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Transverse quantum decoherence of a fast particle in a gas
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The decoherence of a fast quantum particle in a gas is studied by applying the Kramers-Moyal expansion
to the quantum master equation for the reduced density matrix of the particle. This expansion leads to a
general form of the Caldeira-Leggett master equation accounting for the angular variation of the differential
cross section. The equation describes the decoherence in both the longitudinal and transverse directions with
respect to the particle motion. It is shown that, when the differential cross section is concentrated in the forward
direction, transverse decoherence dominates. The coherence region off the diagonal of the density matrix is
characterized by coherence lengths, which can be deduced, for Gaussian states, from the momentum covariance
matrix according to a Heisenberg-type uncertainty relation. Finally, the longitudinal-to-transverse ratio of the
coherence lengths is estimated for an α particle of a few MeVs. This ratio indicates that the coherence region
looks like an ellipsoid elongated in the direction of motion.
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I. INTRODUCTION

The question of the propagation of a quantum particle in
a detector, such as a cloud chamber or an ionization cham-
ber, is probably one of the least obvious ever addressed
from first principles. It was originally asked by Darwin [1]
and Mott [2] in the early years of quantum theory. The
problem at the time was to understand how the appearance
of linear tracks of α particles in cloud chambers could be
consistent with the quantum-mechanical description of these
particles as waves. In his paper, Mott gave a relevant ex-
planation of this phenomenon by accounting for the whole
Hilbert space generated by the excitation states of the detector
constituents. His explanation is still verified today in recent
works [3–9].

An important issue pointed out by Darwin and Mott resides
in the lack of information about the state of the α particle pro-
vided by single-particle quantum measurements. In particular,
although the wave function of the α particle is depicted as
symmetrical around the radioactive source, individual tracks
seem to have preferred directions [1,2], in apparent con-
tradiction with quantum mechanics. This comes from the
probabilistic nature of the quantum-mechanical wave function
and the inherent difficulty of its interpretation. However, the
specific issue of interpretation is not the subject of the present
paper. Instead, this work attempts to describe on average the
whole ensemble of possible measurement outcomes using the
reduced density matrix of the particle. It has been known since
the pioneering work of Joos and Zeh [10–12] that the reduced
density matrix of a particle undergoes decoherence, which is
the exponential decay of its off-diagonal elements, due to the
interaction with the quantum environment [13–17]. This effect
is considered as the signature of quantum measurement and
the transition from quantum to classical behaviors [12,18–22].
Until now, decoherence theory has been successfully observed
in numerous experiments on large slow molecules [23–30],
but not on fast incident particles.

The purpose of the present paper is to study the quan-
tum master equation derived in a previous paper [31] and to
specialize it to the context of a fast particle passing through
a detector modeled as a gas of slow particles. As in the
previous paper [31], the interaction potential between the
incident particle and the gas particles is assumed to be short
range, hence neglecting the Coulombic nature of the collisions
with the electrons [32–36]. Despite this approximation, the
differential cross section in the center-of-mass frame is sup-
posed to be focused enough in the forward direction to avoid
significant deviation of the particle from its initial direction
[37,38]. This latter assumption enables the use of a quantum-
mechanical analog of the Kramers-Moyal expansion [39–42]
to approximate the collisional term of the master equation.
This procedure leads to an equation similar to the master
equation found by Caldeira and Leggett [16,17,43–46] with
drift and diffusion terms acting in momentum space, but of a
more general kind, because it does not assume that the particle
is slow compared to the gas. In the Wigner representation, this
master equation reduces to a Fokker-Planck equation for the
momentum distribution of the particle. Using a definition for
the coherence length [47], it will be shown that, due to the
assumption of small deflection of the particle, decoherence
dominates in the direction transverse to motion. Therefore, the
coherent wave packet looks like an ellipsoid elongated in the
direction of motion.

This paper is organized as follows. The quantum master
equation of Ref. [31] governing the reduced density matrix
of the particle is presented in Sec. II. The general properties
of this equation, including thermalization and spatial deco-
herence, are considered in Secs. II A and II B, respectively.
These general properties do not rely on the Kramers-Moyal
approximation. Then approximate expressions based on the
Kramers-Moyal expansion are derived in Sec. III. In partic-
ular, after the calculation of the moments that takes place
in Sec. III A, a general form of the Caldeira-Leggett master
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equation is presented in Sec. III B. This equation is then spe-
cialized to the case of strong forward scattering in Sec. III B 1
and expressed in terms of the angular momentum operator
to shed light on the spherical nature of transverse decoher-
ence. Additional explanations about the appearance of the
angular momentum operator are given in the Appendix. The
Wigner transform of the master equation is then established in
Sec. III B 2. In Sec. IV a coherence length matrix is introduced
to characterize the region of coherence around the diagonal of
the reduced density matrix. It is shown in Sec. IV A that, for
the Gaussian states predicted by the Fokker-Planck equation,
the coherence length is the inverse of the standard deviation of
the momentum. This is due to the existence of a Heisenberg-
type uncertainty relation between the coherence length and
the momentum. Finally, this relation leads to an approximate
solution for the time evolution of the coherence length which
is obtained in Sec. IV C based on the calculations of Sec. IV B.

Throughout this paper, SI units are used with the recom-
mended values of Ref. [48] for the fundamental constants.
Regarding the notation, c is the speed of light in vacuum,
h is the Planck constant, h̄ = h/2π is the reduced Planck
constant, α is the fine-structure constant, and kB is the Boltz-
mann constant. All the calculations will be performed for
an arbitrary number of spatial dimensions: d ∈ {2, 3, 4, . . .}.
Quantum operators will be denoted by Â to distinguish them
from the associated eigenvalue A.

II. GENERAL PROPERTIES OF THE MASTER EQUATION

One considers a model for a spinless quantum particle of
mass ma interacting with a thermal bath of N mobile scatterers
of mass mb in a cubic enclosure denoted by V of side L and
volume V = Ld . The Hamiltonian of the whole system reads
[31]

Ĥ = h̄2k̂
2
a

2ma︸ ︷︷ ︸
Ĥa

+
N∑

i=1

h̄2k̂
2
i

2mb︸ ︷︷ ︸
Ĥb

+
N∑

i=1

u(r̂ − x̂i )︸ ︷︷ ︸
Û

, (1)

where (r̂, k̂a) are the position and the momentum of the
particle, and (x̂1, x̂2, . . . , x̂N ) and (k̂1, k̂2, . . . , k̂N ) are the po-
sitions and the momenta of the scatterers, respectively. These
momenta are quantized to the cubic lattice

k = 2π

L
(n1, . . . , nd )ᵀ ∀ (n1, . . . , nd ) ∈ Zd (2)

due to the periodic boundary conditions over the wave func-
tion. The number density of scatterers, n = N/V , is supposed
to be fixed, even in the continuum limit for the momentum
states, namely, V → ∞. In addition, the potential u(r) is
assumed to be spherically symmetric and of short range.

It was shown in a previous paper [31] that the master
equation for the reduced density matrix of the particle, defined
as the partial trace over the bath of the full density matrix

ρ̂a(t ) = Trbρ̂(t ), (3)

has the form

∂ ρ̂a

∂t
= Laρ̂a + Raρ̂a. (4)

The symbol La in Eq. (4) stands for the Liouvillian superop-
erator

Laρ̂a = 1

ih̄
[Ĥa, ρ̂a], (5)

which describes the free propagation of the particle, and Ra is
the Redfieldian superoperator, or dissipator [45], which reads
[31]

Raρ̂a = 1

2

∑
q

(eiq·r̂{Ŵq, ρ̂a}e−iq·r̂ − {Ŵq, ρ̂a}), (6)

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator. The dissi-
pator (6) was derived in the previous paper [31] using the
Markov assumption, the perturbative approximation, and the
weak scattering condition [49,50]

ka,0�s � 1, (7)

where ka,0 = 2π/λa,0 is the initial particle wave number and
�s = (nσ )−1 is the mean free path, σ being the total col-
lision cross section. It was shown in that paper that the
Redfield equation (4)–(6) approximately reduces to the Boltz-
mann equation in the Wigner representation. In this respect,
it is similar to the quantum linear Boltzmann equation of
Refs. [14,15,17], although it cannot be cast into the Lindblad
form.

In Eq. (6), Ŵq denotes the total collision rate operator
associated with the transferred momentum q and is given by

Ŵq = Wq(k̂a) = N〈wq(k̂a, k̂b)〉b, (8)

where 〈·〉b stands for the average over the momentum kb of
some generic bath particle. This average is defined as

〈X (k̂a, k̂b)〉b =
∫
Rd

dkb fb(kb)X (k̂a, kb) (9)

and is still an operator acting on particle a. In Eq. (9), fb(kb)
is the single-particle momentum distribution of the bath nor-
malized according to

∫
Rd dkb fb(kb) = 1. The gas is supposed

to be in the rest frame so that the average velocity is zero:
〈kb〉b = 0.

In Eq. (8), wq(k̂a, k̂b) is the binary collision rate operator
for a fixed value of k̂b. At leading order of perturbation theory
in the potential u(r), this operator is given by

wq(k̂a, k̂b) = 2π

h̄

1

V 2
|ū(q)|2δ(D̂q), (10)

with the energy difference operator defined as

D̂q = Ek̂a+q + Ek̂b−q − Ek̂a
− Ek̂b

. (11)

In Eq. (11), Ek̂a
= h̄2k̂

2
a

2ma
and Ek̂b

= h̄2k̂
2
b

2mb
are convenient rep-

resentations of the free Hamiltonians of the particle and the
generic bath scatterer, respectively. The binary collision rate
(10) is schematically represented in Fig. 1 in the space of
the transferred momentum q for a fixed value of ka and for
kb = 0. The binary collision rate (10) is the product of the
energy conservation Dirac delta δ(Dq), constraining q to a
sphere, and the function |ū(q)|2 centered at q = 0.

In the continuum limit (V → ∞), all the sums over the
transferred momentum can be expressed in terms of the
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FIG. 1. Distribution of the final momentum k′
a = ka + q of parti-

cle a after a single collision according to Eqs. (8) and (10), assuming
the target scatterer is initially at rest (kb = 0), in (a) the laboratory
frame and (b) the center-of-mass frame described by the relative
momenta k and k′. The mass ratio is ma

mb
= 3. The circle represents

the spherical energy shell δ(Dq ) and the blurry function represents
|ū(q)|2 in Eq. (10).

differential cross section dσ
d


according to the property [31]

∑
q

Wq(ka)F (q) =
∮
Sd

d


〈
nv

dσ

d

(�|k�0)F (k� − k�0)

〉
b

,

(12)

which holds for any function F (q) by definition of the dif-
ferential cross section. The property (12) will be often used
throughout this paper. On the right-hand side of Eq. (12), k =
k�0 is the relative momentum between the colliding particles
defined as

k = mbka − makb

ma + mb
, (13)

v = v�0 is the relative velocity

v = va − vb = h̄ka

ma
− h̄kb

mb
= h̄k

m
, (14)

and �0 and � are the initial and final directions, respectively,
of the relative motion between the particle and the bath scat-
terer, as shown in Fig. 1(b). They are both normalized to unity:
‖�0‖ = ‖�‖ = 1. In Eq. (14), m is the reduced mass of the
binary system

m = mamb

ma + mb
. (15)

In addition, we also define the total mass of the binary system
for notational convenience

M = ma + mb. (16)

Finally, it should be noted that the average over the bath 〈·〉b in
Eq. (12) concerns all the variables depending on kb, namely,
v, k, and �0 in particular.

A. Energy transfer and thermalization

In this section it is shown that the Redfield equation (4)
leads to the thermalization of the particle. First, the governing
equation for the mean particle energy 〈Eka〉a = Tra(Ek̂a

ρ̂a) is
given by

d
〈
Eka

〉
a

dt
= Tra

(
Ek̂a

Raρ̂a
)
, (17)

since the contribution from the free propagation term Laρ̂a in
Eq. (4) is zero due to energy conservation. Using the cyclic
property of trace and the momentum translation property

e−iq·r̂ f (k̂a)eiq·r̂ = f (k̂a + q), (18)

we get, from Eqs. (6) and (17),

d
〈
Eka

〉
a

dt
= Tra

⎛
⎝1

2

∑
q

{Ŵq, ρ̂a}
(
Ek̂a+q − Ek̂a

)⎞⎠. (19)

In addition, since the commutation [Ŵq, Ek̂a
] = 0 holds, we

can write

d
〈
Eka

〉
a

dt
= Tra

⎛
⎝ρ̂a

∑
q

Ŵq
(
Ek̂a+q − Ek̂a

)⎞⎠. (20)

Now we can use the property (12) to deal with the sum over q
in Eq. (20). Thus, we get∑

q

Wq(ka)
(
Eka+q − Eka

)

=
∮
Sd

d


〈
nv

dσ

d

(�|k�0)

(
Eka+q − Eka

)〉
b

, (21)

assuming implicitly q = k(� − �0) on the right-hand side.
Introducing the energy transfer averaged over the differential
cross section

Ta =
∮
Sd

d

dσ

d

(�|k�0)

(
Eka+q − Eka

)
, (22)

Eq. (20) can be rewritten more simply as

d
〈
Eka

〉
a

dt
= Tra(ρ̂a〈nv̂T̂a〉b) = 〈〈nv̂T̂a〉b〉a. (23)

Then we expand the energy transfer integral (22) to get

Ta = h̄2

2ma

∮
Sd

d

dσ

d

(�|k�0)(q2 + 2ka · q). (24)

To perform the integral (24), it is convenient to introduce the
momentum-transfer cross section [51]

σtr (k) =
∮
Sd

d

dσ

d

(�|k�0)(1 − � · �0). (25)

This quantity has the same units as the total cross section σ (k)
and is always bounded by σtr ∈ [0, σ ]. It mainly characterizes
the dispersion of the center-of-mass differential cross sec-
tion around the forward direction. When σtr � σ , this means
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that the cross section is peaked in the forward direction and
that the particle undergoes small deflections upon collision.
On the contrary, when σtr = σ , the cross section is indepen-
dent of the direction, i.e., isotropic, and the particle is strongly
deflected.

Using the facts that q = k(� − �0) and k = k�0, we find
two exact integrals for the transferred momentum which de-
rive from definition (25), namely,∮

Sd

d

dσ

d

(�|k�0)q = −kσtr (k) (26)

and ∮
Sd

d

dσ

d

(�|k�0)q2 = 2k2σtr (k). (27)

Substituting Eqs. (26) and (27) into Eq. (24), we get

Ta = σtr (k)
h̄2

ma
(k2 − ka · k). (28)

Using Eq. (13) to expand k, Eq. (28) becomes

Ta = σtr (k)
h̄2

M2

[
mak2

b − mbk2
a + (ma − mb)ka · kb

]
. (29)

To evaluate the averages in Eq. (23), we consider several
approximations. First, we assume that

〈vσtr (k)ka · kb〉b � 0. (30)

This is reasonable since the particle and bath momenta are un-
correlated and the gas is supposed to be at rest: 〈kb〉b = 0. In
the same spirit, we assume that vσtr (k) varies slowly enough
around the mass center of the momentum distributions ρa(ka)
and ρb(kb) to use the approximations〈

vσtr (k)k2
b

〉
b � 〈vσtr (k)〉b

〈
k2

b

〉
b,〈

vσtr (k)k2
a

〉
a � 〈vσtr (k)〉a

〈
k2

a

〉
a. (31)

From Eqs. (23) and (29), a simple closed equation for the
mean particle energy is finally obtained

d
〈
Eka

〉
dt

= 2η
(〈

Ekb

〉 − 〈
Eka

〉)
, (32)

where η is an energy-based friction coefficient defined as

η = mamb

M2
〈nvσtr (k)〉. (33)

In Eqs. (32) and (33), 〈·〉 denotes the average over the mo-
menta of both the bath and the particle.

If η is assumed to be time independent, then the solution of
Eq. (32) simply reads〈

Eka (t )
〉 = [〈

Eka (0)
〉 − 〈

Ekb

〉]
e−2ηt + 〈

Ekb

〉
(34)

for any initial energy 〈Eka (0)〉 for the particle. The solution
(34) implies that the mean particle energy always tends to
the mean energy 〈Ekb〉 = d

2 kBT of the generic bath scatterer,
T being the absolute temperature. This result is consistent
with the thermalization process whereby the quantum particle
reaches thermal equilibrium with the bath.

In the framework of swift charged particles traveling
through matter, the governing equation of the mean energy

is the famous Bethe formula [32–36]

d
〈
Eka

〉
dx

= −S
(〈

Eka

〉)
, (35)

where S denotes the stopping power, which is a known func-
tion of the energy, and x is the total path length of the particle.
The stopping power mainly accounts for the Coulomb in-
teraction between the swift particle and the electrons of the
medium. If the contribution from the thermal bath is neglected
in Eq. (32), then Eqs. (32) and (35) are completely analogous,
and the energy-dependent friction parameter η can be identi-
fied as

η =
√〈

v2
a

〉
2
〈
Eka

〉S(〈
Eka

〉)
, (36)

since the path length element is on average given by dx2 =
〈v2

a〉dt2. In principle, Eq. (36) can be used to adjust the
value of η on experimental measurements of the stopping
power [52]. It is remarkable that such an adjustment is fea-
sible, despite the fact that long-range interactions, such as the
Coulomb interaction, are beyond the scope of validity of the
present model.

The same reasoning based on Eq. (17) can be applied to
the mean momentum 〈ka〉. The calculations are very similar
to the previous ones and the result reads

d〈ka〉
dt

= −ζ 〈ka〉, (37)

where ζ is a momentum-based friction coefficient defined as

ζ = mb

M
〈nvσtr (k)〉. (38)

Equation (37) shows that, in contrast to the mean energy, the
mean momentum tends to zero upon thermalization. Note, in
addition, that the characteristic relaxation rate denoted by ζ in
Eq. (37) is different from η. The momentum-based parameter
is always larger (ζ > η), although this difference is negligible
for a very heavy particle (ma � mb).

Finally, in the long-time limit (t → ∞), the reduced den-
sity matrix of the particle tends to the equilibrium Boltzmann
distribution

ρ̂a ∝ e−h̄2k̂
2
a/2makBT . (39)

This is typically shown by applying the detailed balance
condition [45] to Eq. (6). It can also be interpreted as
a consequence of the relaxation process described by the
Fokker-Planck equation derived in Sec. III.

B. Decoherence in position space

In this section we consider the other important property of
the Redfield equation (4), namely, the decoherence. In partic-
ular, we seek to know how decoherence affects the density
matrix in the position space. To this end, we assume that the
density matrix of the particle is initially in the momentum
eigenstate at t = 0,

ρ̂a(0) = |ka,0〉〈ka,0|. (40)

In this particular case, ρ̂a(t ) remains diagonal in momentum
space due to the gas uniformity, so we have [Ĥa, ρ̂a]=0 ∀ t>0,
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and only the dissipator survives in Eq. (4). Under such circum-
stances, we find in the position representation

∂ρa

∂t
(r, r̃, t ) = 〈r|Raρ̂a(t )|r̃〉. (41)

Expanding the right-hand side of Eq. (41) by means of Eq. (6)
leads to

∂ρa

∂t
(r, r̃, t ) =

∑
q

(eiq·(r−r̃) − 1)Wq(ka,0)ρa(r, r̃, t ), (42)

assuming that, at the beginning of the interaction with the gas,
the momentum distribution of the incident particle remains
close to the initial one in Eq. (40). Given the structure of
Eq. (42), it is useful to introduce what is often called the
decoherence rate [12,13,16–18,22,38,43,45,46,53]

F (s) =
∑

q

(1 − eiq·s)Wq(ka,0), (43)

where s = r − r̃. Equation (43) means that the decoherence
rate F (s) is directly given by the Fourier transform of the
total collision rate Wq(ka,0). In the continuum limit (V → ∞),
Eq. (43) can also be expressed in terms of the differential cross
section according to Eq. (12). We get

F (s) =
∮
Sd

d


〈
nv

dσ

d

(�|k�0)(1 − eik(�−�0 )·s)

〉
b

, (44)

where k = k�0 and v = v�0 are given by Eqs. (13) and (14),
respectively, as usual, but for the special value ka = ka,0.
Using the denotation F (s), Eq. (42) reads

∂ρa

∂t
(r, r̃) = −F (r − r̃)ρa(r, r̃) (45)

and can be easily integrated as follows:

ρa(r, r̃, t ) = e−F (r−r̃)tρa(r, r̃, 0). (46)

Since F (s) is complex valued, it is convenient to separate its
real and imaginary parts:

F (s) = Re F (s) + i Im F (s). (47)

The real part of F (s) explicitly reads

Re F (s) =
∑

q

[1 − cos(q · s)]Wq(ka,0). (48)

Since Wq � 0 and cos α � 1, this function is necessarily pos-
itive:

Re F (s) � 0. (49)

Therefore, according to the sign convention in Eqs. (45) and
(46), the function Re F (s) represents the exponential decay
rate of the off-diagonal entries of ρa(r, r̃). This decay is the
signature of decoherence in position space. In contrast, the
imaginary part of F (s), given by

Im F (s) = −
∑

q

sin(q · s)Wq(ka,0), (50)

represents the oscillation frequency of the off-diagonal en-
tries. At r = r̃, the decoherence rate (43) vanishes [F (0) =

0]. Moreover, at large separation distance (‖r − r̃‖ → ∞), it
reaches the saturation value [13,16–18,22,38,45,53]

F (s)
‖s‖→∞−−−−→

∑
q

Wq(ka,0) = Wtot (ka,0), (51)

which turns out to be equal to the total collision rate of the par-
ticle in the gas: Wtot (ka,0) = 〈nvσ (k)〉b. This saturated regime
was successfully observed for matter waves in [16,24,25] and
previously for light waves [38].

III. KRAMERS-MOYAL APPROXIMATION

In this section approximations of the Redfield equation (4)
are established based on the assumption that the deflections
undergone by the particle due to the collisions are relatively
small. Under this assumption, it is appropriate to expand
the first term of the dissipator (6) using the Kramers-Moyal
expansion [39–42]. In the quantum-mechanical framework of
Eq. (6), this expansion is achieved in practice by

eiq·r̂X̂ e−iq·r̂ � X̂ + iqi[r̂i, X̂ ] + i2

2!
qiq j[r̂i, [r̂ j, X̂ ]], (52)

where X̂ stands for 1
2 {Ŵq, ρ̂a}. In Eq. (52) and throughout

this section, the implicit summation over the repeated indices
i, j ∈ {1, 2, . . . , d} will be used.

As we will see later, the assumption of small deflections is
relevant in two different situations: Either the incident particle
is much heavier than the gas particles, that is,

ma � mb, (53)

or the differential cross section dσ
d


is very peaked in the
forward direction (� = �0). The latter condition can be for-
mulated by requiring the transfer cross section σtr (k), defined
in Eq. (25), to be much smaller than the total cross sec-
tion σ (k):

σtr (k) � σ (k). (54)

If at least one of the two conditions (53) or (54) is fulfilled,
then the expansion (52) is justified. Since they are not mutu-
ally exclusive, they can both be satisfied at the same time. This
will be the case, for instance, in Sec. IV C when considering
an α particle of a few MeVs.

Using Eq. (52) to expand the dissipator (6), we find

Raρ̂a � i

2

[
r̂i,

{
Â(1)

i , ρ̂a
}] − 1

4

[
r̂i,

[
r̂ j,

{
Â(2)

i j , ρ̂a
}]]

, (55)

where the tensor operators Â(1)
i and Â(2)

i j are the first and

second moments of the total collision rate Ŵq, respectively.
They are defined as

Â(1)
i =

∑
q

qiWq(k̂a) (56)

and

Â(2)
i j =

∑
q

qiq jWq(k̂a). (57)

The quantities (56) and (57) will be calculated in detail in
Sec. III A. Finally, we assume that the density matrix of the
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particle is approximately diagonal in the momentum basis

[k̂a, ρ̂a] � 0. (58)

This will be the case for sufficiently broad wave packets.
As discussed in the previous paper [31], this condition also
ensures the complete positivity of the Redfield equation (4).
A consequence of Eq. (58) is that the anticommutators in
Eq. (55) can be replaced by a simple product

Raρ̂a � i
[
r̂i, Â(1)

i ρ̂a
] − 1

2

[
r̂i,

[
r̂ j, Â(2)

i j ρ̂a
]]

. (59)

This approximation will be helpful later in Sec. III B when
introducing transverse decoherence.

A. Calculation of the moments

1. First moment

We calculate the first-order moment (56) in vector notation
from the property (12),

A(1) =
∮
Sd

d


〈
nv

dσ

d

(�|k�0)q

〉
b

. (60)

Using Eq. (26), we get, from Eq. (60),

A(1) = −〈nvσtr (k)k〉b. (61)

This expression can be further simplified using an approxima-
tion similar to Eq. (30):

A(1) = −mb

M
〈nvσtr (k)〉bka. (62)

This is all for the first-order moment. Note that the operator
nature of A(1) coming from the momentum k̂a should be
restored before substituting into Eq. (59).

2. Second moment

Next we consider the second-order moment (57). Using
again the property (12), we can write in tensor notation

A(2) =
∮
Sd

d


〈
nv

dσ

d

(�|k�0)q ⊗ q

〉
b

, (63)

where ⊗ denotes the dyadic product, or tensor product, of
two vectors. The quantity A(2) is thus a d × d matrix. To
calculate the tensor in Eq. (63), we decompose the outgoing
direction � into the parallel and perpendicular components to
the initial direction of motion �0. Denoting the unit vector in
the transverse direction by �⊥, we write

� = cos θ �0 + sin θ �⊥, (64)

with �0 · �⊥ = 0 by definition of �⊥. The integral over �

in Eq. (63) thus splits into two integrals over θ and �⊥. The
differential element of the solid angle in arbitrary dimension
d � 2 reads [54]

d
 = (sin θ )d−2dθd
⊥. (65)

Knowing that the cross section does not depend on the az-
imuthal direction �⊥, we get

A(2) =
〈
k2nvSd−1

∫ π

0
dθ (sin θ )d−2 dσ

d

(k, θ )I(θ )

〉
b

, (66)

using the angular tensor

I(θ ) =
∮
Sd−1

d
⊥
Sd−1

[(cos θ − 1)�0 + sin θ �⊥]⊗2, (67)

where a⊗2 = a ⊗ a denotes the dyadic square, or tensor
square. The tensor (67) can first be simplified due to the fact
that the average of �⊥ is zero. This step removes the cross
products of the form �0 ⊗ �⊥ and leads to

I(θ ) =
∮
Sd−1

d
⊥
Sd−1

(1 − cos θ )2�⊗2
0 + sin2 θ �⊗2

⊥ . (68)

The first term of Eq. (68) is trivial and the second term is given
by ∮

Sd−1

d
⊥
Sd−1

�⊗2
⊥ = 1 − �⊗2

0

d − 1
, (69)

where 1 represents the d × d identity matrix. The quantity
1 − �⊗2

0 on the right-hand side of Eq. (69) is the projection
matrix on the plane transverse to the direction of motion. Once
diagonalized, this matrix is equal to 1 in all the directions
perpendicular to �0 and 0 in the parallel direction. Thus, we
arrive at the expression of the angular tensor

I(θ ) = (1 − cos θ )2�⊗2
0 + sin2 θ

1 − �⊗2
0

d − 1
. (70)

When comparing to Eq. (66), the tensor (70) suggests to
introduce two quadratic moments related to the cross section,
namely,

σq‖(k) =
∮
Sd

d
(1 − � · �0)2 dσ

d

(�|k�0)

= Sd−1

∫ π

0
dθ (sin θ )d−2(1 − cos θ )2 dσ

d

(k, θ ) (71)

for the longitudinal component and

σq⊥(k) =
∮
Sd

d
[1 − (� · �0)2]
dσ

d

(�|k�0)

= Sd−1

∫ π

0
dθ (sin θ )d−2 sin2 θ

dσ

d

(k, θ ) (72)

for the transverse component. We note that the arithmetic
mean of these two quantities is exactly equal to the transfer
cross section (25)

σq‖(k) + σq⊥(k)

2
= σtr (k). (73)

The expression (73) will be useful to evaluate one of the two
quantities when only the other is known. Using the notation in
(71) and (72), Eq. (66) reduces to

A(2) =
〈

k2nv

(
σq‖(k)�⊗2

0 + σq⊥(k)
1 − �⊗2

0

d − 1

)〉
b

. (74)

In addition, since the incident relative momentum is given by
k = k�0, Eq. (74) can also be rewritten as

A(2) =
〈

nvσq‖(k)k⊗2 + nvσq⊥(k)
k21 − k⊗2

d − 1

〉
b

. (75)
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In order to expand Eq. (75), we assume, as in Sec. II A, that
the cross section is a sufficiently smooth function of k to use
the approximation

〈vσμ(k) f (k)〉b � 〈vσμ(k)〉b〈 f (k)〉b, (76)

where σμ(k) denotes any type of cross-sectional moments,
including σq‖(k), σq⊥(k), or σtr (k), and f (k) represents any
function of k. On the one hand, the assumption (76) allows us
to define collisional rates per unit time as

αμ(ka) = 〈nvσμ(k)〉b. (77)

On the other hand, it is possible to evaluate the average of
f (k) over the bath in this case. Using Eq. (13), the average of
k⊗2 reads

〈k⊗2〉b = m2
b

M2
k⊗2

a + m2
a

M2

〈
k2

b

〉
b

d
1. (78)

The average of the scalar product k2 is just the trace of the
result (78),

〈k2〉b = m2
b

M2
k2

a + m2
a

M2

〈
k2

b

〉
b. (79)

Finally, substituting Eqs. (78) and (79) into Eq. (75) and using
Eq. (73) leads to the result

A(2) = αq‖
m2

b

M2
k⊗2

a + αq⊥
m2

b

M2

k2
a1 − k⊗2

a

d − 1
+ 2αtr

m2
a

M2
k2

T1,

(80)

where kT is a compact denotation for the characteristic wave
number of the bath:

k2
T =

〈
k2

b

〉
b

d
. (81)

In the special case of a classical gas described at equi-
librium by the Maxwell-Boltzmann velocity distribution
[13,16,17,55], the characteristic wave number is given by

k2
T = mb

h̄2 kBT . (82)

B. Caldeira-Leggett form of the master equation

We return to the expansion (59) of the dissipator in order
to substitute the expressions found in Eqs. (62) and (80). It is
useful to assume that the collisional rates αμ(k) are smooth
enough functions of k to get them out of the commutators
[r̂, ·]. The result is

∂ ρ̂a

∂t
− Laρ̂a = − iαtr

mb

M
[r̂i, k̂a,iρ̂a]

− αq‖
2

m2
b

M2
[r̂i, [r̂ j, k̂a,i k̂a, j ρ̂a]]

− αq⊥
2

m2
b

M2

[
r̂i,

[
r̂ j,

k̂
2
aδi j − k̂a,ik̂a, j

d − 1
ρ̂a

]]

− αtr
m2

a

M2
k2

T[r̂i, [r̂i, ρ̂a]]. (83)

This equation has a form similar to the Caldeira-Leggett
master equation [16,17,43–46]. As a reminder, the Caldeira-
Leggett equation was derived for a different model in which

the particle is coupled to a thermal bath of harmonic oscilla-
tors. In fact, Eq. (83) reduces to the usual Caldeira-Leggett
equation in the limit ma � mb for the Brownian motion, be-
cause the terms with the coefficients αq‖ and αq⊥ are then
negligible.

The first term on the right-hand side of Eq. (83) can be
interpreted as friction, the second term as decoherence parallel
to the direction of motion, and the third term as decoherence
in the transverse direction. The last term is the additional
contribution to decoherence due to the thermal motion of the
scatterers. This contribution is isotropic since it acts equally
in all directions.

One can check that the evolution equations of the mo-
ments 〈Eka〉 and 〈ka〉 predicted by Eq. (83) indeed reduce
to Eqs. (32) and (37) obtained in Sec. II A. In particular, all
the terms of Eq. (83) contribute to the evolution of 〈Eka〉, but
only the first one, namely, the friction term, contributes to the
evolution of 〈ka〉.

1. Strongly forward scattering

Here we simplify Eq. (83) by accounting for the strong
directionality of the cross section in the forward direction.
This directionality is especially expected for high-energy par-
ticles. The assumption of strong forward scattering typically
implies that the transfer cross section is much smaller than the
total cross section, as in Eq. (54). Under this assumption, the
moments of the cross section defined in Eqs. (71) and (72) can
be approximated as

σq‖(k) = σ (k)〈(1 − cos θ )2〉 � 1
4σ (k)〈θ4〉,

σq⊥(k) = σ (k)〈sin2 θ〉 � σ (k)〈θ2〉, (84)

where 〈·〉 denotes the average weighted by the differential
cross section dσ

d

. Indeed, the scattering angle θ is relatively

small compared to 1. The fourth angular moment can be
related to the kurtosis κ as 〈θ4〉 = κ〈θ2〉2. If the differential
cross section is mesokurtic, i.e., similar to a normal distribu-
tion, then we have κ = 3. Moreover, since it is known that the
transfer cross section is approximately σtr (k) � 1

2σ (k)〈θ2〉,
we can write

σq‖(k) � κ
σtr (k)2

σ (k)
� κσtr (k),

σq⊥(k) � 2σtr (k). (85)

If κ is of the order of 3, then Eq. (85) shows that the longi-
tudinal moment is typically much smaller than the transverse
moment [σq‖(k) � σq⊥(k)] and can be neglected. Therefore,
reasonable values for the cross-sectional moments (85) could
be

σq‖(k) � 0, σq⊥(k) � 2σtr (k). (86)

In this way, the moments still satisfy the constraint given
by Eq. (73). Note that assuming σq‖(k) � 0 completely dis-
cards the longitudinal momentum diffusion. This can be
geometrically understood from Fig. 1. Indeed, when |ũ(q)|2 is
concentrated at q = 0, the outgoing momenta are constrained
to a very thin region which mostly extends in the transverse
directions. Accordingly, the momentum diffuses much more
slowly in the longitudinal direction.
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Letting αq‖ tend to zero in Eq. (83) leads to

∂ ρ̂a

∂t
− Laρ̂a = − iαtr

mb

M
[r̂i, k̂a,iρ̂a]

− αtr
m2

b

M2

[
r̂i,

[
r̂ j,

k̂
2
aδi j − k̂a,i k̂a, j

d − 1
ρ̂a

]]

− αtr
m2

a

M2
k2

T[r̂i, [r̂i, ρ̂a]]. (87)

Let us focus on the second term of Eq. (87) associated with
the deflection of the particle in the directions perpendic-
ular to the direction of motion. To better understand this
term, it is useful to express it in terms of the angular mo-
mentum operator, which is defined in arbitrary dimension
as

L̂i j = r̂ik̂a, j − r̂ j k̂a,i. (88)

The operator L̂i j is the generator of the rotation in the plane i j
and thus acts in both position and momentum spaces.

The second term of Eq. (87) can be related to L̂i j by the
nontrivial property[

r̂i,
[
r̂ j,

(
k̂

2
aδi j − k̂a,ik̂a, j

)
ρ̂a

]] = 1
2 [L̂i j, [L̂i j, ρ̂a]]

− i(d − 1)[r̂i, k̂a,iρ̂a], (89)

which is proved in the Appendix under the approximation
(58). The interest of Eq. (89) is the separation of the purely
transverse contribution to decoherence (the first term on the
right-hand side) from the residual contribution to the mean
energy (the second term). Substituting Eq. (89) into Eq. (87)
yields

∂ ρ̂a

∂t
− Laρ̂a = − iαtr

mamb

M2
[r̂i, k̂a,iρ̂a]

− αtr

2

m2
b

M2

1

d − 1
[L̂i j, [L̂i j, ρ̂a]]

− αtr
m2

a

M2
k2

T[r̂i, [r̂i, ρ̂a]]. (90)

The first and third terms on the right-hand side of Eq. (90)
are the friction and decoherence terms, respectively, which
are well known in the Caldeira-Leggett master equa-
tion [16,17,43–46]. However, the second term represents an
additional contribution to the transverse decoherence, which
is the central result of this paper. This term has the effect
of rotating the wave packet by an infinitesimal angle in a
random direction under the impact of collisions with the
scatterers.

Furthermore, we note that the transport parameters in
Eq. (90) merely depend on the transfer cross section (25). The
transfer cross section is thus the main relevant phenomeno-
logical parameter governing the transport of fast particles in
matter [56].

2. Wigner representation

In this section the Wigner transform of Eq. (90) is derived.
As a reminder, the Wigner transform can be defined in either

the position or the momentum basis as [57–60]

W (Â) =
∫
Rd

ds
(2π )d

〈
ka + s

2

∣∣∣Â∣∣∣ka − s
2

〉
eis·r

=
∫
Rd

ds
(2π )d

〈
r + s

2

∣∣∣Â∣∣∣r − s
2

〉
e−ika·s. (91)

In particular, the Wigner transform of the density matrix gives
the Wigner function

fa(r, ka) = W (ρ̂a). (92)

The function fa(r, ka) is a real function of the position r
and the momentum ka. This function is also referred to as
a quasiprobability distribution because of its similarity to the
classical phase-space distribution. In particular, it is normal-
ized according to1∫

V
dr

∫
Rd

dka fa(r, ka) = 1. (93)

However, in contrast to a usual probability distribution,
fa(r, ka) may be negative, typically in the presence of quan-
tum interferences. Before applying the Wigner transform to
Eq. (90), it is useful to consider the following transform of the
commutators:

W ([r̂, ρ̂a]) = i∇ka fa(r, ka),

W ([k̂a, ρ̂a]) = −i∇r fa(r, ka). (94)

More generally, each commutator [r̂, ·] or [k̂a, ·] corresponds
to a multiplication by a gradient i∇ka or −i∇r, respectively, in
the Wigner representation. In addition, the Wigner transform
of the double commutator with L̂i j is given by

W
(

1
2 [L̂i j, [L̂i j, ρ̂a]]

) = −∇2
⊥ka

fa(r, ka), (95)

where ∇2
⊥ka

is the Laplace-Beltrami operator on the spherical
submanifold of Rd . The result (95) is proved at the end of the
Appendix. Using Eqs. (94) and (95), the Wigner representa-
tion of Eq. (90) reads

∂ fa

∂t
+ va · ∇r fa = η∇ka · (ka fa) + γ∇2

⊥ka
fa + ξ∇2

ka
fa,

(96)

where va = h̄ka
ma

is the particle velocity, ∇2
ka

denotes the
standard Laplace operator, and the transport coefficients are
defined as

η = mamb

M2
αtr, γ = m2

b

M2

αtr

d − 1
, ξ = m2

a

M2
αtrk

2
T. (97)

The parameter γ will be referred to as the directional diffu-
sivity, or the transverse diffusivity, and ξ as the momentum
diffusivity induced by the bath. It is remarkable that all the
parameters in Eq. (97) are determined by the single collisional
parameter αtr . Between η and ξ , this relationship can be inter-
preted as a consequence of the fluctuation-dissipation theorem

1The position integral is restricted to the region V , because of the
periodic boundary conditions on the particle wave function (see also
Sec. II).
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[45,55]

ξ

η
= makBT

h̄2 , (98)

assuming kT is given by Eq. (82).
Equations of the form of Eq. (96) are generally

called Fokker-Planck equations [17,43,45,61] or occasionally
Kramers equations [46]. Equations similar to Eq. (96) were
found in Refs. [37,38] for light beams in the paraxial approx-
imation, but without the friction term.

Finally, it is worth noting that in the context of fast particles
which are much faster than the scatterers (〈v2

a〉 � 〈v2
b〉), the

contribution to the angular diffusion from the term ξ∇2
ka

fa can
be neglected at the beginning of the propagation.

IV. COHERENCE LENGTH

When studying decoherence on a given density matrix, it
can be useful to determine the characteristic length beyond
which quantum coherence disappears. This coherence mani-
fests off the diagonal of the density matrix ρa(r, r̃), that is, for
r �= r̃. In practice, the spatial extent of this coherent region can
be estimated by the variance of |ρa(r, r̃)|2 in the separation
variable s = r − r̃, as proposed in Ref. [47]. Furthermore, it
is also possible to characterize the ellipsoidal shape of the
coherent region using the covariance matrix. This idea leads
to the definition of the coherence length matrix

Λ2 =
∫∫

V2 (r − r̃)⊗2|ρa(r, r̃)|2dr d r̃

2
∫∫

V2 |ρa(r, r̃)|2dr d r̃
. (99)

The factor of 2 in the denominator of Eq. (99) is needed to
make this definition consistent with the variance of a pure
state ρa(r, r̃) = ψ (r)ψ∗(r̃), as pointed out in Ref. [47]. The
definition (99) can also be written using the quantum operator
notation as

[Λ2]i j = Tra
(
ρ̂2

a r̂ir̂ j − ρ̂ar̂iρ̂ar̂ j
)

Tra
(
ρ̂2

a

) , (100)

but also as

[Λ2]i j = −Tra([r̂i, ρ̂a][r̂ j, ρ̂a])

2Tra
(
ρ̂2

a

) , (101)

or even, using the property Tr([Â, B̂]Ĉ) = −Tr(B̂[Â, Ĉ]), as

[Λ2]i j = Tra(ρ̂a[r̂i, [r̂ j, ρ̂a]])

2Tra
(
ρ̂2

a

) . (102)

In addition, the coherence length is related to the Wigner
function of the particle by

Λ2 =
∫∫ ∇ka fa(r, ka) ⊗ ∇ka fa(r, ka)dr dka

2
∫∫

fa(r, ka)2dr dka
. (103)

The expression (103) comes directly from Eq. (101) using
Eq. (94) and the fact that

Tr
(
ρ̂2

a

) = (2π )d
∫∫

fa(r, ka)2dr dka. (104)

There is yet another form for the coherence length in terms of
the Hessian matrix of the Wigner function, which is written

Λ2 = −
∫∫

fa(r, ka)∇ka ⊗ ∇ka fa(r, ka)dr dka

2
∫∫

fa(r, ka)2dr dka
. (105)

This expression can be obtained from the integration by part
of Eq. (103) or by analogy from Eq. (102).

Expressions (103) and (105) show that the coherence
length is larger when the Wigner function fa(r, ka) strongly
varies in momentum space. In particular, for a very peaked
distribution such as for a plane wave, the coherence length can
be infinite. Note that the coherence length is also infinite for
any discrete superposition of plane waves. As the momentum
diffusion takes place, due to the last two terms on the right-
hand side of Eq. (96), the momentum distribution smooths out
on the continuum and its gradient diminishes. Accordingly,
the coherence length Λ2 is expected to decrease in time.

Furthermore, it should be noted that the definition (99)
implicitly assumes that the integral converges. This is not
obvious, because the density matrix element given by Eq. (46)
in the general case does not vanish to zero for ‖r − r̃‖ → ∞
but instead tends to a finite value. This is due to the saturation
of the decoherence rate observed in Eq. (51). In that case,
the coherence length defined as Eq. (99) would be infinite. In
fact, this issue is circumvented by the Kramers-Moyal expan-
sion performed in Sec. III, because then the decoherence rate
F (r − r̃) increases quadratically for ‖r − r̃‖ → ∞ without
any upper bound. In this case, the density matrix element
(46) tends to zero for ‖r − r̃‖ → ∞ and the coherence length
is well defined. Therefore, regarding the calculation of the
coherence length from Eq. (99), the Kramers-Moyal expan-
sion amounts to neglecting the nonzero asymptotic value of
ρa(r, r̃) for ‖r − r̃‖ → ∞.

A. Relation to the momentum variance

The distribution predicted by the Fokker-Planck equa-
tion (96) in the momentum space is typically of Gaussian
nature, as will be seen later in more detail. This is a fundamen-
tal feature of diffusion equations and can be interpreted, in the
context of random processes, as a consequence of the central
limit theorem. An important consequence of this Gaussian
profile is that the coherence length turns out to be directly
related to the variance of the momentum, as shown in this
section. First, we assume that the Wigner function has the
form of a multivariate Gaussian distribution

fa(r, ka) = 1

V (2π )d/2 det K
e−(�ka )ᵀ·K−2·�ka/2, (106)

where �ka = ka − 〈ka〉 is the centered momentum and K2

is the momentum covariance matrix. The distribution (106)
reduces to the equilibrium distribution for 〈ka〉 = 0 and K2 =
ma

h̄2 kBT 1. The distribution (106) is normalized according to
Eq. (93) and its covariance matrix is given by∫

V
dr

∫
Rd

dka(�ka)⊗2 fa(r, ka) = K2. (107)

Using the gradient of fa with respect to the momentum

∇ka fa = −K−2 · �ka fa, (108)
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the integral in the numerator of Eq. (103) becomes∫
∇ka fa ⊗ ∇ka fadka =

∫
K−2 · (�ka)⊗2 · K−2 f 2

a dka.

(109)

The right-hand side of Eq. (109) can be simplified with the
property ∫

(�ka)⊗2 f 2
a dka = K2

2

∫
f 2
a dka, (110)

which results from the fact that the variance of f 2
a is half the

variance of fa according to Eq. (106). Therefore, substituting
Eq. (110) into Eq. (109) and dividing both sides by 2

∫
f 2
a dka

leads to

Λ2 =
∫ ∇ka fa ⊗ ∇ka fadka

2
∫

f 2
a dka

= K−2

4
, (111)

or in simpler terms

Λ2 · K2 = 1
4
. (112)

The result (112) can also be expressed with the rescaled mo-
mentum covariance matrix P2 = h̄2K2 as

Λ2 · P2 = h̄2

4
1. (113)

Expressions (112) and (113) show that, for Gaussian states,
the coherence length can be directly deduced from the knowl-
edge of the momentum variance. In addition, they confirm that
the shorter the spatial coherence length, the larger the momen-
tum variance. This duality between position and momentum
is strongly reminiscent of Heisenberg’s uncertainty principle
[59,62–64] for the given direction i,

〈
�r̂2

i

〉〈
�p̂2

i

〉
� h̄2

4
, (114)

where �r̂i = r̂i − 〈r̂i〉 and �p̂i = p̂i − 〈p̂i〉 are the centered
position and momentum, respectively.

The existence of an uncertainty relation for the coherence
length follows from the fact that, according to the definition
(91), the coherence function ρa(r + s

2 , r − s
2 ) of variable s

is related to the Wigner function fa(r, ka) by the Fourier
transform with respect to s, in the same way the position-space
and the momentum-space wave functions are related in quan-
tum mechanics. Therefore, Eq. (113) could be generalized
to an inequality for non-Gaussian states. However, such a
generalization is not needed in this paper because the state
will be assumed to be Gaussian. In this context, the strict
equality (113) at the lower bound of Eq. (114) implies that the
decoherence process in particle detectors could in principle
resolve the position of the particle at the quantum limit for an
ideal measurement [65].

B. Evolution of the momentum distribution

In view of obtaining approximate expressions for the co-
herence lengths in the longitudinal and transverse directions,
the property (112) will be exploited on estimates for the mo-
mentum variances, starting from the initial condition (40), and
assuming the transport parameters (97) do not depend on the

particle energy. In this way, finding the explicit solution of the
Fokker-Planck equation (96) is not necessary. The interest of
this approach is that the momentum variance, defined as

K2 = Tr(K2) = Var(ka) = 〈
k2

a

〉 − 〈ka〉2, (115)

can be found from the moment equations (32) and (37) de-
rived in the general case, hence bypassing Eq. (96). This
approach should nevertheless lead to results consistent with
Eq. (96). The equation for the average momentum is the same
as Eq. (37), repeated here for convenience: d〈ka〉

dt = −ζ 〈ka〉.
The solution to Eq. (37), subjected to the initial condition
〈ka(0)〉 = ka,0, reads

〈ka〉 = ka,0e−ζ t . (116)

Since the wave number is related to the velocity by va = h̄ka
ma

,
Eq. (116) leads, after time integration, to the average distance
traveled by the particle in its initial direction

La = va,0

ζ
(1 − e−ζ t ), (117)

where va,0 is the initial velocity of the particle. The total
distance traveled by the particle, or range [32–36], is thus
La,∞ = va,0/ζ . For instance, the well-known range of an α

particle of initial kinetic energy of 5 MeV in dry air un-
der normal conditions (20 ◦C and 1 atm) is La,∞ = 3.5 cm
[33,35,36,52,66–68].

It should be noted that, according to the definition (38), ζ

can be related to the parameters (97) as

ζ = mb

M
αtr = η + (d − 1)γ . (118)

Equation (118) shows that ζ is related to the directional
diffusivity γ , which is not obvious for a friction parameter.
This is due to the fact that the directional diffusion, which is
described by the γ term in Eq. (96), geometrically contributes
to enhance the relaxation of 〈ka〉 in time. When the incident
particle is heavy (ma � mb), the parameter γ is much smaller
than ζ or η. In this particular case, the parameters ζ and η are
approximately equal to each other.

Next to the average momentum, the equation for 〈k2
a〉 is

given by Eq. (32), rewritten here as

d
〈
k2

a

〉
dt

= −2η
〈
k2

a

〉 + 2dξ, (119)

using the parameters (97). The solution of Eq. (119) reads, as
in Eq. (34),

〈
k2

a

〉 =
(

k2
a,0 − dξ

η

)
e−2ηt + dξ

η
. (120)

Note that, in Eq. (120), the initial condition Var(ka) = 0 and
thus 〈k2

a〉 = k2
a,0 was used. This results from the assumption

that the initial state is a plane wave. Combining Eqs. (116)
and (120) into Eq. (115) leads to

K2 = k2
a,0(e−2ηt − e−2ζ t ) + dξ

η
(1 − e−2ηt ). (121)

This result should be understood as the total variance of the
momentum, which is the sum of the longitudinal and the
transverse variances. Since there is one longitudinal direction
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FIG. 2. Schematic representation of the momentum distribution
predicted by Eq. (96) at different times. The geometric interpretation
of the standard deviations K‖ and K⊥ given by Eq. (123) is also
highlighted. The time t0 = 0 corresponds to the initial condition and
t∞ to the equilibrium distribution.

and d − 1 transverse directions in Rd , the total variance (121)
can be decomposed as

K2 = K2
‖ + (d − 1)K2

⊥. (122)

In order to identify K‖ and K⊥ in Eq. (121), one way is
to temporarily remove the contribution from the transverse
diffusion by letting γ = 0. Doing so, the parameters ζ and
η become equal to each other according to Eq. (118) and the
first term on the right-hand side of Eq. (121) vanishes. What
remains should correspond to the isotropic contribution from
the thermal bath and what disappears should correspond to the
contribution to the transverse variance. Therefore, the sought
decomposition reads

K2
‖ = ξ

η
(1 − e−2ηt ),

K2
⊥ = k2

a,0
e−2ηt − e−2ζ t

d − 1
+ ξ

η
(1 − e−2ηt ). (123)

This result can be confirmed by more detailed calculations
based on Eq. (96), which are not presented here.

The behavior of the momentum distribution satisfying
Eq. (96) is schematically depicted over time in Fig. 2 for
the initial momentum ka,0 at time t0 = 0. This figure helps
to geometrically interpret the parameters K‖ and K⊥ given by
Eq. (123). At time t1, the distribution spreads more in the
transverse direction than in the longitudinal direction under
the effect of the γ term in Eq. (96). The average momentum
〈ka〉 also gets smaller due to friction. At the later time t2, the
angular aperture of the distribution increases until it forms
a spherical cap around the point ka = 0. At time t∞ after
a while (t∞ → ∞), the distribution tends to the equilibrium
Boltzmann distribution, which is isotropic and centered at
ka = 0.

The behavior depicted in Fig. 2 and in particular the fact
that K⊥ increases faster than K‖ can be checked in the short-

time limit

K2
‖

t→0−−→ 2ξ t, K2
⊥

t→0−−→ 2k2
a,0γ t + 2ξ t . (124)

In the second of Eqs. (124), we note that the contribution of
the term k2

a,0γ is much larger than that of ξ for a fast particle
(v2

a,0 � 〈v2
b〉). Indeed, the ratio of these parameters reads

k2
a,0γ

ξ
= d

d − 1

v2
a,0〈
v2

b

〉 , (125)

according to Eqs. (81) and (97). Furthermore, the two vari-
ances in Eq. (123) effectively converge to the same value in
the long-time limit:

K2
‖

t→∞−−−→ K2
⊥

t→∞−−−→ ξ

η
= ma

h̄2 kBT . (126)

This is consistent with the regime of thermal equilibrium
with the gas shown at time t∞ in Fig. 2. Indeed, in this
regime, the momentum distribution of the particle tends to
the Boltzmann distribution (39), which exhibits the same vari-
ance in every individual direction and whose value coincides
with Eq. (126).

C. Evolution of the coherence lengths

According to the property (112), the result (123) leads to
interesting approximations of the coherence lengths in the
longitudinal and transverse directions:

�‖ = 1

2K‖
, �⊥ = 1

2K⊥
. (127)

The time evolution of the coherence lengths (127) following
Eq. (123) is shown in Fig. 3(a) along with the traveled distance
(117) in Fig. 3(b). Since K‖ < K⊥ in Eq. (123), the coherence
length in Eq. (127) is typically smaller in the transverse direc-
tion than in the longitudinal direction (�⊥ < �‖). Therefore,
the coherent wave packet can be thought of as an ellipsoid
elongated in the direction of motion. According to Eq. (124),
the coherence lengths (127) both behave in the short-time
limit as the power law t−1/2:

�‖
t→0−−→ 1

2 (2ξ t )−1/2,

�⊥
t→0−−→ 1

2

(
2k2

a,0γ t + 2ξ t
)−1/2

. (128)

This explains why, in log-log scale, the curves of �‖ and �⊥
look parallel in Fig. 3(a) for ηt � 1. An important conse-
quence is that, at short times, the ratio of the coherence lengths
keeps the constant value

�‖
�⊥

t→0−−→
√

1 + d

d − 1

v2
a,0〈
v2

b

〉 , (129)

which only depends on the velocities of the incident particle
and the scatterers and not on any of the transport parameters
that were introduced in Eq. (97). This gives to Eq. (129) a
universal nature. Note, however, that Eq. (129) neglects the
contribution to longitudinal decoherence of the second term
on the right-hand side of Eq. (83). This additional contribution
could make the ratio (129) smaller.
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FIG. 3. (a) Coherence lengths �‖ and �⊥ of the incident particle
given by Eqs. (123) and (127) normalized by the equilibrium value
�T in Eq. (133). (b) Traveled distance in Eq. (117) as a function of
time. The velocity ratio is set to va,0/〈v2

b〉1/2 = 7 in accordance with
Eqs. (130) and (131) and the mass ratio is ma/mb = 103. The curves
of both panels depend little on the mass ratio for ma � mb.

Using Eq. (129), the coherence length ratio can be esti-
mated for an α particle of initial kinetic energy of Ea,0 =
5 MeV as considered by Darwin and Mott [1,2]. This par-
ticular energy is the most common energy for an α particle
generated by natural radioactive emitters such as 238U (Eα =
4.270 MeV) [69], 226Ra (Eα = 4.871 MeV), 222Rn (Eα =
5.590 MeV), or 210Po (Eα = 5.407 MeV) [70]. The velocity
of such an α particle is

va,0

c
=

√
Ea,0(Ea,0 + 2mac2)

Ea,0 + mac2
� 0.052, (130)

using the α particle mass mac2 = 3727 MeV [48], and rela-
tivistic effects are thus negligible. The α particle is assumed
to mainly interact with the electrons of the medium. Indeed,
the fact that the slowdown of a fast particle is mainly due
to collisions with electrons is well known and is true for
any material including ordinary gases such as air [32–36]. In
addition, the mean electron velocity in matter is roughly given
by the Bohr velocity [35,36]√〈

v2
b

〉 � αc, (131)

where α � 1
137 is the fine-structure constant. Substituting the

numerical values of Eqs. (130) and (131) into Eq. (129)

leads to

�‖
�⊥

t→0� 8.7. (132)

The longitudinal elongation of the coherent wave packet is
therefore significant at the start of the propagation in the
particle detector.

In the long-time limit (ηt � 1), the two coherence lengths
�‖ and �⊥ tend to the same thermal wavelength

�T = 1

2

√
η

ξ
= h̄

2
√

makBT
. (133)

This shows that the coherent wave packet takes a spherical
shape at equilibrium, as for the gas particles. In the special
case of a thermal α particle at T = 300 K, Eq. (133) gives the
value �T � 10 pm.

Probably one the most interesting points in Fig. 3(a) is that
the transverse coherence length �⊥ drops below the thermal
length before rising to reach it. This results from the impor-
tant effect of momentum diffusion in the transverse direction.
Indeed, according to Eqs. (124) and (125), the transverse
diffusion rate is much larger than the thermal one (γ k2

a � ξ )
for a fast incident particle. Therefore, shortly after entering the
detector, the momentum distribution of the incident particle
gets more extended in the transverse direction than the thermal
distribution itself, as can be seen at t1 and t2 in Fig. 2. In
contrast, the longitudinal coherence length �‖ does not drop
below the thermal wavelength (133) according to Fig. 3(a).
However, it is quite possible that, if the longitudinal deco-
herence term, namely, the second term on the right-hand side
of Eq. (83), is retained from the beginning, the longitudinal
coherence length will also manifest such an undershoot.

Finally, in order to better interpret the transverse coherence
length �⊥ and its time evolution for a fast particle, it is
convenient to define the angular variance of the momentum
distribution as

〈θ2〉 = K2
⊥〈

k2
a

〉 , (134)

where K2
⊥ is given by Eq. (123) and 〈k2

a〉 by Eq. (120). In
the case of a fast incident particle (v2

a,0 � 〈v2
b〉), the thermal

contribution can be neglected (ξ → 0) and Eq. (134) can be
approximated by

〈θ2〉 � 2γ t (135)

and the transverse coherence length (128) behaves at short
time as

�⊥
t→0−−→ 1

2ka,0〈θ2〉1/2
= λa,0

4π〈θ2〉1/2
, (136)

where λa,0 = 2π/ka,0 is the de Broglie wavelength of the
particle at the entrance in the medium. Equation (136) leads
to an interesting interpretation of �⊥. It corresponds to the
length in the transverse direction at which the incoherent sum
of plane waves rotated by the angle 〈θ2〉1/2 is completely out
of phase. This is consistent with the intuitive definition of a
coherence decay length as the characteristic length for the loss
of phase relation.
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V. CONCLUSION

In this paper, some properties of the quantum master equa-
tion (4) governing the evolution of a fast particle in a gas
(derived in a previous paper [31]) were studied in detail. We
began in Sec. II with the presentation of the master equa-
tion and two of its major properties, namely, thermalization
and spatial decoherence.

Then the master equation (4) was approximated in Sec. III
using the quantum counterpart of the Kramers-Moyal ex-
pansion to small momentum transfer. This approximation is
relevant if the particle is heavy compared to the bath scatterers
or if the differential cross section is very peaked in the forward
direction. The Kramers-Moyal expansion led to the general
form (83) of the Caldeira-Leggett master equation valid for
finite bath temperature [16,17,43–46]. This equation was then
specialized to the case of strong forward scattering, resulting
in Eq. (90). In particular, this equation contains a term of the
double commutator of the density matrix with the angular
momentum operator, which is interpreted as the transverse
decoherence term applying a random infinitesimal rotation
to the particle wave packet. In the Wigner representation,
Eq. (90) reduces to the Fokker-Planck equation (96).

Furthermore, the coherence length of the particle was in-
troduced and studied in Sec. IV. The coherence length matrix
was defined in Eq. (99) as the covariance matrix of the off-
diagonal slice of the density matrix. It was shown that, for a
Gaussian state, the coherence length matrix is proportional to
the inverse of the momentum covariance matrix. This property
can be interpreted as a consequence of the Heisenberg uncer-
tainty principle. In addition, it led, through the momentum
variances of Eq. (123), to the time evolution of the coher-
ence lengths in the directions parallel and perpendicular to
the particle motion assuming that the transport parameters
are independent of the particle energy. Since the momentum
spreads more quickly in the transverse direction than in the
longitudinal direction, the coherence length is smaller in the
transverse direction than in the longitudinal one. Therefore,
the coherent wave packet is more elongated in the direction of
motion. At short time, the ratio of both is given by Eq. (129),
which only depends on the velocities of the particle and the
scatterers. Moreover, it turns out that the transverse coherence
length drops below the thermal wavelength before reaching it
after a sufficiently long time.

The original question asked by Darwin and Mott [1,2] was
about the emergence of classical phenomena from plain quan-
tum mechanics, such as the appearance of linear tracks of α

particles in cloud chambers. Another important question inti-
mately related to the previous one is the nature of the quantum
state of a particle propagating in a gaseous detector. In this
paper, this question was addressed within the theory of open
quantum systems using the formalism of the reduced density
matrix. The evolution of the density matrix is governed by
quantum master equations, such as the Redfield equation (4),
which reproduces many of the classical phenomena regarding
the propagation of the particle, including ballistic transport,
diffusion, and thermalization. In addition, these equations are
able to describe fundamental quantum phenomena, in par-
ticular spatial decoherence, which is believed to play a key
role in the description of measurement in quantum mechan-

ics [10–12,19]. Decoherence manifests as the evanescence
in time of the off-diagonal elements of the reduced density
matrix. In this paper, it was shown that the decoherence of
the particle in a gas occurs mainly in position space. Further-
more, when the cross section peaks in the forward direction,
decoherence is stronger in the transverse direction than in the
longitudinal direction. Therefore, the coherent wave packet
should look like an ellipsoid elongated in the direction of
motion. This result is quite different from the spherical coher-
ent wave packets predicted by the Caldeira-Leggett equation,
which only applies to slow Brownian particles relatively close
to equilibrium with the gas. In contrast, the present paper
accounts for the angular variation of the cross section, which
cannot be neglected when the particle is much faster than
the particles of the thermal bath. This angular variation is in
particular responsible for the nontrivial shape of the coherent
wave packet that was discussed above. Finally, by highlighting
anisotropies in spatial decoherence, the present work achieves
a significant advance in the characterization of the state of a
particle undergoing quantum measurement in a detector.

Finally, an important issue that should be investigated in
future works concerns the treatment of the Coulomb inter-
action between the α particle and the gas. When deriving
the Boltzmann equation in the previous paper [31], it was
assumed that the range of the interaction between the particle
and the scatterers is short, but this is not the case for the
Coulomb interaction, which is typically long range. Neverthe-
less, the Coulomb interaction is most of the time screened by
the electric charges in the medium. In neutral molecules, the
screening length can be of the order of the atomic Bohr radius,
but, in the present context of fast particles, this length turns
out to significantly exceed the atomic Bohr radius [35,36,71].
This is due to the fact that when the particle velocity is greater
than the electron velocities in the medium the electrons do
not have time to completely screen the electric field of the
particle, resulting in long-range electric interactions between
the particle and the molecules. As a consequence, the particle
may interact with several molecules at a time and collective
effects may occur in the medium (see [35], Chap. 5). The
treatment of these effects typically resorts to dielectric linear
response theory [35,72–76]. The point is that these collective
effects could influence the results obtained in this paper and
the previous one [31], in particular through modifications of
the master equations, which suggests interesting new direc-
tions of research.
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APPENDIX: DECOHERENCE ON A HYPERSPHERE

The purpose of this Appendix is to prove Eqs. (89) and (95)
for the angular momentum operator L̂i j under the approxima-
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tion (58). Using the definition (88) of L̂i j , we write

1
2 [L̂i j, [L̂i j, ρ̂a]] = [r̂ik̂a, j, [r̂ik̂a, j, ρ̂a]]︸ ︷︷ ︸

Ĉ1

− [r̂ik̂a, j, [r̂ j k̂a,i, ρ̂a]]︸ ︷︷ ︸
Ĉ2

,

(A1)

where the implicit summation of repeated indices is used.
Note the order of the indices i and j on the right-hand side of
Eq. (A1). This double commutator of ρ̂a with L̂i j represents
the transverse decoherence of the particle due to the change
of direction caused by the collisions. First, let us consider the
term called Ĉ1. Expanding the nested commutators leads to

Ĉ1 = [r̂ik̂a, j, [r̂ik̂a, j, ρ̂a]]

= r̂ik̂a, j r̂ik̂a, j ρ̂a − 2r̂ik̂a, j ρ̂ar̂ik̂a, j + ρ̂ar̂ik̂a, j r̂ik̂a, j . (A2)

Since ρ̂a is assumed to be quasidiagonal in the momentum
basis according to Eq. (58), it is appropriate to move the
wave-vector components closer to ρ̂a using the canonical
commutation relation

[r̂i, k̂a, j] = iδi j . (A3)

Applying this idea to the first two terms of Eq. (A2) yields

Ĉ1 = r̂i r̂ik̂
2
aρ̂a − 2r̂ik̂

2
aρ̂ar̂i − 3ir̂ik̂a,iρ̂a + ρ̂ar̂ik̂a, j r̂ik̂a, j .

(A4)

The last term of Eq. (A4) needs three commutations of the
position and the momentum. The result is

ρ̂ar̂ik̂a, j r̂ik̂a, j = ρ̂a(k̂a, j r̂i + iδi j )(k̂a, j r̂i + iδi j )

= ρ̂ak̂a, j r̂ik̂a, j r̂i + 2iρ̂ak̂a,i r̂i − ρ̂ad

= ρ̂ak̂
2
ar̂ir̂i + 3iρ̂ak̂a,i r̂i − ρ̂ad. (A5)

Then, substituting the result (A5) back into Eq. (A4) gives

Ĉ1 = [
r̂i,

[
r̂i, k̂

2
aρ̂a

]] − 3i[r̂i, k̂a,iρ̂a] − ρ̂ad. (A6)

Note that between Eqs. (A4) and (A6), the assumption
[k̂a, ρ̂a] � 0 has been used. The term called Ĉ2 in Eq. (A1)
can be calculated in the same way, but leads to a markedly
different result. Expanding the double commutator leads to

Ĉ2 = [r̂ik̂a, j, [r̂ j k̂a,i, ρ̂a]]

= r̂ik̂a, j r̂ j k̂a,iρ̂a − 2r̂ik̂a, j ρ̂ar̂ j k̂a,i + ρ̂ar̂ik̂a, j r̂ j k̂a,i. (A7)

As before, we commute the positions and momenta in order
to get the momenta closer to ρ̂a:

Ĉ2 = r̂i r̂ j k̂a,ik̂a, j ρ̂a − i(d + 2)r̂ik̂a,iρ̂a

− 2r̂ik̂a,ik̂a, j ρ̂ar̂ j + ρ̂ar̂ik̂a, j r̂ j k̂a,i. (A8)

The last term of Eq. (A4) needs also three commutation steps.
They read

ρ̂ar̂ik̂a, j r̂ j k̂a,i = ρ̂a(k̂a, j r̂i + iδi j )(k̂a,i r̂ j + iδi j )

= ρ̂ak̂a, j r̂ik̂a,i r̂ j + 2iρ̂ak̂a,i r̂i − ρ̂ad

= ρ̂ak̂a,ik̂a, j r̂i r̂ j + i(d + 2)ρ̂ak̂a,i r̂i − ρ̂ad.

(A9)

Inserting Eq. (A9) back into Eq. (A8) leads to the result

Ĉ2 = [r̂i, [r̂ j, k̂a,i k̂a, j ρ̂a]] − i(d + 2)[r̂i, k̂a,iρ̂a] − ρ̂ad.

(A10)

Finally, combining Eqs. (A6) and (A10) into Eq. (A1), we
obtain the sought property

1
2 [L̂i j, [L̂i j, ρ̂a]] = [

r̂i,
[
r̂ j,

(
k̂

2
aδi j − k̂a,ik̂a, j

)
ρ̂a

]]
+ i(d − 1)[r̂i, k̂a,iρ̂a], (A11)

which is used in Eq. (89).
We still have to determine the effect of the double com-

mutator of ρ̂a with L̂i j in the Wigner representation, since
this representation is used in Sec. III B 2. Because of the
quasidiagonality of ρ̂a in the momentum basis, it is related
to the Wigner function fa(ka) by

ρ̂a � (2π )d
∫
Rd

dka fa(ka)|ka〉〈ka|. (A12)

An important consequence is that the commutators with L̂i j

reduce to a multiplication by L̂i j in the Wigner representation

W
(

1
2 [L̂i j, [L̂i j, ρ̂a]]

) = 1
2 L̂i j L̂i j fa. (A13)

It should be noted that on the right-hand side of Eq. (A13), the
two operators L̂i j = r̂ik̂a, j − r̂ j k̂a,i implicitly assume that

r̂i = i
∂

∂ka,i

, k̂a,i = ka,i. (A14)

Of course, these equalities follow from the principle of cor-
respondence in quantum mechanics. They are expressed in
the momentum basis, and not in the position basis, because of
the quasidiagonality of ρ̂a assumed in Eq. (A12). The scalar
product of angular momenta can now be expanded from the
definition (88). Using the canonical commutation relation, it
is relatively straightforward to get

1
2 L̂i j L̂i j = k̂

2
ar̂2 − (k̂a · r̂)2 − i(d − 2)k̂a · r̂. (A15)

The equalities in Eq. (A14) directly lead to

1
2 L̂i j L̂i j = −k2

a∇2
ka

+ (ka · ∇ka )2 + (d − 2)ka · ∇ka . (A16)

Using the fact that ka · ∇ka = ka∂ka , we get

1
2 L̂i j L̂i j = −k2

a∇2
ka

+ k2
a

∂2

∂k2
a

+ (d − 1)ka
∂

∂ka

. (A17)

The last step is to expand the Laplacian operator in spherical
coordinates [54]

∇2
ka

= ∂2

∂k2
a

+ d − 1

ka

∂

∂ka

+ 1

k2
a

∇2
⊥ka

, (A18)

where ∇2
⊥ka

denotes the spherical Laplacian, which acts
only on the unit hypersphere in the space Rd . Substituting
Eq. (A18) into Eq. (A17) yields

1
2 L̂i j L̂i j = −∇2

⊥ka
. (A19)

This result shows that the action of the double commutator in
Eq. (A13) corresponds to a spherical Laplacian in the momen-
tum space. This also proves Eq. (95).
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