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Effective quantum dynamics in curved thin-layer systems with inhomogeneous confinement
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The motion of quantum particles homogeneously constrained to a curved surface is affected by a
curvature-induced geometric potential. Here, by extending the thin-layer procedure, we consider the case of
inhomogeneous confinement and derive the effective Hamiltonian where an extra effective potential appears.
This effective potential is relevant to the ground-state energy perpendicular to the surface and the morphology
of the confining potential. Tiny fluctuations in the thickness are envisioned to induce considerable magnitude
of the effective potential. To demonstrate the impact of the inhomogeneity, we apply our method to investigate
the coherent transport on a cylindrical surface where two helical ditches is imposed on the thickness. Numer-
ical analysis reveals that the inhomogeneity of the confinement significantly affects the transport properties
through changing the geometric symmetry of the system. This study develops the method for low-dimensional
constrained systems and exhibits the possibility of a new degree of control for waveguiding in nanostructures.
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I. INTRODUCTION

With the constant progress of techniques for the syn-
thesis of nanostructures [1–4], much attention is paid to
the corresponding descriptions of various dynamics in low-
dimensional systems in which different kinds of geometric
quantities play important roles. Among these quantities, cur-
vature appeals to many interests since it significantly breaks
symmetries associated with space coordinates and often re-
lates the system with general relativity, offering a glimpse
into the effect of the strong gravitational field. For example,
two-beam interference [5], the evolution of speckle patterns
[6], and the phase and group velocities of wave packets [7] and
elastic waves [8] on curved surfaces have been investigated
experimentally, providing analog models for wave optics in
the gravitational fields of black holes, wormholes, and the uni-
verse with nonvanishing cosmological constant. Besides, the
study of curvature effects covers more and more areas nowa-
days, such as biological systems [9,10] and pattern dynamics
[11–14], semiconductors [15–17], magnetism [18,19], super-
conductivity [20,21], and phase transition [22], manifesting
novel and unfamiliar phenomena compared with planar cases.

For the theoretical description of motions bounded to an
arbitrary curved surface, there is a generic procedure to obtain
the two-dimensional (2D) effective Hamiltonian or equa-
tion called the thin-layer procedure (TLP) or the confining
potential approach. This approach is originally introduced for
tackling the limiting situation where a quantum particle in
three-dimensional (3D) Euclidean space is constrained to a
curved surface by a strong confining force [23,24]. It was
found that a geometric potential depending on the intrinsic
and extrinsic curvature of the surface appears in the effective
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equation, which was demonstrated in photonic crystals later
[25]. The geometric potential reveals that even the dynamics
in the normal direction is “frozen” by the confining potential;
it indeed contributes to the tangential dynamics because of
the curvature. In light of this, the TLP has been developed
and applied to many situations, such as a charged particle
in an electric and magnetic field [26–28], Dirac particles
[29–31], spin-orbital coupling [32–37] and an electromag-
netic field [38–40]. In these studies, in addition to the scalar
geometric potential, the curved features lead to more geomet-
ric effects associated with the internal degrees of freedom
and properties of the confined particles. The TLP was also
extended to the case of an arbitrary manifold embedded in a
higher-dimensional Euclidean space; it was found that a gauge
potential appears in the effective Hamiltonian when the space
of states for the direction normal to the surface is degenerate
[41–45].

It is noteworthy that most studies on the thin-layer system
have considered the case where the confining potential is
homogeneous everywhere around the surface. In this work, by
generalizing the TLP, we discuss the dynamics of a quantum
particle constrained to an arbitrarily curved surface by an
inhomogeneous confining potential. This problem is impor-
tant for two reasons: One is to estimate the influence from
the imperfection of the confinement, since it is difficult to
ensure that the thickness of the layer is the same everywhere
in reality; the other is to offer a new toolbox to manipulate
and guide quantum states by designing the feature of the con-
fining potential. In addition to the curvature, the confinement
inhomogeneity could bring more possibilities to tune the prop-
erties of nanostructures. In optics, the variable thickness of a
microstructured waveguide can induce an effective refractive
index, which is extracted from the fitting of experimental data
[46]. In this work, we analytically show that in quantum me-
chanics the inhomogeneous confining potential can induce an
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FIG. 1. (a) Schematic picture of a curved layer with inhomo-
geneous thickness. For clarity, here we show half of the thickness.
(b) Schematic diagram of the cross section of the layer in panel (a).
The dashed lines give the profile of the layer with homogeneous
thickness d0.

effective potential totally different from the curvature-induced
geometric potential.

The structure of this paper is as follows. In Sec. II, we
derive the effective Hamiltonian for particles constrained to an
arbitrary curved surface by an inhomogeneous confinement.
In Sec. III, we apply this formalism in the case of a cylinder
with extra helical confinement force acting on the surface and
numerically investigate the transport properties. In Sec. IV,
we summarize the conclusions.

II. EFFECTIVE DYNAMICS

In 3D Euclidean space, the geometry of a curved surface S
can be described by a position vector r(q1, q2), where (q1, q2)
are the curvilinear coordinates, as illustrated in Fig. 1(a). To
study the quantum mechanics of a spinless particle confined to
S , we need to describe the portion of space in an immediate
neighborhood of S . Conventionally in the TLP, the adapted
coordinates (q1, q2, q3) are always chosen to parametrize the
space as

R(q1, q2, q3) = r(q1, q2) + q3N(q1, q2), (1)

where N(q1, q2) is the unit vector normal to the surface, and
|q3| gives the distance from the surface. The particle is usually
constrained to the surface by a confining potential Vc(q3),
which has a deep minimum at q3 = 0 and is symmetric in the
normal direction about its minimum. Such a potential can be
expanded as a power series in q3,

Vc(q3) = m

2
ω2q2

3 + O[(q3)3], (2)

where m is the particle mass, and the frequency ω is an inten-
sity parameter. The leading term of Vc is a harmonic oscillator
potential, which can limit a particle in the range of dc =
2
√

2Ek/m/ω (Ek is the kinetic energy) classically. In quantum
mechanics, the particle is also found with high probability
within the corresponding range, such as dg = 2

√
h̄/(mω) for

the ground state. Therefore, we define d0 ∝ √
h̄/(mω) as the

thickness of a layer around S , such that the thickness is totally

determined by the confining potential Vc. As Vc is a function
of q3 only, the thickness is constant along the surface.

With the relation between thickness and the confining po-
tential, it is time to consider the situation of inhomogeneous
thickness. Here, we assume that the confining potential can be
written as Uc(q1, q2, q3) = s2(q1, q2)Vc(q3), where s(q1, q2)
is a dimensionless and continuous function close to unity,
which determines the morphology of the potential on S . This
potential is equivalent to a harmonic oscillator potential with
a space-varying intensity sω, accordingly corresponding to a
varying thickness d (q1, q2) = d0/

√
s [see Fig. 1(b)]. Note that

Uc is still symmetric about the minimum q3 = 0.
Taking into account the inhomogeneity of the confining po-

tential, we parametrize the neighborhood space of the surface
in the new coordinates (q1, q2, Q3), where Q3 = s̄(q1, q2)q3,
with s̄(q1, q2) being an undetermined function. The new
parametrization is then

R(q1, q2, Q3) = r(q1, q2) + Q3

s̄(q1, q2)
N(q1, q2). (3)

In these coordinates, the irregularities of the confining poten-
tial are expected to be absorbed in the normal coordinate Q3.
Applying this parametrization, we can calculate the covariant
components of the three-dimensional metric tensor via Gi j =
∂iR · ∂ jR, with i, j = 1, 2, 3. From Eq. (3) we obtain

∂aR = ∂ar + Q3

s̄
[∂aN(q1, q2)] +

[
∂a

(
1

s̄

)]
Q3N(q1, q2),

∂3R = 1

s̄
N(q1, q2), (4)

where the index a = 1 and 2 (so does b, c, and d in the text
below). Since the derivatives of the normal vector N(q1, q2)
lie in the tangent plane of the surface, we have

∂aN = αab∂br, (5)

where αab is called the Weingarten curvature matrix. Thus, we
obtain all components of the metric tensor Gi j ,

Gab = γab + Q2
3

[
∂a

(
1

s̄

)][
∂b

(
1

s̄

)]
(6)

and

Ga3 = G3a = 1

s̄

[
∂a

(
1

s̄

)]
Q3, G33 = 1

s̄2
, (7)

where

γab = gab + Q3

s̄
[αg + (αg)T ]ab + Q2

3

s̄2
(αgα)ab (8)

and gab = ∂ar · ∂br is the 2D metric tensor for the surface S .
The determinant of Gi j can also be worked out and the result
is G = |γ |/s̄2.

Further calculation gives the exact form of the inverse of
the metric tensor, which turns out to be

Gi j =
(

λab λacQ3(∂cs̄)/s̄

λbcQ3(∂cs̄)/s̄ s̄2 + Q2
3(∂cs̄)λcd (∂d s̄)/s̄2

)
, (9)

where λab = (γab)−1 is the inverse of γab.
We can now turn our attention to the derivation of the

effective Hamiltonian. The 3D Hamiltonian containing the
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confining potential Uc can be written in the curvilinear co-
ordinates (q1, q2, Q3) as

H3D = − h̄2

2m
∇2 + s2Vc(Q3/s̄). (10)

From Eq. (9), the explicit form of the Laplacian is

∇2 = 1√
G

∂i

√
GGi j∂ j

= 1√
G

∂3

√
G

[
s̄2 + Q2

3(∂cs̄)λcd (∂d s̄)
]
∂3

+ 1√
G

∂a

√
Gλab∂b + 1√

G
∂a

√
GλacQ3

∂cs̄

s̄
∂3

+ 1√
G

∂3

√
GλbcQ3

∂cs̄

s̄
∂b. (11)

The corresponding wave function � satisfies the normal-
ization condition∫

|�|2
√

Gdq1dq2dQ3 = 1. (12)

Our purpose is to get an effective 2D Hamiltonian whose
wave function describes the quantum probability density on
the surface S . Therefore, we need to rescale the 3D wave
function � by (|G|/|g|)1/4, namely, � = (|G|/|g|)1/4�, where
g is the determinant of gab. The normalization of the new wave
function � is then∫

|�|2dQ3
√

gdq1dq2 = 1. (13)

According to this condition, one can regard
∫ |�|2dQ3 as a

probability density for a particle moving on S with the curvi-
linear measure

√
gdq1dq2. Consequently, the Hamiltonian

should also be rescaled as H = (|G|/|g|)1/4H3D(|G|/|g|)−1/4.
By introducing the operators ∂̂a = ∂a + AaQ3∂3, where Aa =
∂as̄
s̄ , the rescaled Hamiltonian can be written in a compact

form,

H = − h̄2

2m

[
s̄2G− 1

4 ∂3

√
G∂3G− 1

4

+ (gG)−
1
4 ∂̂a

√
Gλab∂̂b(g/G)

1
4
] + s2Vc(Q3/s̄). (14)

Up to now, no approximation has been made. To obtain
the effective Hamiltonian, we need to separate the dynamics
perpendicular and tangent to the surface, which is associated
with the explicit form of the confining potential. Here, we re-
turn to Eq. (2) and neglect the terms of order (q3)3 and higher,
which leads to a harmonic binding form. As a confining po-
tential, Uc = s2

s̄2
m
2 ω2(Q3)2 must have a large ω to ensure the

quantum well is deep enough. To evaluate the magnitude of ω,
following the approach of the TLP, we introduce a small di-
mensionless parameter ε and rescale the harmonic frequency
as ω → ω/ε. Because of the binding, the wave function will
be squeezed in a very small range around Q3 = 0 in the
transverse direction. Adopting ε as a perturbative parameter,
we also rescale the normal coordinate as Q3 → √

εQ3. In this
way, Uc is of the order ε−1. The Hamiltonian can be written in
powers of ε as

H = H0 + H1 + O(ε1/2), (15)

where

H0 = 1

ε

[
− h̄2

2m
s̄2∂2

3 + s2

s̄2

m

2
ω2(Q3)2

]
(16)

and

H1 = − h̄2

2m

1√
s̄

[
1√
g
∂̂a

√
ggab∂̂b

]√
s̄ + Vg. (17)

Here, Vg = − h̄2

2m (M2 − K ) is the well-known geometric po-
tential, with the mean curvature M = Tr(αab)/2 and the
Gaussian curvature K = det(αab). During performing the
limit, we have used the fact that

√|γ | = [1 + Tr(αab)Q3/s̄ +
det(αab)(Q3)2/s̄2]

√|g|. One may worry about the hermiticity
of H1, because the expectation of the term AaQ3∂3 in the
operator ∂̂a seems not imaginary for the transverse ground
state. We expect that cancellation of these terms occurs in
matrix elements because of the factor

√
s̄.

From Eq. (15), when ε → 0, only H0 and H1 survive. H0

is of the order ε−1, which describes a particle bounded by
the confining potential in the transverse direction and takes
a lead role in H . Being of the order ε0, H1 corresponds to the
quantum dynamics in the tangential direction on S . However,
we are aiming at investigating the tangential behavior on the
surface in the energy range where the quantum particle is in
the ground state in the transverse direction. Therefore, the
effective Hamiltonian should be of the order ε0. To get the
effective 2D Hamiltonian we need to consider the Schrodinger
equation (H0 + H1)� = E�, where E denotes the total en-
ergy, and separate the wave function.

Taking into account that s̄ is undetermined, we set s̄ = √
s

and multiply 1/s on both sides of the equation. The equa-
tion can be rewritten as follows,

1

ε

[
− h̄2

2m
∂2

3 + m

2
ω2(Q3)2

]
� + H1

s
� = E

s
�. (18)

Formally, this equation is easily separated. If we make the as-
sumption � = ψ (q1, q2)χ (Q3), the usual variable separation
gives [

− h̄2

2m
∂2

3 + m

2
ω2(Q3)2

]
χ = εE0χ (19)

and

H1ψ = (E − sE0)ψ. (20)

It is clear that Eq. (19) describes a one-dimensional harmonic
oscillator, and the corresponding energy eigenvalue E0, which
is of the order ε−1, is the dominant part of the total energy E .
Equation (20), which describes the 2D effective dynamics on
S under the transverse mode energy E0, can be rewritten as

[H1 + (s − 1)E0]ψ = E1ψ, (21)

where E1 = E − E0. Here, it should be emphasized that the
dynamics separation is based on the perturbative parameter
ε. To ensure the validity of the separation, and taking into
account E0 ∼ ε−1, we have to limit the function s(q1, q2) so
that (s − 1) ∼ ε. This limitation also implies the application
range of the method. Up to now, we have been able to define
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the effective 2D Hamiltonian as

Heff =
∫

χ∗[H1 + (s − 1)E0]χdQ3. (22)

Performing the integral in Eq. (22), we eventually obtain the
explicit form of the effective Hamiltonian:

Heff = − h̄2

2m

1√
g
∂a

√
ggab∂b + Vg + (s − 1)E0. (23)

It should be noted that no gauge potential appears in this
effective Hamiltonian, despite the operator ∂̂a in Eq. (14)
containing the corresponding terms. As expected, this is be-
cause the factor

√
s̄ in Eq. (17) cancels out these terms after

the integration. In contrast to the geometric potential Vg, the
effective potential (s − 1)E0 stemming from the inhomoge-
neous confinement is relevant to the ground-state energy in
the normal direction of the surface. Typically, in a thin-layer
system, the thickness d is much smaller than the curvature
radius rc. If we set ε = d/rc, s − 1 should be of the order d/rc

at most, which implies that tiny changes in layer thickness can
induce considerable influences.

III. COHERENT TRANSPORT IN A CYLINDER
WITH INHOMOGENEOUS CONFINEMENT

Next, we show how the varying thickness of a curved
layer affects the transport properties. According to the ef-
fective Hamiltonian we have derived, the effective potential
induced by the variation of thickness is characterized by the
dimensionless function s(q1, q2). The arbitrary nature of this
function allows us to investigate various fluctuations occur-
ring in the thickness of curved nanostructures. Conversely,
based on the required form of the effective potential, the thick-
ness distribution on curved surfaces can be designed to confer
the corresponding properties on nanostructures. In particular,
transport properties of nanostructures are closely related to
their geometric symmetries, which can be maintained, re-
duced, or even totally destroyed according to the features of
the thickness variation on curved surfaces.

In this section we give an example of a cylindrical surface
with inhomogeneous confining potentials which has helical
characters [see Fig. 2(a)]. As shown in the figure, we assume
that two-dimensional electron gases are confined to such a
cylindrical surface with a radius r, and the confining potential
is homogeneous except two ditches lie in the strip along the
green helical lines. Such a structure may be realized by lithog-
raphy techniques. In this structure, the cylindrical symmetry,
which preserves the angular momentum conservation during
transmission, is reduced to the chiral symmetry by the helical
ditches in thickness.

We suppose that the incident wave goes from the left to
the right, and the wave functions of the injection states are
ψin = 1√

2π
eilθ eikz, where θ is the azimuthal angle and k =

√
2m(E1 − El )/h̄, with El = l2 h̄2

2mr2 . Here, E1 = E − E0, with
E0 being the ground-state energy of the quantum well normal
to the cylinder in the homogeneous area [s(θ, z) = 1]. For
convenience, we scale the length and the energy in units of
a and e0 = h̄2/(2ma2).

0 1 2 3

E1 /e0

0

1

2

3

 /
0

(c)

FIG. 2. (a) Schematic of a cylindrical surface. Inhomogeneous
confining potentials are arranged along the green helical curves.
(b) Effective potential Eeff in (θ, z) coordinates. (c) Conductance
(σ0 = 2e2/h) versus energy E1. The black dotted line and the red
solid line are the total conductance for the cylindrical layer with
homogeneous and inhomogeneous confinements, respectively. The
pink dashed and blue dash-dotted lines are for the case of injected
modes l = 1 and l = −1, respectively.

To realize an inhomogeneous confinement with helical
characteristics, we design the function s to be

s(θ, z) = 1 − ε
[

1
2 cos �(rθ − κz + nπ ) + 1

2

]
, (24)

where n = 0,±1,±2, . . . , κ is a parameter to control the tilt
angle of the green line in Fig. 2(a) and � is a parameter to
adjust the width of the strips. Such a function describes a
slightly weaker confining potential or larger thickness in the
strip region. The induced effective potential Veff is described
in Fig. 2(b) in (θ, z) coordinates for E0 = 70e0, ε = 0.1, and
� = 8a−1. Such an effective potential leads to the invariance
of the Hamiltonian H (θ, z) = H (−θ,−z), reflecting the chi-
ral symmetry of the system.

By numerically solving the corresponding effective
Schrodinger equation, we calculate the transmissions for the
modes l = 0 and ±1. Based on the Landauer formula, the
conductance at zero temperature is obtained and plotted in
Fig. 2(c). We first plot the conductance (black dotted line)
for the case that the confinement is homogeneous everywhere,
which shows a perfect steplike dependence on E1, and the
height of the step from 1σ0 to 3σ0 (σ0 = 2e2/h is the quantum
of conductance, with e being the electric charge and h the
Planck constant) indicates that the modes l = ±1 are degen-
erate in this situation. For the inhomogeneous case (red solid
line), we observe that the conductance is more complicated
and a new plateau of 2σ0 from 1.2e0 to 2.5e0 is formed.
This plateau shows that the inhomogeneity of the confining
potential destroys the degeneration of the modes l = ±1 and
only one open channel appears in this energy range. To give
a more explicit picture, we draw the conductances for the
injected modes l = ±1, where an evident difference between
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FIG. 3. (a) Mean angular momentum polarization PLz of the out-
going current on the right side. (b) and (c) The probability densities
for transport when the injected modes are l = 1 and l = −1, respec-
tively. E1 = 1.3e0.

the two lines emerges, showing that the wave in mode l = 1 is
more preferable to pass through the cylindrical structure than
that in mode l = −1 in this energy range. As we see, this
difference exhibits that the angular momentum is no longer
conserved in the transport, which is due to the cylindrical
symmetry being reduced to chiral symmetry.

We further define a polarization quantity PLz to show the
ratio between the mean angular momentum current and the
total current, which is

PLz =
∑

l ′

σl ′,l − σl ′,−l

σ
, (25)

where σl ′,l denotes the conductance that incident modes l ′ are
scattered into modes l . In Fig. 3(a) we plot the dependence
of PLz on the energy E1. It shows that once the threshold
energy of modes l = ±1 is reached, the angular momentum
polarization is generated in the outgoing current and has a
rapid increase up to a maximum value. With E1 increasing,
the polarization decreases slowly, which is due to the counter-
action of the arising conductances σl ′,−1 carrying the opposite
angular momentum. As the chiral symmetry is possessed by
the system, it is easy to find that the transmission component
σl ′,l in the propagation is equal to σl,l ′ in the counterprop-
agation (right to left), which results in the same magnitude
but opposite angular momentum polarization for the latter.
Such a property can cause angular momentum pumping when

alternating voltage is applied to the system. A similar phe-
nomenon is also found in helical coiled tubes [47], but it is
easier and more practical to be realized in cylindrical systems.
To visually comprehend the generation of polarization, the
probability densities are plotted in Figs. 3(b) and 3(c) at the
energy E1 = 1.3e0 for the injected modes l = 1 and l = −1,
respectively. We can find that the injected wave in the mode
l = 1 is able to be transmitted to the right side, while the wave
in the mode l = −1 is mostly reflected.

It should also be noted that the probability density is
prominently higher along the helical strips [the green lines in
Fig. 2(a)], indicating that a helical and open channel is formed
for the mode l = 1. It demonstrates that by implementing such
types of inhomogeneous confinement, it is possible to fabri-
cate 1D waveguides or waveguide lattices on curved surfaces
or substrates, which are rarely explored and may be able to
show novel phenomena compared to flat cases. It has already
been demonstrated theoretically in the optical system that cur-
vature can induce topological phase transition in curved-space
lattices [48]. Besides the chiral symmetry, depending on the
purpose, we are allowed to design more patterns with various
symmetries on the basis of the curved surface, manifesting the
interplay between space curvature and lattice models.

IV. CONCLUSION

In summary, we have extended the TLP and derived an
effective Hamiltonian for a particle constrained to an arbitrary
curved surface by inhomogeneous confining potentials. Due
to the inhomogeneity of the confinement, we find that an
effective potential is induced, which is proportional to the
ground-state energy in the normal direction and is also deter-
mined by the feature of the confining potential. We apply the
method to a cylindrical surface where the confining potential
is designed to have two additional helical ditches, and we
numerically study the transport properties. It is shown that the
helicity of the confinement destroys the degeneration of the
excitation modes and leads to the generation of angular mo-
mentum polarization in the outgoing current. This method can
serve as a tool to conveniently obtain information on energy
bands and transport properties for various low-dimensional
nanostructures, and enable the designation and ‘writing” of
waveguides on arbitrary geometries.
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