
PHYSICAL REVIEW A 107, 022215 (2023)

Work fluctuations and entanglement in quantum batteries
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We consider quantum batteries given by composite interacting quantum systems in terms of the thermody-
namic work cost of local random unitary processes. We characterize quantum correlations by monitoring the
average energy change and its fluctuations in the high-dimensional bipartite systems. We derive a hierarchy
of bounds on high-dimensional entanglement (the so-called Schmidt number) from the work fluctuations and
thereby show that larger work fluctuations can verify the presence of stronger entanglement in the system.
Finally, we develop two-point measurement protocols with noisy detectors that can estimate work fluctuations,
showing that the dimensionality of entanglement can be probed in this manner.
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I. INTRODUCTION

At the heart of quantum thermodynamics [1] lies the fun-
damental question about the emergence of thermodynamic
properties in small quantum systems. Quantum thermody-
namics has not only established a common playground for
statistical mechanics and quantum information theorists, it is
now driving experimental efforts to seek and exploit genuine
quantum signatures in thermodynamic processes. In partic-
ular, quantum correlations have been investigated in terms
of their fundamental energetic footprint [2,3] and work cost
[4–9], and as a resource in quantum thermal machines [10,11].
Research on quantum batteries [12] highlights the role of
correlations for work extraction [13–15] and storage [16–24]
in composite quantum systems. Experimental investigations
of quantum batteries are already underway [25,26].

In practice, if work is consumed or generated on the quan-
tum scale, strong fluctuations are often inevitable. Whether
they are caused by a lack of experimental control, environ-
mental decoherence, or other unknown sources of noise, the
fluctuations are not only detrimental to the performance of
thermodynamic tasks, but their precise statistics are often
inaccessible. It is a common approach in quantum information
theory to circumvent this problem by considering—or even
deliberately applying—uniformly random unitary operations
on the quantum system [27–37]. This operational “worst-
case” procedure will override other noise effects by rotating
around an arbitrary Hilbert-space direction, which results in
a maximally mixed system state on average. Nevertheless,
measurement data from a large sample of random unitaries
can reveal genuine quantum features of the system state.

In the context of quantum thermodynamics, random uni-
taries and random Hamiltonians that generate them have been
used to characterize the work distribution in chaotic quantum
systems [38–42]. Other studies analyzed the thermodynamics
of quantum batteries under random unitary rotations [43,44],
random repeated collisions [45–47], or random interaction
Hamiltonians [48–50].

Here, we show that one can detect bipartite entanglement in
a composite interacting working medium through work fluc-

tuations under local random unitaries. We derive a hierarchy
of bounds on high-dimensional entanglement in terms of the
so-called Schmidt number, and we show that stronger work
fluctuations can verify the presence of stronger entanglement.
Furthermore, we develop noisy two-point energy measure-
ment protocols based on inefficient detectors that can estimate
work fluctuations and thereby probe the Schmidt number.

II. QUANTUM BATTERY

Consider an interacting bipartite quantum system with
dimension d×d and Hamiltonian HAB = HA ⊗ 1B + 1A ⊗
HB + gV , prepared in a (possibly entangled) quantum state
�AB. Its energy content E = tr[�ABHAB] has contributions
from the local Hamiltonians HA, HB and from the interaction
term V at coupling strength g. The system shall act as a quan-
tum battery that receives or delivers energy through a local
(nonentangling) unitary control operation, which we describe
by �′

AB = (UA ⊗ UB)�AB(U †
A ⊗ U †

B ) (see also Fig. 1). We as-
sume a pulsed (or cyclic) operation that leaves the system
Hamiltonian unchanged, i.e., H ′

AB = HAB.
The associated locally extracted work is quantified by the

energy difference:

W (UA,UB) = E − E ′ = tr[(�AB − �′
AB)HAB]. (1)

Most studies on quantum battery (dis-)charging focus on the
maximum amount of the extractable work, called ergotropy
[51], which has recently been linked to quantum correlations
[3,52–54]. In this paper, we will not be concerned with the
maximization, but rather with the work statistics over a sample
of uniformly random local operations, and relate it to the
entanglement between the parts of the battery. We consider
the average work and its variance over a sample of unitaries
UA,UB drawn from the unitary groups U (d ):

W =
∫

dUA

∫
dUB W (UA,UB), (2)

(�W )2 = W 2 − W
2
, (3)
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FIG. 1. Sketch of the interacting quantum battery as a compos-
ite working medium that can be entangled in a d×d system. The
quantum battery is described by a state �AB and a Hamiltonian
HAB = HA + HB + gV with coupling strength g. It is transformed
by a local random unitary operation UA ⊗ UB: �AB → �′

AB = (UA ⊗
UB )�AB(U †

A ⊗ U †
B ). Then the average extractable work in this process

W (UA,UB ) = E − E ′ becomes random. The essential thermody-
namic quantity to characterize high-dimensional entanglement in this
paper is the work variance (�W )2 over the random unitaries.

where the integrals are taken over the Haar measure (see
Appendix A for details), including a commented list of use-
ful identities and known results. We immediately find that
W = E − tr[HAB]/d2, since the averaged final battery state
is always maximally mixed. On the other hand, we will see
that the variance (�W )2 of work fluctuations can reveal initial
quantum correlations in the battery.

III. WORK FLUCTUATIONS

By virtue of the Schur-Weyl duality [55–57], we can carry
out the unitary integrals in Eq. (3) and link the work fluctua-
tions to the generalized Bloch decomposition of �AB and HAB.
Recall that any d×d state �AB can be written as

�AB = 1

d2

⎛
⎝1AB +

d2−1∑
i=1

rA
i λi ⊗ 1B

+
d2−1∑
i=1

rB
i 1A ⊗ λi +

d2−1∑
i, j=1

ti jλi ⊗ λ j

⎞
⎠, (4)

with λ0 = 1d and λi the so-called Gell-Mann matrices for
i = 1, . . . , d2 − 1 [58–60]. These matrices generalize the
Pauli matrices to SU(d ), satisfying λ

†
i = λi, tr[λi] = 0, and

tr[λiλ j] = dδi j . The coefficient vectors rA and rB characterize
the two reduced battery states, while the matrix (ti j ) represents
all correlations. Similarly, we can expand the terms of the
Hamiltonian as

HX =
d2−1∑
i=0

hX
i λi, V =

d2−1∑
i, j=1

vi jλi ⊗ λ j . (5)

This leads to an explicit form for the work fluctuations.
Observation 1. The work variance over local random uni-

tary operations in a d×d quantum battery described by �AB

and HAB can be written in terms of the Bloch representation as

(�W )2 = 1

d2 − 1

(
r2

Ah2
A + r2

Bh2
B + t2g2v2

d2 − 1

)
, (6)

where r2
X =|rX |2, t2 =∑i, j t2

i j , h2
X =|hX |2, and v2 =∑i, j v

2
i j ,

for X = A, B.

Proof. First, we can immediately find

(�W )2 = (E ′)2 − E ′2. (7)

The first term on this right-hand side can be written as

(E ′)2 =
∫

dUA

∫
dUB {tr[�′

ABHAB]}2

=
∫

dUA

∫
dUB tr

[
�′⊗2

AB H⊗2
AB

]
= tr

[(∫
dUA

∫
dUB �′⊗2

AB

)
H⊗2

AB

]

= tr
[
�(�AB)H⊗2

AB

]
, (8)

where the map �(�AB) is given in Appendix A [see Eq. (A9)].
Using the expansion of the Hamiltonian terms in Eq. (5),
with help of the properties of Gell-Mann matrices, a long but
straightforward calculation leads to the expression (6). �

Similar quantities have appeared in the notion of sector
lengths in quantum information theory [61–65]. Here, the
bipartite correlations of the battery state �AB contribute to
(�W )2 via the term t2, provided there is a finite coupling
g �= 0 between the battery parts. Next, we will characterize
the entanglement in �AB based on Eq. (6).

IV. SCHMIDT NUMBER DETECTION

A typical way to describe high-dimensional entanglement
in a pure bipartite state |ψ〉 is to consider its Schmidt de-
composition [66], |ψ〉 = ∑r

i=1

√
λi|ei〉 ⊗ | fi〉, with 〈ei|e j〉 =

〈 fi| f j〉 = δi j and
∑r

i=1 λi = 1. The number r = r(ψ ) is equal
to the rank of trA[|ψ〉〈ψ |], and also called the Schmidt rank,
and the state |ψ〉 is entangled if and only if r(ψ ) > 1. A
high Schmidt rank certifies high-dimensional entanglement of
the state, which may imply usefulness for certain information
processing tasks [67–70].

The generalization of the Schmidt rank to mixed states �AB

is known as the Schmidt number [71]:

NS (�AB) = inf
D(�AB )

max
{ψi}

r(ψi ), (9)

where D(�AB) = {pi, ψi : �AB = ∑
i pi|ψi〉〈ψi|} is the set of

all ensemble realizations of �AB. The sets Sk of all bipartite
states with NS = k form a hierarchy of convex and compact
subsets in state space, Sk ⊂ Sk+1, where S1 is the set of sepa-
rable states. A higher Schmidt number thus indicates stronger
entanglement, augmenting the separability problem [72,73].
Several methods to witness the Schmidt number are already
known [74–78]. We now formulate a criterion based on work
fluctuations, which elucidates the role of entanglement in
work exchange processes.

Observation 2. Any d×d composite quantum battery de-
scribed by �AB and HAB with NS (�AB) = k obeys

(�W )2 � 1

d2 − 1

(
r2

Ah2
A + r2

Bh2
B + g2v2sk

d2 − 1

)
, (10)

with the function sk =s(k, d, r2
A, r2

B)=kd−1+ kd−2
2 (r2

A+r2
B)−

kd
2 |r2

A − r2
B|.
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Proof. Let us begin by considering a map given by

Mk (X ) = tr[X ]1 − X

k
, (11)

for an operator X ∈ Hd and an integer k. Reference [71]
showed that, if a two-qudit state �AB has Schmidt number
NS (�AB) = k, then (Mk ⊗ 1B)(�AB) is positive:

(Mk ⊗ 1B)(�AB) = �A ⊗ 1B − 1

k
�AB � 0, (12)

where �A = trB[�AB]. Noting that tr[�ABO] � 0 for any posi-
tive operator O, and taking O = (Mk ⊗ 1B)(�AB), we have

tr
[
�2

AB

]
� k tr

[
�2

A

]
. (13)

Similarly, we can show that tr[�2
AB] � k tr[�2

B]. In summary,
any d×d quantum state �AB with Schmidt number k obeys

tr
[
�2

AB

]
� k min

{
tr
[
�2

A

]
, tr
[
�2

B

]}
. (14)

For k = 1, this inequality becomes equivalent to the well-
known entropic separability criterion [30,79].

Here we note that

tr
[
�2

AB

] = 1

d2

(
1 + r2

A + r2
B + t2

)
. (15)

Using Eq. (15) and min(a, b) = (a + b − |a − b|)/2, we can
rewrite the above condition as

t2 � kd − 1 + kd − 2

2

(
r2

A + r2
B

)− kd

2

∣∣r2
A − r2

B

∣∣. (16)

In the above observation, the right-hand side of (16) is sub-
sumed as sk ≡ s(k, d, r2

A, r2
B). A violation of this inequality

implies that the state has a Schmidt number of at least (k + 1).
Observation 2 follows by applying the inequality to the work
fluctuations (�W )2 in Eq. (6). We remark that a similar proof
technique was employed in Ref. [36]. �

A violation of Eq. (10) implies that the battery state �AB

has a Schmidt number of at least (k + 1). Hence, observ-
ing stronger work fluctuations from local random unitaries
on a composite quantum battery allows us to detect high-
dimensional entanglement.

Note that the converse argument can be also true in the case
of pure states. To see this, we begin by noting that the purity
constraint tr[�2

AB] = 1 is equivalent to r2
A + r2

B = d2 − 1 − t2.

For the sake of simplicity, assuming h2
A = h2

B = h2, we can
then express (�W )2 as

(�W )2 = h2 + Gt2

d2 − 1
, (17)

where G = (g2v2)/(d2 − 1) − h2. Also, we can rewrite the
Schmidt number criterion as t2 � d2 + 1 − 2d

k . If the interac-
tion is sufficiently strong, that is, G > 0, then we get an upper
bound on (�W )2 from the Schmidt number criterion and
arrive at the same conclusion as Observation 2. On the other
hand, if the interaction is weak, G < 0, then a lower bound
on (�W )2 is obtained, and hence weaker work fluctuations
would certify higher entanglement.

We remark that our approach to detect high-dimensional
entanglement by observing random fluctuations can be ap-
plied not only to energy, but also to other observables
measuring bipartite correlations.

FIG. 2. Schmidt number detection through local work fluctua-
tions in an Ising-type battery of 2 + 2 qubits. (a) Variance of average
work extracted by local random unitaries acting on each battery half
as a function of the field strength b and the mixing ratio α between
a maximally entangled and a product Gibbs state. All energies are
in units of the interaction strength J2, and we fix J1,3 = 0.5J2 and
T = 1.5J2. Quantum states with NS = 1, 2, 3 are contained in the
areas below the respective dashed lines, according to Eq. (10), so
above a line allows us to detect NS . For comparison, we also indicate
a bottom blue threshold given by the PPT criterion. (b) Exemplary
histograms of negative work values from a sample of 106 unitaries
for the two marked cases (i) and (ii) at b = 0.45, corresponding to an
entangled state of NS = 4 at α = 0.96 and a state at α = 0.08, com-
patible with separable states, respectively. Work values are divided
into bins of size 0.1J2.

V. EXAMPLE

We shall test our criterion with the family of states

�α = α|φ〉〈φ| + (1 − α)τA ⊗ τB. (18)

They are mixtures between the product of local Gibbs states
at temperature T , τX = exp(−HX /T )/ZX , and the pure entan-
gled state |φ〉 that is locally indistinguishable from the Gibbs
states, trA(|φ〉〈φ|) = τB and trB(|φ〉〈φ|) = τA. Note that, in
the limit T → ∞, the Gibbs states are maximally mixed, and
hence the �α are isotropic states.

As a simple example, consider an interacting four-qubit
battery based on the Ising-type Hamiltonian

HI =
∑

i=1,2,3

JiZi ⊗ Zi+1 + b
4∑

i=1

Zi, (19)

with Zi being the Pauli-Z matrix acting on the ith qubit, b
the homogeneous field strength, and Ji the nearest-neighbor
couplings. Assuming the bipartition (A|B) = (1, 2|3, 4), we
can identify h2

A = J2
1 + 2b2, h2

B = J2
3 + 2b2, and g2v2 = J2

2 .
We illustrate the work fluctuations for an exemplary choice
of strong-coupling parameters in Fig. 2. Figure 2(a) shows the
work variance as a function of (b, α) and the Schmidt-number
thresholds for k = 1, 2, 3, while Fig. 2(b) shows two selected
histograms of suitably binned work values Eq. (1) associated
with the Haar-random local unitaries. In practice, these values
could be inferred from joint local measurements in the Z basis
on sufficiently many identical copies of each unitary sample,
and the statistical significance can be evaluated according
to Ref. [37]. In the following, however, we will proceed to
introduce two different measurement schemes to estimate the
work fluctuations.
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VI. NOISY TWO-POINT ENERGY
MEASUREMENT PROTOCOL

The projective two-point measurement (TPM) protocol
[80–82] defines a quantum notion of fluctuating work in anal-
ogy to classical stochastic thermodynamics, for trajectories
of an arbitrary system state subject to a given isentropic
process U . In this protocol, one first performs a projec-
tive measurement in the system’s energy eigenbasis, lets the
postmeasurement state evolve under U , and then performs
a second projective energy measurement. The difference be-
tween both outcomes can be seen as a random realization of
work under U , and the so defined work statistics obey the
Jarzynski equality [80–82].

However, the protocol has two major downsides. First, it is
highly invasive since the first measurement voids all the coher-
ence between energy levels that the initial system state might
have. Genuine quantum signatures such as entanglement be-
tween different system parts may thus be destroyed. Second,
ideal projective measurements may not be achievable due to
limited accuracy and unavoidable noise in experiments. These
two problems have motivated recent efforts to generalize the
TPM protocol [83–93].

We alleviate both problems by employing a TPM protocol
with noisy detectors, first introduced in Ref. [93]. We adapt
it to our setting of composite quantum batteries and have
A, B each apply the protocol for a local energy measurement.
To this end, we expand HX = ∑d

i=1 EX
i �X

i , with the energy
eigenvalues Ei and the projectors �X

i to the corresponding
eigenspaces. Moreover, we write the interaction term as V =∑d

i, j=1 Di j�
A
i ⊗ �B

j + VOD with tr[VOD�A
i ⊗ �B

j ] = 0 for all
i, j. This separates mere level shifts of the joint diagonal en-
ergy spectrum, Ei j = EA

i + EB
j + gDi j , from the actual change

of the energy eigenbasis via the off-diagonal part VOD. The
following results are based on estimating the Ei j spectrum
from noisy measurements in the basis of the �A

i ⊗ �B
j . We

stress that, for VOD �= 0, the Ei j values are not the battery
energies and the measurement does not constitute an actual
energy measurement (though it approximates one for small
VOD).

The population of the diagonal spectrum (Ei j ) can be
probed straightforwardly by combining the outcomes of lo-
cal energy measurements. Suppose these measurements are
erroneous in that they detect the correct local energy state
only with probability ε, while producing a completely random
outcome with probability 1 − ε. Assuming the same ε for both
sides, the corresponding positive operator-valued measures
(POVMs) are

PX
i = ε�X

i + 1 − ε

d
1X ,

d∑
i=1

PX
i = 1X . (20)

Here we assume that the �X
i are rank-1 projectors, so that the

entire POVM has d outcomes. On average, we can obtain an
unbiased estimator for (Ei j ) from them by assigning to each
joint outcome (i j) occurring with probability mi j = tr[PA

i ⊗
PB

j �AB] the rescaled and shifted energy value [93]:

ei j = EA
i + EB

j

ε
+ gDi j

ε2
− 1 − ε

dε
(tr[HA] + tr[HB]). (21)

For ε = 1, we have noiseless projective measurements and
ei j = Ei j , whereas small values ε 
 1 correspond to a weak
measurement dominated by errors. Note that the case of dif-
ferent errors εA, εB is also discussed in Appendix B.

We subject the postmeasurement state to local random
unitaries UA ⊗ UB,

σi j =
UA

√
PA

i ⊗ UB

√
PB

j �AB

√
PA

i U †
A ⊗

√
PB

j U †
B

mi j
, (22)

before applying the same local measurement again. The prob-
ability to obtain e′

kl if the first outcome was ei j is mkl|i j =
tr[PA

k ⊗ PB
l σi j], to which we associate a presumed work value

wi jkl = ei j − e′
kl . (It may only approximate the extracted

work if VOD �= 0, but small.) Averaged over many repetitions
at fixed UA ⊗ UB, we define WTPM(ε) ≡ WTPM(ε,UA,UB) =∑

i, j,k,l mi jmkl|i jwi jkl , which in turn can be averaged over a
large sample of unitaries to yield

WTPM(ε) =
∫

dUA

∫
dUB WTPM(ε), (23)

[�WTPM(ε)]2 = WTPM(ε)2 − WTPM(ε)
2
. (24)

In general, these TPM cumulants do not coincide with the
previously defined ones in Eqs. (2) and (3). However, we can
still obtain an explicit relation between the variances.

Observation 3. For any d×d composite quantum battery
described by �AB and HAB, the local noisy TPM protocol
results in the presumed work variance:

[�WTPM(ε)]2 = n0(ε)(�W )2
D + n1(ε)(�WProj)

2

+ [1 − n0(ε) − n1(ε)](�WNoisy)2, (25)

where the functions n0,1(ε) ∈ [0, 1] for any ε ∈ [0, 1] are
explicitly given. The term (�W )2

D is the theoretical work
variance in Eq. (6) evaluated for VOD = 0. The (�WProj)2 and
(�WNoisy)2 represent the variance for a noiseless projective
TPM and an additional contribution at finite noise ε ∈ (0, 1),
respectively, both also at VOD = 0.

See Observation 6 in Appendix B for the proof and the
lengthy explicit expressions for (�WProj)2, (�WNoisy)2, and
n0,1(ε). There we also show that the noisy TPM variance
obeys [�WTPM(ε)]2 � (�W )2

D, which saturates in the limit
ε → 0, where n0 → 1 and n1 → 0. In the opposite limit
ε → 1 where n1 → 1 and n0 → 0, we have a local projective
TPM which does not detect any entanglement. We compare
the measured work variance at various noise levels to the
theoretical values for our example states Eq. (18) in Fig. 3,
demonstrating that the noisy local TPM can detect entangle-
ment.

VII. NOISY ENERGY COINCIDENCE
MEASUREMENT PROTOCOL

In order to estimate the work variance in Eq. (24), the noisy
TPM scheme still relies on subjecting many copies of the
battery state to the same randomly drawn local unitary. We can
reduce this overhead by performing local coincidence mea-
surements on merely two state copies �AB ⊗ �A′B′ subjected to
the same local unitary UA ⊗ UB. Ideally, a joint dichotomic
projective measurement �AA′ ⊗ �BB′ would act locally on
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FIG. 3. (a) Comparison between the theoretical work variance
(�W )2

D (black solid) and the variance [�WTPM(ε)]2 resulting from
a local TPM protocol at various noise levels ε = 0.2, 0.5, and 1.0
(respectively, dashed blue, dotted red, and dash-dotted green), for
the Ising battery of Fig. 2 at fixed b = 0.45J2 and varying mixing
ratio α. The dashed horizontal lines show the bounds compatible with
Schmidt numbers 1,2,3. (b) Weight functions n0(ε) (blue solid), n1(ε)
(dashed red), and 1 − n0(ε) − n1(ε) (dotted green) vs noise level ε.

both A copies and on both B copies, with �XX ′ = ∑
i �

X
i ⊗

�X ′
i projecting onto the subspace spanned by energy product

states with the same eigenvalues EX
i = EX ′

i . By repeating this
measurement with a large sample of Haar-random unitaries,
we could estimate the average probability C that the two
copies’ local energies on the A and on the B side both coincide.

More generally, we can define a dichotomic energy coin-
cidence POVM based on noisy local energy measurements
according to Eq. (20):

PXX ′ =
∑

i

PX
i ⊗ PX ′

i = ε2�XX ′ + 1 − ε2

d
1XX ′ (26)

The probability for local energy coincidence between the
copies on both sides is then C(ε) = tr[PAA′ ⊗ PBB′�′

AB ⊗ �′
A′B′ ].

Averaged over the unitaries,

C(ε) = 1

d2

[
1 +

(
r2

A + r2
B

)
ε2

d + 1
+ t2ε4

(d + 1)2

]
, (27)

which we can directly relate to the entanglement-sensitive
work variance (�W )2 from Eq. (3). Equation (27) can be
derived more generally, using different errors εA, εB for mea-
surements on the A, B sides.

Proof. First, we can immediately find

C(εA, εB) = tr[�(�AB)PAA′ ⊗ PBB′ ],

where �(�AB) is defined in Eq. (A9). Since

tr[PXX ′ ] = ε2
X tr[�XX ′ ] + 1 − ε2

X

d
tr[1XX ′ ] = d, (28)

tr[SX PXX ′ ] = ε2
X tr[SX �XX ′ ] + 1 − ε2

X

d
tr[SX1XX ′ ]

= (d − 1)ε2
X + 1, (29)

we find

C(εA, εB) = 1

d2

[
1 + r2

Aε2
A

d + 1
+ r2

Bε2
B

d + 1
+ t2ε2

Aε2
B

(d + 1)2

]
.

For εA = εB = ε, we arrive at Eq. (27). �

Expressing the battery interaction strength as g2v2 = (d −
1)(h2ε2 + c), with h2 = min (h2

A, h2
B) and a new term c, we

find the following.
Observation 4. In the noisy energy coincidence measure-

ment protocol, we have

C(ε) � 1

d2

[
1 + (d − 1)ε2

h2
(�W )2 + t2ε2(|c| − c)

2(d + 1)2h2

]
. (30)

Hence, the energy coincidence measurement protocol on
two identical copies gives access to nonlinear functions of the
battery state such as the work variance, which allows us to
detect the Schmidt number by virtue of Observation 2.

The proven influence of the Schmidt number on work
fluctuations exemplifies the observable thermodynamic im-
plications of high-dimensional bipartite entanglement. Our
assessment in terms of the work variance with respect to Haar-
random samples of unitaries extends previous studies on the
direct estimation of nonlinear functions [94–99], experimental
lower bounds on the concurrence [100–103], and protocols for
randomized measurements [27,31,32].

VIII. CONCLUSION

We have analyzed the role of entanglement in local work
exchange with a composite quantum battery, as described
by an interacting bipartite quantum system. Specifically, we
found that the variance of the average extracted work over
a Haar-random sample of local unitary processes obeys a
hierarchy of inequalities detecting the Schmidt number of the
battery state—a criterion for high-dimensional entanglement.
While we saw that these bounds cannot be probed directly
in a standard projective two-point measurement scheme, we
could show that Schmidt number detection is possible in a
two-point measurement with noisy detectors as well as in an
energy coincidence measurement.

Our results can be used to probe the influence of entan-
glement in a quantum working medium and, more generally,
elucidate the interplay between entanglement and energy fluc-
tuations in random processes. It would be interesting to verify
our results on experimental platforms for quantum thermal
machines and batteries. Moreover, the randomized two-point
measurement approach could be extended to nonunitary, dis-
sipative processes, facilitating the detection of heat leaks
and nonunital dynamics in complex open quantum systems
[104,105].
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APPENDIX A: USEFUL FORMULAS

Here we summarize useful formulas related to the SWAP

operation and to integrals over Haar-random unitaries.
(i) For all operators A and B, tr[A ⊗ B] = tr[A]tr[B] and

tr[A⊗k] = tr[A]k .
(ii) Let S be the SWAP (flip) operator acting on d×d-

dimensional systems, defined as S|a〉|b〉 = |b〉|a〉. The SWAP

operator S can be written as S = d|�+〉〈�+|TA , where |�+〉 =
(1/

√
d )
∑d−1

i=0 |ii〉 is the maximally entangled state and TA is
the partial transposition on A. That is, S = ∑d−1

i, j=0 |i j〉〈 ji| with
±1 eigenvalues. Another and useful expression of the SWAP

operator is given by

S = 1

d

d2−1∑
i=0

λi ⊗ λi. (A1)

For the two-qubits Bell state

|�+〉〈�+| = 1
4 (12 ⊗ 12 + X ⊗ X − Y ⊗ Y + Z ⊗ Z ),

(A2)

where |�+〉 = (|00〉 + |11〉)/
√

2 and with X,Y, Z the Pauli
matrices, this can be seen since Pauli Y satisfies (Y ⊗ Y )TA =
−Y ⊗ Y . Here we note the important property:

tr[S(A ⊗ B)] = tr[AB]. (A3)

(iii) Let dU be the Haar measure, that is, the uniformly
random measure on the group of unitary operations U (d ),
normalized to

∫
dU = 1. For any integrand function f (U ) on

U ∈ U (d ), the Haar measure is both left and right invariant
under shifts by any unitary operation V ∈ U (d ):∫

dU f (U ) =
∫

dU f (VU ) =
∫

dU f (UV ). (A4)

(iv) For an operator X ∈ (HD)⊗k , let us consider

�k (X ) =
∫

dU U ⊗kX (U †)⊗k. (A5)

It is known that the unitary integral can be evaluated us-
ing the Schur-Weyl duality and the Weingarten calculus (see
Refs. [55–57]). In the cases of k = 1, 2, they are given by

�1(X ) =
∫

dU UXU † = tr[X ]

D
1D, (A6)

�2(X ) =
∫

dU U ⊗2X (U †)⊗2

= 1

D2 − 1

{[
tr(X ) − tr(SX )

D

]
1⊗2

D

+
[

tr(SX ) − tr(X )

D

]
S

}
. (A7)

One lesson from this result is that �2(X ) realizes a SWAP

operation. That is, taking integrals over the Haar unitary for
second moments can yield an indirect application of the SWAP

operation.
(v) For a two-qudit state �AB, let us consider

�(�AB) =
∫

dUAdUB
(
U ⊗2

A ⊗ U ⊗2
B

)
�⊗2

AB (U †
A )⊗2 ⊗ (U †

B )⊗2.

(A8)

Using the generalized Bloch representation of �AB and the
above formulas, we can obtain

�(�AB) = 1

d4

{
1⊗2

AB + 1

d2 − 1

[
r2

A

(
dSA − 1⊗2

A

)⊗ 1⊗2
B

+ r2
B1

⊗2
A ⊗ (

dSB − 1⊗2
B

)
+ t2

(
dSA − 1⊗2

A

)⊗ (
dSB − 1⊗2

B

)
d2 − 1

]}
, (A9)

where SA and SB respectively are the SWAP operators acting on
the two-copy system of �⊗2

AB .

APPENDIX B: NOISY TWO-POINT ENERGY
MEASUREMENT PROTOCOL

1. Noisy energy measurement and general observations

We consider noisy local energy measurements on A and B
with errors εA, εB:

PA
i = εA�A

i + 1 − εA

d
1A, PB

i = εB�B
i + 1 − εB

d
1B. (B1)

In the main text, we assumed εA = εB. The probability to
obtain the local measurement outcomes i, j on �AB is given
by mi j = tr[PA

i ⊗ PB
j �AB]. Following the notion of quantum

instruments [106], the normalized postmeasurement state can
be described by

σi j = 1

tr[Ji j (�AB)]
Ji j (�AB), (B2)

where Ji j is a linear completely positive and trace-preserving
map satisfying

mi j = tr[Ji j (�AB)]. (B3)

Like most studies on two-point measurement protocols, we
employ the so-called von Neumann-Lüders instrument in the
main text:

J vN-L
i j (�AB) =

√
PA

i ⊗
√

PB
j �AB

√
PA

i ⊗
√

PB
j . (B4)

For the sake of simplicity, let us now define the diagonal
Hamiltonian HD as an effective description:

HD = HAB − gVOD, (B5)

where V = ∑d
i, j=1 Di j�

A
i ⊗ �B

j + VOD and VOD is the off-
diagonal part of the interaction Hamiltonian (with vanishing
diagonal elements) in the eigenenergy basis of the local
Hamiltonian. On the one hand, the Hamiltonian HD can be
decomposed using the corresponding projectors �A

i ⊗ �B
j :

HD =
∑
i, j

Ei j�
A
i ⊗ �B

j , (B6)

with the joint diagonal energy spectrum Ei j = EA
i + EB

j +
gDi j , given in the main text. On the other hand, the Hamil-
tonian HD can also be decomposed into the measurement
operators PA

i , PB
j ,

HD =
∑
i, j

ei jP
A
i ⊗ PB

j , (B7)
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with appropriate energy values ei j assigned to each pair of
measurement outcomes (i, j):

ei j = eA
i + eB

j + gdi j, (B8)

eA
i = 1

εA
EA

i − 1 − εA

dεA
tr[HA],

eB
j = 1

εB
EB

j − 1 − εB

dεB
tr[HB], (B9)

di j = 1

εAεB
Di j .

The POVM decomposition of the Hamiltonian is motivated
by the research in Ref. [93]. For εA, εB = 1, we have noiseless
projective measurements and ei j = Ei j , whereas small values
εA, εB 
 1 correspond to a weak measurement dominated by
errors.

Similarly with the main text, we define the average work
over the noisy TPM protocol for independent errors as

WTPM(εA, εB) ≡ WTPM(εA, εB,UA,UB) =
∑

i, j,k,l

mi jmkl|i jwi jkl .

(B10)

Here we recall that mkl|i j = tr[PA
k ⊗ PB

l σ ′
i j] is the conditional

probability to obtain the outcomes k, l associated to the energy
value e′

kl in the second measurement, given that we obtained
(i, j) and ei j in the first measurement. The second measure-
ment receives the state σ ′

i j = (UA ⊗ UB)σi j (UA ⊗ UB)†, which
is the state transformed by a local random unitary operation

after the first noisy energy measurement. We associate the pre-
sumed work value wi jkl = ei j − e′

kl to the outcomes. Taking
an average over a large sample of local unitaries yields

WTPM(εA, εB) =
∫

dUA

∫
dUB WTPM(εA, εB), (B11)

[�WTPM(εA, εB)]2 = WTPM(εA, εB)2 − WTPM(εA, εB)
2
.

(B12)

In the following, we evaluate and simplify the unitary inte-
grals:

Observation 5. For any d×d composite quantum battery
described by �AB and HD, the local noisy TPM protocol with
εA and εB for the von Neumann-Lüders instrument results in
the average which can be expressed as

WTPM(εA, εB) = tr[�ABHD] − tr[HD]

d2
. (B13)

Observation 6. For any d×d composite quantum battery
described by �AB and HD with tr[HD] = 0, the local noisy
TPM protocol with εA and εB for the von Neumann-Lüders
instrument results in the presumed work variance which can
be expressed as

[�WTPM(εA, εB)]2 = ϒIdeal + ϒProj + ϒNoisy, (B14)

where ϒIdeal, ϒProj, and ϒNoisy, respectively, represent the
effects of the ideal theoretical work variance, the variance
from a noiseless projective TPM, and the noisy additional
measurements at finite noise. They are given by

ϒIdeal ≡ κ2
AB(�W )2

D, (B15)

ϒProj ≡ 1

d2 − 1

{[(
f 4
εA

f 4
εB

+ κ2
A

)(
d p2

A − 1
)+ κ2

Br2
A

]
h2

A + [(
f 4
εA

f 4
εB

+ κ2
B

)(
d p2

B − 1
)+ κ2

Ar2
B

]
h2

B

+ g2v2

d2 − 1

[
f 4
εA

f 4
εB

(
d2 p2

AB − d p2
A − d p2

B + 1
)+ κ2

A

∑
a,b,c

tabtcbζ
A
ac + κ2

B

∑
a,b,c

tabtacζ
B
bc

]}
, (B16)

ϒNoisy ≡ 2

d2 − 1

{[
γA
(
d p2

A − 1
)+ κBκABr2

A

]
h2

A + [
γB
(
d p2

B − 1
)+ κAκABr2

B

]
h2

B

+ g2v2

d2 − 1

[
γAB
(
d2 p2

AB − d p2
A − d p2

B + 1
)]+ κAκAB

∑
a,b,c

tabtcbζ
A
ac + κBκAB

∑
a,b,c

tabtacζ
B
bc

}
. (B17)

Here, (�W )2
D is the ideal theoretical work variance, Eq. (6)

in the main text, evaluated for the diagonal Hamiltonian HD

[i.e., for VOD = 0 and v2 = (1/d2)
∑

i, j D2
i j]. In the above

expressions, we introduce the short-hand notations

γA ≡ f 2
εA

f 2
εB

(κA + κB + κAB) + κA(κB + κAB), (B18)

γB ≡ f 2
εA

f 2
εB

(κA + κB + κAB) + κB(κA + κAB), (B19)

γAB ≡ f 2
εA

f 2
εB

(κA + κB + κAB) + κAκB, (B20)

κAB ≡ κAκB
/(

f 2
εA

f 2
εB

)
, κA ≡ f 2

εA
gεB

(
2 fεB + dgεB

)
,

κB ≡ f 2
εB

gεA

(
2 fεA + dgεA

)
, (B21)

fεX ≡
√

εX + 1 − εX

d
−
√

1 − εX

d
, (B22)

gεX ≡
√

1 − εX

d
, (B23)

p2
AB ≡

∑
i, j

(
pAB

i j

)2
, p2

A ≡
∑

i

(
pA

i

)2
, p2

B ≡
∑

j

(
pB

j

)2
,

(B24)

pAB
i j ≡ tr

[
�A

i ⊗ �B
j �AB

]
, pA

i ≡
∑

j

pAB
i j , pB

j ≡
∑

i

pAB
i j ,

(B25)

ζ A
ab ≡

∑
i

tr
(
�A

i λa�
A
i λb
)

d
, ζ B

ab ≡
∑

i

tr
(
�B

i λa�
B
i λb
)

d
,

(B26)
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with the normalization condition

f 2
εX

+ 2 fεX gεX + dg2
εX

= 1, (B27)

for X = A, B. Let us define

n0(εA, εB) ≡ κ2
AB, (B28)

n1(εA, εB) ≡ f 4
εA

f 4
εB

+ κ2
A + κ2

B, (B29)

nNoisy(εA, εB) ≡ 2
[

f 2
εA

f 2
εB

(κA + κB + κAB) + κAκB

+κAκAB + κBκAB
]
, (B30)

where n0(εA, εB), n1(εA, εB), and nNoisy(εA, εB) are explicitly
known functions obeying

0 � n0(εA, εB), n1(εA, εB), nNoisy(εA, εB) � 1, (B31)

n0(εA, εB) + n1(εA, εB) + nNoisy(εA, εB) = 1. (B32)

Then we also have

[�WTPM(εA, εB)]2

≡ n0(εA, εB)(�W )2
D + n1(εA, εB)(�WProj)

2

+ [1 − n0(εA, εB) − n1(εA, εB)](�WNoisy)2, (B33)

where

(�WProj)
2 ≡ 1

n0(εA, εB)
ϒProj, (B34)

(�WNoisy)2 ≡ 1

1 − n0(εA, εB) − n1(εA, εB)
ϒNoisy. (B35)

Remark. In the case of symmetric errors, εA = εB = ε, we
arrive at Observation 3 in the main text.

Remark. For any εA, εB and any dimension d , we find the
inequality

[�WTPM(εA, εB)]2 � (�W )2
D, (B36)

which is saturated by the limit εA, εB → 0.

To see this, we first show that

p2
A =

∑
i

(
pA

i

)2 =
∑

i

tr
[
�A

i �A
]2 =

∑
i

tr
[
�A

i �A�A
i �A

]
�
∑

i

tr
[
�A

i �2
A

] = tr
[
�2

A

]
, (B37)

where we employ that tr[ABAB] � tr[A2B2], for any Hermi-
tian operators A, B. This result directly yields d p2

A − 1 � r2
A.

Similarly we can have that d p2
B − 1 � r2

B and d2 p2
AB − d p2

A −
d p2

B + 1 � t2. Also, we find∑
a,b,c

tabtcbζ
A
ac = 1

d2

∑
a,b,c,d

∑
i

tabtcd tr
(
�A

i λa�
A
i λc
)
tr(λbλd )

= 1

d2

∑
a,b,c,d

∑
i

tabtcd tr
[(

�A
i ⊗ 1B

)
(λa ⊗ λb)

× (
�A

i ⊗ 1B
)
(λc ⊗ λd )

]
= 1

d2

∑
i

tr
[(

�A
i ⊗ 1B

)
T2
(
�A

i ⊗ 1B
)
T2
]

� 1

d2

∑
i

tr
[(

�A
i ⊗ 1B

)
T 2

2

] = 1

d2
tr
[
T 2

2

] = t2,

(B38)

where we employ that tr[ABAB] � tr[A2B2], for any
Hermitian operators A, B. Similarly, we have that∑

a,b,c tabtacζ
B
bc � t2. Substituting these results into the

expression [�WTPM(εA, εB)]2 given in Observation 6 and
using the condition f 2

εX
+ 2 fεX gεX + dg2

εX
= 1 for X = A, B,

we can straightforwardly complete the proof.

2. Proof of Observation 5

We begin by writing the TPM work average for a fixed
unitary as

WTPM(εA, εB) =
∑

i, j,k,l

mi jmkl|i jwi jkl

=
∑
i, j

mi jei j −
∑

i, j,k,l

mi jmkl|i je
′
kl

=
∑
i, j

tr
[
PA

i ⊗ PB
j �AB

]
ei j

−
∑

i, j,k,l

mi j tr
[
PA

k ⊗ PB
l σ ′

i j

]
e′

kl

= tr[�ABHD] −
∑
i, j

tr
[
(UA ⊗ UB)

√
PA

i

⊗
√

PB
j �AB

√
PA

i ⊗
√

PB
j (UA ⊗ UB)†HD

]
,

(B39)

by virtue of Eq. (B3). In order to derive the unitary average
WTPM(εA, εB), we first note that

√
PA

i = fεA�
A
i + gεA1A,

√
PB

i = fεB�
B
i + gεB1B, (B40)

with 1X = �X
i +∑

j �=i �
X
j . We then define

fεX ≡
√

εX + 1 − εX

d
−
√

1 − εX

d
, gεX ≡

√
1 − εX

d
,

(B41)

with the normalization condition

f 2
εX

+ 2 fεX gεX + dg2
εX

= 1. (B42)

Abbreviating �AB
i j ≡ �A

i ⊗ �B
j , a straightforward calculation

leads to

∑
i, j

√
PA

i ⊗
√

PB
j �AB

√
PA

i ⊗
√

PB
j

= f 2
εA

f 2
εB

ξAB + κAξA + κBξB + κAB�AB, (B43)
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where we define

ξAB ≡
∑
i, j

�AB
i j �AB�AB

i j , ξA ≡
∑

i

�A
i ⊗ 1B�AB�A

i ⊗ 1B,

ξB ≡
∑

j

1A ⊗ �B
j �AB1A ⊗ �B

j , (B44)

κAB ≡ κAκB/
(

f 2
εA

f 2
εB

)
, κA ≡ f 2

εA
gεB

(
2 fεB + dgεB

)
,

κB ≡ f 2
εB

gεA

(
2 fεA + dgεA

)
. (B45)

From this follows

WTPM(εA, εB) = tr[�ABHD] −
∫

dUA

∫
dUB tr

× [(
f 2
εA

f 2
εB

ξ ′
AB + κAξ ′

A + κBξ ′
B + κAB�′

AB

)
HD
]
,

(B46)

where χ ′ = (UA⊗UB)χ (U †
A ⊗U †

B ) for any χ =ξAB, ξA, ξB, �AB.
With help of Eq. (A6) in Appendix A, we straightforwardly
arrive at ∫

dUA

∫
dUB tr

[
χ ′HD

] = tr[HD]

d2
, (B47)

provided that tr[χ ′] = 1. Finally, by applying the normaliza-
tion condition in Eq. (B42), the proof of Observation 5 is
completed.

3. Proof of Observation 6

We begin by recalling that [�WTPM(εA, εB)]2 =
WTPM(εA, εB)2 − WTPM(εA, εB)

2
. Based on the assumption

tr[HD] = 0 and the result of Observation 5, the second term
simplifies to

WTPM(εA, εB)
2 = tr[�ABHD]2. (B48)

For the first term WTPM(εA, εB)2, let us consider the expansion

WTPM(εA, εB)2 =
∫

dUA

∫
dUB

{
tr[�ABHD] − tr

[(
f 2
εA

f 2
εB

ξ ′
AB + κAξ ′

A + κBξ ′
B + κAB�′

AB

)
HD
]}2

= tr[�ABHD]2 +
∫

dUA

∫
dUB

{
tr
[(

f 2
εA

f 2
εB

ξ ′
AB + κAξ ′

A + κBξ ′
B + κAB�′

AB

)
HD
]}2

− 2tr[�ABHD]
∫

dUA

∫
dUB

{
tr
[(

f 2
εA

f 2
εB

ξ ′
AB + κAξ ′

A + κBξ ′
B + κAB�′

AB

)
HD
]}

. (B49)

By virtue of Eq. (B47) and the assumption tr[HD] = 0, the
third line vanishes. Expanding the second term in the second
line, we identify ten types of unitary integrals:

�ξAB = f 4
εA

f 4
εB

∫
dUA

∫
dUB tr[ξ ′

ABHD]2, (B50)

�ξA = κ2
A

∫
dUA

∫
dUB tr[ξ ′

AHD]2, (B51)

�ξB = κ2
B

∫
dUA

∫
dUB tr[ξ ′

BHD]2, (B52)

��AB = κ2
AB

∫
dUA

∫
dUB tr[�′

ABHD]2, (B53)

�c1 = f 2
εA

f 2
εB

κA

∫
dUA

∫
dUB tr[ξ ′

ABHD]tr[ξ ′
AHD], (B54)

�c2 = f 2
εA

f 2
εB

κB

∫
dUA

∫
dUB tr[ξ ′

ABHD]tr[ξ ′
BHD], (B55)

�c3 = κAκB

∫
dUA

∫
dUB tr[ξ ′

AHD]tr[ξ ′
BHD], (B56)

�c4 = f 2
εA

f 2
εB

κAB

∫
dUA

∫
dUB tr[ξ ′

ABHD]tr[�′
ABHD],

(B57)

�c5 = κAκAB

∫
dUA

∫
dUB tr[ξ ′

AHD]tr[�′
ABHD], (B58)

�c6 = κBκAB

∫
dUA

∫
dUB tr[ξ ′

BHD]tr[�′
ABHD]. (B59)

Hence we have

[�WTPM(εA, εB)]2 = WTPM(εA, εB)2 − WTPM(εA, εB)
2

= �ξAB + �ξA + �ξB + ��AB + 2
6∑

i=1

�ci .

(B60)

We notice that the fourth term ��AB/κ
2
AB is equal to the the-

oretical work variance (�W )2
D for the diagonal Hamiltonian

HD in Observation 1 in the main text. The first three terms,
�ξAB , �ξA , �ξB , can be attributed to the noiseless local TPM,
and their sum corresponds to the variance (�WProj)2 in Obser-
vation 3 in the main text. Finally, all the cross terms �ci for
i = 1, 6 vanish in the limits εA, εB → 0, 1; they constitute the
additional noise contribution (�WNoisy)2 in Observation 3.

In order to find the explicit form of [�WTPM(εA, εB)]2,
we must evaluate all these terms. We begin by recalling the
generalized Bloch representation of �AB:

�AB = 1

d2

(
1AB + RA

1 ⊗ 1B + 1A ⊗ RB
1 + T2

)
, (B61)

introducing the traceless Hermitian operators

RA
1 =

d2−1∑
i=1

rA
i λi, RB

1 =
d2−1∑
i=1

rB
i λi, T2 =

d2−1∑
i, j=1

ti jλi ⊗ λ j .

(B62)
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For these expressions, we define the quantities

r2
A = 1

d
tr
[(

RA
1

)2] =
d2−1∑
i=1

(
rA

i

)2
,

r2
B = 1

d
tr
[(

RB
1

)2] =
d2−1∑
i=1

(
rB

i

)2
, (B63)

t2 = 1

d2
tr
[
T 2

2

] =
d2−1∑
i, j=1

t2
i j,

which capture the magnitude of the one- and two-body quan-
tum correlations of �AB. With these expressions, we rewrite

the state ξAB in Eq. (B44) as

ξAB =
∑
i, j

�AB
i j �AB�AB

i j =
∑
i, j

pAB
i j �AB

i j , (B64)

where pAB
i j ≡ tr[�AB

i j �AB]= (1/d2){1+tr[�A
i RA

1 ]+tr[�B
j RB

1 ] +
tr[�AB

i j T2]}. Also, we define pA
i ≡ ∑

j pAB
i j and pB

j ≡ ∑
i pAB

i j .

Letting p2
A = ∑

i(pA
i )2, p2

B = ∑
j (pB

j )2, p2
AB = ∑

i, j (pAB
i j )2,

and employing the formulas (A6) and (A7), a long calculation
leaves us with

�ξAB = f 4
εA

f 4
εB

d2 − 1

[(
d p2

A − 1
)
h2

A + (
d p2

B − 1
)
h2

B +
(
d2 p2

AB − d p2
A − d p2

B + 1
)
g2v2

d2 − 1

]
, (B65)

�ξA = κ2
A

d2 − 1

⎡
⎣(d p2

A − 1
)
h2

A + r2
Bh2

B + g2v2

d2 − 1

∑
a,b,c

tabtcbζ
A
ac

⎤
⎦, (B66)

�ξB = κ2
B

d2 − 1

⎡
⎣r2

Ah2
A + (

d p2
B − 1

)
h2

B + g2v2

d2 − 1

∑
a,b,c

tabtacζ
B
bc

⎤
⎦, (B67)

�c1 = f 2
εA

f 2
εB

κA

d2 − 1

[(
d p2

A − 1
)
h2

A + (
d p2

B − 1
)
h2

B +
(
d2 p2

AB − d p2
A − d p2

B + 1
)
g2v2

d2 − 1

]
, (B68)

�c2 = f 2
εA

f 2
εB

κB

d2 − 1

[(
d p2

A − 1
)
h2

A + (
d p2

B − 1
)
h2

B +
(
d2 p2

AB − d p2
A − d p2

B + 1
)
g2v2

d2 − 1

]
, (B69)

�c3 = κAκB

d2 − 1

[(
d p2

A − 1
)
h2

A + (
d p2

B − 1
)
h2

B + (d2 p2
AB − d p2

A − d p2
B + 1)g2v2

d2 − 1

]
, (B70)

�c4 = f 2
εA

f 2
εB

κAB

d2 − 1

[(
d p2

A − 1
)
h2

A + (
d p2

B − 1
)
h2

B +
(
d2 p2

AB − d p2
A − d p2

B + 1
)
g2v2

d2 − 1

]
, (B71)

�c5 = κAκAB

d2 − 1

⎡
⎣(d p2

A − 1
)
h2

A + r2
Bh2

B + g2v2

d2 − 1

∑
a,b,c

tabtcbζ
A
ac

⎤
⎦, (B72)

�c6 = κBκAB

d2 − 1

⎡
⎣r2

Ah2
A + (

d p2
B − 1

)
h2

B + g2v2

d2 − 1

∑
a,b,c

tabtacζ
B
bc

⎤
⎦. (B73)

Here we introduced

ζ A
ab ≡

∑
i

tr
(
�A

i λa�
A
i λb
)

d
, ζ B

ab ≡
∑

i

tr
(
�B

i λa�
B
i λb
)

d
. (B74)

Summarizing these terms, we can complete the proof of Observation 6. Here, it might be useful for some readers to note that

∑
a,b,c,d

tabtcdζ
A
acζ

B
bd = 1

d2

∑
i, j

tr
[
�AB

i j T2�
AB
i j T2

] = 1

d2

∑
i, j

{
tr
[
�AB

i j T2
]}2

= 1

d2

∑
i, j

(
d2 pAB

i j − d pA
i − d pB

j + 1
)2 = d2 p2

AB − d p2
A − d p2

B + 1, (B75)

where we use that tr[�AB
i j T2] = d2 pAB

i j − d pA
i − d pB

j + 1.

022215-10
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