to control, where optimal con-
trols are derived via action extremization, variational calculus,
or geodesics, has a long history in both classical [47,48]
and quantum [49,50] control. This includes work on related
physical systems, where an action-extremization principle
was similarly used to find extremal-probability measurement
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records and paths (instead of unitary controllers) for con-
tinuously monitored quantum systems [42,52–54,62,64–68].
An application of a similar method towards simultaneous
optimization of a diffusive measurement record and unitary
controls was recently carried out [69].

2. Optimal equations of motion

In the main text, we introduce a Hamiltonian for Pontrya-
gin control of our qubit, which reads

H = � · F (q,�) −
(

α

2

{
(x − x f )2 + (y − y f )2 + (z − z f )2

} + β

2

{
�2

x + �2
y + �2

z

})
︸ ︷︷ ︸

L (q,�)

. (B5)

Note that the actual cost function (i.e., the part of the Hamiltonian that is not directly implementing the constraint to the
dynamical equations q̇ = F ) may be recognized as the corresponding Lagrangian L . We chose a simple form of the cost
function in this work; it is possible to follow the same procedure with a modified cost function that may lead to solutions better
optimized for a particular task.

We now go through the optimization calculations based on H in some detail. We consider the drive optimization condition
first, finding

∂H

∂�
= 0 → ��

x = 1

β
(y �z − z �y), ��

y = 1

β
(z �x − x �z ), ��

z = 1

β
(x �y − y �x ). (B6)

This may remind the reader of expressions for the angular momentum, if the Lagrange multipliers � are understood as
conceptually analogous to linear momenta (i.e., the choice of L above leads to �� = 1

β
q × �). We emphasize again our remark

in the main text that this form of the optimal drive indicates that the choice of β is somewhat redundant with the choice we must
make in practice about where to bound the Lagranian manifold, and hence also the Pontryagin energy E = H . For this reason
we pay relatively little attention below to this “temperance” parameter.

Substituting in � → �� = 1
β

q × � leads to

H � = � ·
(
F (q,� = 0) − 1

β
q × (q × �)

)
− α

2
|q − Q f |2 − 1

2β
|q × �|2

= � · F (q,� = 0) + 1

2β
q2 �2 − 1

2β
(q · �)2 − α

2
|q − Q f |2,

(B7)

which is the Hamiltonian generating optimally controlled dynamics. Note that, after substituting in � = �� everywhere, some
terms from the uncontrolled part of the dynamical equations F (q,� = 0) = F0 will remain. The Hamiltonian above may
equivalently be expanded to read

H � = γ

2
{[η(z + 1) − 1][x �x + y �y] + (1 + z)�z[η(z + 1) − 2]}

+ 1

2β

{
�2

x (y2 + z2) + �2
y (x2 + z2) + �2

z (x2 + y2)
} − 1

β
{xy �x�y + xz �x�z + yz �y�z}

− α

2
{(x − Xf )2 + (y − Yf )2 + (z − Z f )2}.

(B8)

The subsequent equations of motion (Hamilton’s dynamical equations) now read

ẋ� = 1

2
γ x{η(z + 1) − 1} − 1

β
x(�yy + �zz) + 1

β
�x(y2 + z2), (B9a)

ẏ� = 1

2
γ y{η(z + 1) − 1} − 1

β
y(�xx + �zz) + 1

β
�y(x2 + z2), (B9b)

ż� = 1

2
γ (z + 1){η(z + 1) − 2} − 1

β
z(�xx + �yy) + 1

β
�z(x2 + y2), (B9c)

�̇�
x = α(x − Xf ) − 1

2
γ �x{η(z + 1) − 1} + 1

β
�x(�yy + �zz) − 1

β
x
(
�2

y + �2
z

)
, (B9d)

�̇�
y = α(y − Yf ) − 1

2
γ �y{η(z + 1) − 1} + 1

β
�y(�xx + �zz) − 1

β
y
(
�2

x + �2
z

)
, (B9e)

�̇�
z = α(z − Z f ) − γ �z{η(z + 1) − 1} − 1

2
γ η(�yy + �xx) + 1

β
�z(�xx + �yy) − 1

β
z
(
�2

x + �2
y

)
. (B9f)
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It is these equations which are explicitly integrated in the
course of finding dynamical solutions. Some features of the
dynamics are more apparent in this form: For instance, the
leading terms on each �̇ equation [i.e., α(q − Q f ) − . . .]
clearly illustrate how the magnitude and direction of the con-
trol drive is adjusted if we find ourselves far from the target
state. More specifically, α essentially determines how rapidly
the control drive can change, such that paths derived with a
larger α are capable of greater acceleration. As shown in Fig. 6
and the SM [75], this property is highly useful to reach pure
target states under inefficient detection.

In the main text we worked with a LM of control pa-
rameter solutions defined by choosing a volume of initial
�i, corresponding to a volume of the initial conditions for
optimal control trajectories. The solutions in this LM are
unique within the full (six-dimensional) phase space of H ,
but are not necessarily unique when projected into the smaller,
physical, q space. Regions of the Bloch sphere where multiple
solutions meet the given boundary conditions are directly
analogous to the caustics that appear in optics and diverse
other physical settings that are described mathematically by
catastrophe theory [51–53,70–73].

3. On the existence of control solutions meeting particular
boundary conditions

We comment here on the simplest case (of pure states with
η = 1) and then on the general mixed-state case with η � 1.

a. Pure-state solutions

It is easy to see from Eq. (A9d) that trivial purity-
preserving solutions exist for η = 1 and in the limit |�| � γ .
If the unitary control dynamics are fast, i.e., they occur on
timescales where the decay is negligible, we may factor out
the drive magnitude q̇ = |�|(�̄ × q) + γ F̃ (where �̄ is the
unit vector setting the rotation axis) and immediately see that

q̇
|�| = �̄ × q + γ

|�|F̃ ≈ �̄ × q. (B10)

In other words, in the limit of fast drive (γ � |�|), the
decay dynamics can be treated as a perturbation and the
trivial linear control problem arising from Rabi drive alone
is recovered in the limit where the controls are applied very
strongly or quickly. We consequently conclude that our ability
to map arbitrary pure states to other arbitrary pure states
in the ideal (η = 1) case is limited only by the controller
power.

The mixed state case is less straightforward. We will find
that it is useful to supplement the Cartesian representation of
our dynamics above with a spherical coordinate representation
before considering the mixed-state solutions in detail.

b. Dynamics and control in spherical coordinates

Let us convert Eq. (A9) to spherical coordinates x =
R cos φ sin θ , y = R sin φ sin θ , and z = R cos θ , thereby

representing the dynamics by

Ṙ = γ

{
1

2
cos θ [η(1 + R2) − 2]

+ 1

4
R(η − 1)(cos(2θ ) + 3)

}
, (B11a)

θ̇ = −γ [η + (η − 1)R cos θ − 2] sin θ

2R
−�x sin φ + �y cos φ, (B11b)

φ̇ = �z − (�x cos φ + �y sin φ) cot θ. (B11c)

A large part of our interest in the spherical form of the
problem stems from the dynamics of state purity P = tr(ρ2).
This expression is closely related to the radial equation of
motion, i.e., Ṗ = 2 tr(ρ ρ̇ ) = R Ṙ. This can equivalently be
written as

Ṗ = 1
2γ [(x2 + y2){η(1 + z) − 1}
+ z(z + 1){η(1 + z) − 2}]. (B12)

Since these dynamics related to changes in state purity are
independent of φ, they can be completely represented within
a cross-sectional plane of the Bloch sphere; graphical repre-
sentations appear in Fig. 7.

The control problem as a whole can also be recast in spheri-
cal coordinates, where the change from Cartesian q = (x, y, z)
and � = (�x,�y,�z ) to spherical q = (R, θ, φ) and � =
(�R,�θ ,�φ ) is performed via canonical transformation:

x → R cos φ sin θ,

y → R sin φ sin θ,

z → R cos θ,

�x → �R sin θ cos φ + (�θ/R) cos θ cos φ − (�φ/R) csc θ sin φ,

�y → �R sin θ sin φ + (�θ/R) cos θ sin φ + (�φ/R) csc θ cos φ,

�z → �R cos θ − (�θ/R) sin θ.

(B13)

Applying the above transformation to the Cartesian form of
H preserves the Poisson bracket between all dynamical vari-
ables and is equivalent to reassembling the Hamiltonian in
spherical coordinates as follows:

H = �R Ṙ + �θ θ̇ + �φ φ̇ − L (q,�). (B14)

Note that the equations for the optimal control (i.e., from
solving ∂�H = 0) now read

��
x = −�θ sin φ − �φ cot θ cos φ, (B15a)

��
y = �θ cos φ − �φ cot θ sin φ, (B15b)

��
z = �φ. (B15c)

These are quite helpful in constructing simulations, in that
they formalize an intuition that the costate variable �R

plays no role in the controller trajectory (because �R cor-
responds to changes in purity, which the unitary controller
cannot implement directly). Consequently, we may work
with a two-dimensional LM, completely defined by an ini-
tial mesh of �θ and �φ , rather than a three-dimensional
one in �x, �y, and �z. This reduction in the dimension-
ality of the integrated manifold considerably simplifies the
numerics.
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FIG. 7. Graphical representation of the change in purity for mixed-state no-jump dynamics (A9). We plot the rate of change of the Bloch
vector length Ṙ (B11a) on the top (panels a,c,e) and the rate of change of the purity Ṗ on the bottom (panels b,d,f). Results are shown for
detection efficiencies η = 1 (panels a,b), η = 0.75 (panels c,d), and η = 0 (panels e,f). Contour plots show lines of constant Ṙ(x, z) or Ṗ (x, z),
such that the dynamical flow will run perpendicular to the contour lines, i.e., along the gradient. Both Ṙ and Ṗ values are given in units of γ .
The Ṙ = 0 and Ṗ = 0 lines are shown in magenta; purity increases within the magenta boundary and decreases outside of it. We can understand
that purity decreases in the upper half of the Bloch sphere (i.e., closer to |e〉) in the inefficient conditional dynamics and does so faster for
worse efficiencies. On the other hand, the dynamical attraction towards |g〉 can be used to increase purity for states in a large region between
the equator and |g〉, across a wide range of measurement efficiencies. These results generically imply that control protocols can reach states
with P f > Pi if the target trajectory spends sufficient time traversing the region where Ṗ > 0.

c. Mixed-state solutions

The rate of change of the state purity Ṗ is especially
important to us in the cases of inefficient detection η < 1, as
well as an initially impure qubit state because the amount of
evolution time spent in regions of Ṗ > 0 will upper-bound
the final state purity (and thereby constrain which final states
are attainable). Recall that unitary dynamics (i.e., �) cannot
directly change the state purity. Purity is here increased (de-
creased) purely through the acquisition (loss) of information
the qubit has shared with its optical environment via spon-
taneous emission. What we can do, however, is to devise
controller trajectories that drive the system to a state where the
no-click (no-jump) measurement information leads to purity
increase, i.e., a measurement-induced change in purity that
depends on the qubit state. In this manner we can use our
controls to indirectly affect P .

Qualitative aspects of the relevant dynamics may be im-
mediately inferred from Fig. 7. For instance, the line Ṗ = 0
necessarily goes through |g〉 irrespective of η, and this point
is the only state where Ṗ = 0 and P = 1 for η < 1. It follows
that the jumpless dynamics (including the Lindbladian dy-
namics without detection) can only asymptotically approach
P = 1. More specifically, the dynamics without drive (� = 0)
decay as

z(t ) = 2 u0

η u0 − eγ t (η u0 − 2)
− 1 (B16)

for u0 = 1 + z0 ∈ [0, 2]. These solutions asymptotically ap-
proach z = −1 in the long-time limit for all parameters
except for z0 = 1 (initial |e〉) and η = 1 [42,74]. Therefore,
if we need to significantly increase state purity, there are two
options to accomplish this (which are not mutually incom-
patible). The first is to drive the trajectory close to |g〉 to
the greatest extent possible, then wait long enough for the
jumpless dynamics to purify the state to the desired degree
and then quickly drive the qubit from near |g〉 to the tar-
get state. The second is to alternatively actually measure a
click, which resets the qubit directly to |g〉, at which point
the attainable state purity is limited solely by the speed
of the controls. Note that a slower trajectory from |g〉 →
Q f will have more time to lose purity, and therefore have
a more constrained range of accessible final states (recall
Fig. 5).

We demonstrated in Fig. 6 that our optimal equations of
motion are, especially for sufficiently large α, capable of
generating the type of solutions we just described. A larger
value of the “agility” parameter α helps with this because
it allows our controller to “accelerate” towards the target
state a short time before we intend to reach it and to
stay near |g〉 to retain purity prior to that. Additional fig-
ures and animations illustrating this effect can be found in
the SM [75].
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