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Quantum speed limits in arbitrary phase spaces
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Quantum speed limits (QSLs) provide an upper bound for the speed of evolution of quantum states in any
physical process. Based on the Stratonovich-Weyl correspondence, we derive a universal QSL bound in arbitrary
phase spaces that is applicable for both continuous variable systems and finite-dimensional discrete quantum
systems. This QSL bound allows the determination of speed limit bounds in specific phase spaces that are
tighter than those in Wigner phase space or Hilbert space under the same metric, as illustrated by several typical
examples, e.g., a single-mode free field and N-level quantum systems in phase spaces. This QSL bound also
provides an experimentally realizable way to examine the speed limit in phase spaces relevant to applications in
quantum information and quantum optics.
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I. INTRODUCTION

Quantum speed limits (QSLs) set the upper bound on the
speed for quantum systems evolving in an arbitrary physical
process [1–3]. The milestone of describing the QSL time as
the intrinsic timescale of quantum dynamics was achieved
by Mandelstam and Tamm, who clarified the longstanding
debate on the explanations for the time-energy uncertainty
relationship [4]. The energy fluctuation restricts the mini-
mum time for a quantum state to evolve into its orthogonal
state. Apart from the standard deviation of the energy [4–6],
alternative QSL time bounds based on the averaged energy
[7–10] and the interplay among them [11–13] have been de-
veloped in succession. In the last decade, QSLs have even
been extended to the fields of open systems involving var-
ious metrics [14–20], quantum dynamical speedup [16,21–
26], information geometry [27], time-optimal quantum con-
trol [28–32], quantum and macroscopic stochastic processes
[33–35], non-Hermitian systems [15,36–38], dynamics of
many-body quantum systems [39,40], the evolution of observ-
ables [41–43], and recently the topological structure of the
dynamics [44]. Indeed, the QSL represents a powerful tool
for evaluating the performance of quantum computers [45],
the accuracy of quantum metrology [46,47], and the efficiency
in quantum thermodynamics [48–56], among others. Thus,
extensive effort has been applied toward experimental veri-
fication to this end [57–61].

Apart from the well-known Schrödinger wave function,
Heisenberg’s matrix mechanics, and Feynman’s path inte-
gral, the phase-space formalism of quantum mechanics has
an advantage in terms of its resemblance to classical sta-
tistical mechanics and supports a profound understanding
of the underlying statistical properties [62]. The pioneering
work regarding the study of QSLs in phase spaces was pre-
sented by Deffner, who found that the QSL in the Wigner
(W ) phase space is equivalent to that in the density operator
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space and much easier to perform computations involving
continuous variable systems [63]. Later, because the W phase
space retains the structure of the classical phase space through
quantum-classical correspondence, Shanahan et al. discovered
that the QSL is not a particular quantum phenomenon but a
universal property of the time evolution of continuous vari-
able systems in the W phase space [64]. Meantime, questions
regarding the speed limit in the W phase space have led to the
intensive study of the classical speed limit over the past few
years [64–67].

For continuous variable systems, the W function is the
most widely used phase-space quasiprobability representa-
tion with symmetric ordering of the position and momentum
operators (or equivalently a and a†) [68]. Nevertheless, it
is not unique, and a large number of well-known phase-
space quasiprobability distribution functions exist [62]. For
instance, the Glauber-Sudarshan P function [69,70] with a
normal ordering of a and a† can be used to diagonalize the
density operator in terms of coherent states and is fundamen-
tal in photoelectric detection [71]. Additionally, the Husimi
Q function [72] with the antinormal ordering of a and a†

provides a possible way to define a non-negative quasiprob-
ability distribution, and the Cahill-Glauber s-parametrized
quasiprobability distributions incorporate the above W , P, and
Q functions, with s = 0, 1, and −1, respectively [73,74].

In addition, the flourishing development in quantum
information and quantum technology now requires the con-
sideration of finite-dimensional systems, e.g., an ensemble of
spins, to define corresponding quasiprobability distribution
functions (see a recent review [75]). Commonly, there are
two methods. The first method involves generating discrete
analogs of the quasiprobability distribution functions [76–78],
an approach that has been used in various applications in
quantum-state tomography [79], resource theory for quan-
tum computation [80–82], and studies of the dynamics of
many-body quantum systems [83,84]. The second method
involves employing generalized coherent states [85–90] to
provide insights into the study of quantum foundations, e.g.,
the recent construction of a general statistical framework
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for finite-dimensional discrete quantum systems [91] and the
interpretation of quantum entanglement with classical trajec-
tories [92].

At this point, the following two questions naturally arise:
(i) Is there a simple QSL bound that can incorporate con-
tinuous variable and finite-dimensional quantum systems in
arbitrary phase spaces? (ii) What are the tangible benefits for
the QSL in other quasiprobability distribution phase spaces
compared with those in the W phase space?

To address the above questions, in this paper, we derive a
universal QSL bound for quantum systems in arbitrary phase
spaces using the Stratonovich-Weyl (SW) correspondence
[93]. The key concept for the SW correspondence is to trans-
form any operator in Hilbert space into target phase spaces
(W , P, Q or others) with a SW kernel, which is constructible
for both continuous variable and finite-dimensional quantum
systems in s-parametrized phase spaces [75]. This universal
QSL bound has several tangible benefits. (i) First, our QSL
bound provides a unified framework for studying the speed
limit for continuous variable and finite-dimensional quantum
systems in quasiprobability distribution phase spaces. This
unified QSL bound is not just for aesthetic appeal but provides
a convenient tool to evaluate the speed limit directly in various
scenarios. (ii) Second, our work provides new insight into
the search for tighter QSL bounds that are superior to those
obtained in the W phase space under the same metric. We
use the traditional Cauchy-Schwarz inequality method for the
first scaling and the s-parametrized phase spaces as tools for
secondary scaling, and this latter step is our major contri-
bution. (iii) Third, in the past, phase spaces with s �= 0,±1
were rarely used because they were usually believed to be
less valuable than traditional spaces in quantum optics [71].
In our paper, we show that these representations also have
advantages. The tighter QSL bound achieved with s �= 0,±1
provides evidence that a specific choice of s could also be
superior to the commonly used W , P, and Q phase spaces in
studying QSL bounds.

Our paper is organized as follows: In Sec. II, we derive
the universal QSL bound in arbitrary phase spaces. Then, we
employ this unified QSL bound to several typical quantum
systems, including a single-mode free field and an N-level
quantum system in s-parametrized phase spaces in Sec. III.
The experimental consideration is analyzed in Sec. IV. Fi-
nally, we summarize in Sec. V with concluding remarks and
an outlook of potential applications.

II. QUANTUM SPEED LIMITS IN ARBITRARY
PHASE SPACES

Consider an operator A in Hilbert space; its SW symbol in
an arbitrary phase space is [75]

F s
A (η) := Tr[A�s(η)], (1)

where �s(η) denotes the SW kernel, and five criteria (linear-
ity, reality, standardization, covariance, and tracing properties)
ensure such a legitimate SW correspondence (see Ap-
pendix A). η is a point in a phase space that determines a
state |η〉 (η → |η〉) in Hilbert space and the index s labels a
family of phase spaces, e.g., F 0

A (η) is the well-known Wigner
function [75]. Since A → F s

A (η) is a one-to-one linear map, it

is natural to define the inverse of the SW symbol as

A =
∫

dμ(η)F s
A (η)�−s(η), (2)

where dμ(η) is the invariant integration measure. Then, the
trace of the product of the two operators is immediately ob-
tained (see Appendix A)

Tr(AB) =
∫

dμ(η)F s
A (η)F−s

B (η). (3)

Consider a quantum system evolving under the Hamil-
tonian H , the overlap between the initial state ρ0 and the
final state ρt is captured by the relative purity Pt (ρ0, ρt ) :=
Tr(ρ0ρt ) [12,15,64], which is then transformed by the above
SW correspondence

Pt (ρ0, ρt ) =
∫

dμ(η)F−s
ρ0

(η)F s
ρt

(η). (4)

As the relative purity is a metric of the state evolution, its time
derivative can be regarded as the speed of the state evolution.
The primary procedure for obtaining the changing rate of the
relative purity is to calculate ∂t F s

ρt
(η), which is achieved by

transforming the von Neumann equation ∂tρt = 1
ih̄ [H, ρt ] to

the phase space

∂F s
ρt

(η)

∂t
= {{

F s
H , F s

ρt

}}
(η), (5)

where we employ a generalized Moyal bracket

{{
F s

A , F s
B

}}
:= 1

ih̄
(F s

A � F s
B − F s

B � F s
A ), (6)

and a generalized star product

(
F s

A � F s
B

)
(η) :=

∫
dμ(η′)

∫
dμ(η′′)F s′

A

(
η′)

×F s′′
B (η′′)Tr[�−s′

(η′)�−s′′
(η′′)�s(η)]. (7)

Equation (5) is also called the generalized Liouville equa-
tion [75] and governs the dynamics of a phase-space function.

To this end, the changing rate of the relative purity is given
by

Ṗt (ρ0, ρt ) =
∫

dμ(η)F−s
ρ0

(η)
{{

F s
H , F s

ρt

}}
(η)

=
∫

dμ(η)F−s
ρt

(η)
{{

F s
ρ0

, F s
H

}}
(η). (8)

Note that the second line is more convenient for use in
experimental verification (see Sec. IV) and that the deriva-
tion can be found in Appendix B. By means of the
Cauchy-Schwarz inequality in L2, i.e., | ∫ f (x)g(x)∗dx|2 �∫ | f (x)|2dx

∫ |g(x)|2dx, the norm of the changing rate for the
purity is bounded by∣∣Ṗt (ρ0, ρt )

∣∣ � V s
QSL(t ), (9)

with

V s
QSL(t ) := min

{
χ−s

t vs
QSL(0), χ−s

0 vs
QSL(t )

}
, (10)

where the two terms in min{·, ·} are equal if V s
QSL is time

independent. The two components χ−s and vs
QSL of V s

QSL(t )
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are in dual phase spaces with opposite s [94]. Here

χ s
t :=

[∫
dμ(η)F s

ρt
(η)2

] 1
2

, (11)

and

vs
QSL(t ) :=

[∫
dμ(η)

∣∣{{F s
ρt
, F s

H

}}
(η)

∣∣2
] 1

2

, (12)

where the reality postulate of the SW correspondence is em-
ployed in the definition of Eq. (11). Specifically, χ−s and vs

QSL
in Eq. (10) are in a self-dual phase space when s = 0. Upon
integration of Eq. (9) with respect to time from 0 to τ , we
obtain the usual definition of QSL time

τ � τQSL := 1 − Pτ〈
V s

QSL(t )
〉
τ

, (13)

where 〈 f (t )〉τ := 1
τ

∫ τ

0 f (t )dt .
This upper bound of the evolution speed V s

QSL(t ) is appli-
cable to quantum systems in arbitrary phase spaces as long
as the SW kernel is given. The universality of the derived
QSL bound lies in the fact that the generalized Moyal bracket
and star product are convenient for use with different kinds
of systems in various phase spaces, such as continuous and
discrete phase spaces, in the same framework. In the follow-
ing, we examine the derived QSL bound of both continuous
variable and finite-dimensional quantum systems in several
typical phase spaces, e.g., a single-mode of the quantized
radiation field in Cahill-Glauber s-parametrized quasiprob-
ability distribution phase spaces, N-level quantum systems
in s-parametrized phase spaces with continuous degrees of
freedom, and qubit systems in a toroidal lattice phase space
with discrete degrees of freedom.

III. EXAMPLES

A. A single-mode free field or a one-dimensional
harmonic oscillator in phase spaces

For a single-mode free field or a one-dimensional harmonic
oscillator, the s-parametrized SW kernel is given by [73]

�s(η) =
∫

dμ(ζ )D(ζ )eηζ ∗−η∗ζ+s|ζ |2/2, (14)

defined in terms of the displacement operator D(ζ ) :=
eζa†−ζ ∗a, and the integration measure dμ(ζ ) = (1/π )d2ζ .
This s-parametrized SW kernel has been widely studied in the
field of quantum optics [95,96]. Considering the system ini-
tially prepared in a coherent state |α0〉, the evolved state under
the control of H = h̄ω(a†a + 1

2 ) is |αt 〉 = e−iωt/2|α0e−iωt 〉 =
e−iωt/2 |α〉 [95], where we use α := α0e−iωt as an abbrevi-
ation. Then, the SW symbol of the coherent state is given
by F s

ρt
(η) = 2

1−s exp( 2
s−1 |α − η|2) with −1 � s < 1 [74]. In

terms of Eqs. (11) and (12), we are ready to obtain the two
components of V s

QSL (see Appendix C):

χ s = 1√
1 − s

, (15)

and

vs
QSL =

√
2ω|α0|
1 − s

, (16)

FIG. 1. V s
QSL of a single-mode free field or a one-dimensional

harmonic oscillator initially prepared in state |α0〉 and evolved under
the control of the Hamiltonian H = h̄ω(a†a + 1

2 ) (ω|α0| = 1). The
gray dot represents s = 0, i.e., the Wigner phase space (or the equiv-
alent Hilbert space). The orange region represents V s

QSL < V 0
QSL The

red dot marks the lowest value of V s
QSL, implying that the tightest

QSL bound does not occur in the self-dual case but in dual phase
spaces with s = −1/3.

which are time-independent (thus, we omit the subscript t for
notation simplicity) and lead to the final result

V s
QSL =

√
2ω|α0|

(1 − s)
√

1 + s
. (17)

It is convenient to obtain the QSL bound in Hilbert space
VQSL = [Tr(|ρ̇t |2)]1/2 =

√
2

h̄ �E = √
2ω|α0|, which is equiv-

alent to the case of s = 0 in Eq. (17). Thus, Eq. (17) can
be rewritten as V s

QSL = √
2�E/[h̄(1 − s)

√
1 + s] in terms

of the standard deviation of H . This is a QSL bound of
the Mandelstam-Tamm type for the s-parametrized phase
space, which is in agreement with the QSL bound derived
in Ref. [64] in Wigner phase space with s = 0. The tightest

bound is immediately obtained as V
− 1

3
QSL = 3

√
3

4h̄ �E .
In Fig. 1, V s

QSL versus parameter s is depicted given
ω|α0| = 1. One can find that the self-dual case, i.e., s = 0,
is not the tightest one (neither are the other well-known
representations, e.g., s = −1). Obviously, there is a represen-
tation with s �= 0 that has the lowest upper bound. Indeed, by
choosing an appropriate parameter of the phase space, i.e.,
s = −1/3 as analyzed above, we can find the corresponding
tightest dual phase spaces, as marked by the red dot in Fig. 1.

The above analysis implies that the s-parametrized phase
spaces provide an approach to search for tighter QSL bounds
than the one given initially in W phase space or Hilbert
space. Such a phase space is unlike the usual W , P, and Q
representations. Indeed, the rarely used phase spaces with
s �= 0,±1 may also be helpful in specific quantum tasks, such
as searching for the tightest QSL bound, as illustrated here.

Thus far, our example involves a continuous variable
system. It is natural to ask if this universal QSL applies
to finite-dimensional systems in the same framework and
whether the above conclusion still holds in such cases.
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B. N-level quantum systems in a continuous phase space

Consider an N-level quantum system with the following
Hamiltonian given by [97]

H = h01 + hνTν, (18)

where h0 and hν are coefficients, e.g., a magnetic field. Tν (ν =
1, 2, . . . , N2 − 1), a set of traceless Hermitian matrices, are
the generators of SU(N ) Lie algebra [98], and the summation
over repeated Greek indices is implicit.

The SW kernel of the N-level quantum system is defined
as [89,99] (see Appendix A)

�s(η) = 1

N
1 + 4rsRνTν, (19)

where Rν := 〈η| Tν |η〉, and

rs = 1

2

√
(N + 1)1+s (20)

is called the s-parametrized spin radius, representing different
phase spaces. Unlike the example in Sec. III A, there is no re-
striction regarding the parameter s here, i.e., s ∈ R. Following
the terminology in quantum optics, we still deem s = 0 the W
phase space, while s = 1 and s = −1 represent the P and Q
phase spaces, respectively [99].

The evolved density matrix in terms of the basis of the
SU(N ) Lie algebra is represented by [97]

ρt = 1

N
1 + bν (t )Tν, (21)

with bν (t ) := 2 Tr(ρt Tν ), where we have employed
Tr(TνTλ) = 1

2δνλ [98].
With Eqs. (18), (19), and (21), the time derivative of the

phase-space function F s
ρt

(η) in Eq. (5) is obtained ∂t F s
ρt

(η) =
2
h̄ rshνbλ(t )Rξ fνλξ , where we use [Tν, Tλ] = i fνλξ Tξ and fνλξ

are totally antisymmetric regarding the interchange of any pair
of its indices [98]. Then we have

χ s
t =

[
1

N
+ 2

N + 1
b2

ν (t )r2
s

] 1
2

, (22)

according to
∫

dμ(η)RνRλ = 1
2(N+1)δνλ [99]. In addition, the

integration in Eq. (12) yields

vs
QSL(t ) = rs

h̄

[
2

(N + 1)
hνbλ(t )hβbγ (t ) fνλξ fβγ ξ

] 1
2

. (23)

With Eqs. (22) and (23), the QSL bound in Eq. (10) is imme-
diately obtained.

In addition, an interesting corollary based on Eq. (23)
is obtained, v0

QSL(t )2 = v−s
QSL(t )vs

QSL(t ), which can be proven
immediately based on the definition of the s-parametrized spin
radius in Eq. (20). This corollary implies that one component
of the QSL bounds, vs

QSL(t ) with s �= 0, could be tighter than
that in the s = 0 case at the expense of a looser bound for
−s. Does this conclusion still hold for V s

QSL(t )? However,
V 0

QSL(t )2 �= V −s
QSL(t )V s

QSL(t ) in general, as the other component
of V s

QSL(t ), i.e., χ s
t , is not a constant. Nevertheless, if we

carefully choose dual phase spaces, it is still possible to obtain
a QSL bound tighter than the usual bound in W phase space or
Hilbert space [V 0

QSL(t ) is identical to the speed limit obtained

in Hilbert space; see the proof in Appendix D]. Indeed, if the
initial state is pure, we have

V 0
QSL

V s
QSL

=
[

N

(N + 1)s + N − 1

] 1
2

, (24)

implying V s<0
QSL < V 0

QSL. The maximum of Eq. (24) is√
N/(N − 1) when s approaches −∞, signifying that the up-

per bound of the QSL originally derived in W phase space
will, at most, decrease by (1 − √

1 − 1/N ) × 100% in s-
parametrized phase spaces.

For illustration, we consider N = 2, i.e., a qubit system.
The Hamilton in Eq. (18) takes the form

H = h01 + h jTj = h01 + 1
2
�h · �σ , (25)

where Tj = 1
2σ j ( j = x, y, z) and σ j are the usual Pauli oper-

ators. We replace the Greek indices with the Latin ones, as
usual, and thus, f jkl equals ε jkl (the three-dimensional Levi-
Civita symbol) [98]. The evolved density matrix in Eq. (21)
now reads

ρt = 1
21 + b j (t )Tj = 1

21 + 1
2
�bt · �σ . (26)

After some algebra, Eqs. (22) and (23) can be simplified to

χ s
t = [

1
2 + 2

3 |�bt |2r2
s

] 1
2 (27)

and

vs
QSL(t ) = 1

h̄

√
2

3
rs|�h × �bt |, (28)

where ε jkpεlmp = δ jlδkm − δ jmδkl is employed. Thus,

V s
QSL(t ) = 1

2h̄
min{

√
3s + |�b0|2|�h × �bt |,√

3s + |�bt |2|�h × �b0|}. (29)

Former research found that the QSL bound derived based on
the metric of relative purity will be proportional to the stan-
dard deviation of energy [15]. When the initial state is pure,
according to Eqs. (25) and (26), we have �E = 1

2 |�h × �bt | =
1
2 |�h × �b0| and |�bt |2 = |�b0|2 = 1. Thus, the s-parametrized
QSL bound of qubit systems in Eq. (29) is rewritten as

V s
QSL = √

1 + 3s
�E

h̄
, (30)

which is a Mandelstam-Tamm type bound. When s < 0, the
QSL bounds will be tighter than the one in Wigner phase
space, i.e., V s<0

QSL < V 0
QSL and the tightest bound achieves

when s → −∞. Thus, the quasiprobability distribution phase
spaces can be employed to search tighter QSL bound, which
agrees with the example illustrated in Sec III A.

For illustration, in Fig. 2, we consider an initial state |ψ〉 =
cos(x) |0〉 + sin(x) |1〉 under the control of the Hamiltonian
H = h̄

2 σz. Thus, the QSL reads

V s
QSL = 1

2

√
1 + 3s|sin (2x)|. (31)

Obviously, the QSL bound in phase space s = −1 is tighter
than that with s = 0. Thus, the tightest bound occurs when s
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FIG. 2. V s
QSL of a qubit initially prepared in state |ψ〉 =

cos(x) |0〉 + sin(x) |1〉 and evolved under the control of the Hamil-
tonian H = h̄

2 σz. The blue curves from bottom to top represent V s
QSL

with x = π

16 , π

8 , and π

4 , respectively. Within the orange regions,
V s

QSL < V 0
QSL. The red and gray dots denote V −∞

QSL = 1
2 | sin(2x)| and

V 0
QSL = 1√

2
| sin(2x)|.

is approaching −∞, and the bound reads V −∞
QSL = 1

2 | sin(2x)|
(see the red dots in Fig. 2).

Unlike the continuous phase space representation, another
equivalent approach is to employ the discrete phase space in
an N × N lattice form (see Appendix E).

The above examples illustrate that both for continuous
variable and finite-dimensional discrete quantum systems, we
may find tighter QSL bound in specific phase spaces than in W
phase space or Hilbert space in terms of the quasiprobability
distribution phase spaces. Importantly, this phenomenon is
detectable in experiments.

IV. EXPERIMENTAL CONSIDERATION

Given an initial state ρ0 as well as the Hamiltonian H ,
it would be more convenient to verify χ−s

t vs
QSL(0). We need

only to measure the phase-space function of an evolved state,
i.e., F−s

ρt
(η) = Tr[ρt�

−s(η)]. The key procedure is construct-
ing the SW kernel �s(η), which can be decomposed to a
combination of spin-parity operators �s and displacement-
rotation operators U [90]. For example, the SW kernel of a
qubit can be rewritten as �s(η) = U (θ, φ,�)�sU †(θ, φ,�),
where U (θ, φ,�) = exp(− iσz

2 φ)exp(− iσy

2 θ )exp(− iσz

2 �) and
�s = 1

21 + rsσz. A similar scheme for verifying the Wigner
functions has been realized in experiments with a cesium atom
[100] and an electron spin of a nitrogen-vacancy center in
diamond [101].

For continuous variable systems, the SW kernel can also
be constructed as a displaced parity operator, i.e., �s(η) =
D(η)�sD†(η) [75,102]. Thus, the phase-space function
F−s

ρt
(η) is just the inverse Fourier transform of the charac-

teristic function G−s
ρt

(η) = Tr[ρt D(η)e− 1
2 s|η|2 ]. It is feasible to

measure this characteristic function in experiments by means
of single-qubit interferometry; see, e.g., Refs. [103–105].

V. CONCLUSION AND OUTLOOK

To conclude, we established a universal QSL bound based
on the SW correspondence. This speed limit bound allows

us to investigate the dynamics of both continuous variable
and finite-dimensional discrete quantum systems in arbitrary
phase spaces in the same framework as long as the SW kernel
is given. Remarkably, by choosing specific dual phase spaces,
the QSL bound can be tighter than that in the W phase space
or Hilbert space, which is demonstrated for several typical
continuous variable and finite-dimensional discrete quantum
systems. This conclusion allows us to search for tighter QSL
bounds in terms of specific quasiprobability distribution phase
spaces and provides a real example that rarely used phase
spaces with s �= 0, ±1 may be superior to the commonly used
W , P, and Q phase spaces in certain quantum tasks.

Our results suggest several areas for further investigation.
First, it would be of great interest to investigate the QSL
with h̄ deformation in discrete quantum systems in addition
to continuous variable systems. If one takes h̄ as a quan-
tum parameter, h̄ = 0 gives the classical Poisson bracket in
the standard Moyal product. Comparing the dynamics for
different h̄ values for QSL with general SW formalism is
fascinating and may provide a thorough understanding of the
speed limit on the border between the macroscopic and mi-
croscopic world. Second, whether we could utilize the tighter
QSL bound in specific dual phase spaces superior to the self-
dual case (Hilbert space) and design schemes for operating
logical gates in such phase spaces would be of interest.
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APPENDIX A: STRATONOVICH-WEYL
CORRESPONDENCE

This section briefly summarizes the basic idea of the
Stratonovich-Weyl (SW) correspondence that is employed in
the main text. The operator A in Hilbert space and the corre-
sponding phase-space function F s

A (η) are linked by a kernel
�s(η), where η is a phase-space point in any phase space
labeled by the index s. There are five criteria for the kernel
that ensure physically motivating properties. Such properties,
known as the SW correspondence [75], are listed below:

SW-1 Linearity. A ↔ F s
A (η) is a linear bijective mapping,

i.e.,

F s
A (η) = Tr[A�s(η)], (A1)

and

A =
∫

dμ(η)F s
A (η)�−s(η), (A2)

where dμ(η) is the invariant integration measure.
SW-2 Reality. The kernel �s(η) is Hermitian. Thus, the

phase-space function is real if the operator A is Hermitian,
i.e.,

F s
A (η)∗ = Tr[A†�s(η)†] = Tr[A�s(η)] = F s

A (η). (A3)
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SW-3 Standardization. F s
A (η) is standardized so that∫

dμ(η)F s
A (η) = Tr(A), (A4)

and ∫
dμ(η)�s(η) = 1. (A5)

SW-4 Covariance. If the operator A is invariant under the
unitary operations U , then so is the phase-space function, i.e.,

F s
UAU † (η) = Tr[UAU †�s(η)] = Tr[AV �s(η)V †]

= Tr[A�s(η′)] = F s
A (η′), (A6)

where �s(η′) = V �s(η)V † and V = U †.
SW-5 Tracing.∫

dμ(η)F s
A (η)F−s

B (η) = Tr(AB). (A7)

Note that, if the phase space is discrete, the integrations in
SW-1–SW-5 will be replaced by the summation over the phase
points.

For illustration, we prove that Eq. (19), i.e.,

�s(η) = 1

N
1 + 4rsRνTν, (A8)

in the main text satisfies the above five criteria for a SW
kernel. Here rs = 1

2 [(N + 1)1+s]1/2 (s ∈ R), Rν := 〈η| Tν |η〉,
and Tν (ν = 1, 2, . . . , N2 − 1) are the basis for the set of
traceless Hermitian N × N matrices.

Proof. (i) According to Eq. (A1), the phase-space function
of operator A is given by

F s
A (η) = 1

N
TrA + 4rsRνTr(ATν ), (A9)

with which we have∫
dμ(η)F s

A (η)�−s(η) = TrA

N
1 + 2Tr(ATν )Tν = A, (A10)

where we have employed three identities [87,99], i.e.,∫
dμ(η) = N, (A11)∫

Rνdμ(η) = 0, (A12)∫
RνRλdμ(η) = 1

2(N + 1)
δνλ, (A13)

in deriving the first equality in Eq. (A10). The second equality
in Eq. (A10) is based on the fact that any N × N complex
matrix can be expressed as a complex linear combination of
the identity matrix and N2 − 1 generators Tν of the SU(N) Lie
algebra [see, e.g., Eq. (9) in Ref. [98]].

(ii) The kernel Eq. (A8) is obviously Hermitian.
(iii) The integration of the phase-space function F s

A (η) over
all space is given by∫

dμ(η)F s
A (η) =

∫
dμ(η)

[
1

N
TrA + 4rsRνTr(ATν )

]
= Tr(A).

(A14)

In addition,∫
dμ(η)�s(η) =

∫
dμ(η)

(
1

N
1 + 4rsRνTν

)
= 1. (A15)

(iv) According to SW-4, we define

V �s(η)V † = 1

N
1+ 4rsRνV TνV † = 1

N
1+ 4rsR

′
νT ′

ν =: �s(η′),
(A16)

where T ′
ν = V TνV †, R′

ν = 〈η′| T ′
ν |η′〉, with |η′〉 = V |η〉. Thus,

if the operator is invariant under the unitary operations V =
U †, then so is the phase-space function.

(v) According to Eq. (A10), we have

Tr(AB) = 1

N
Tr(A)Tr(B) + 2Tr(ATν )Tr(BTν ). (A17)

On the other hand,∫
dμ(η)F s

A (η)F−s
B (η)

=
∫

dμ(η)

[
1

N
Tr(A) + 4rsRνTr(ATν )

]

×
[

1

N
Tr(B) + 4r−sRλTr(BTλ)

]

= 1

N
Tr(A)Tr(B) + 2Tr(ATν )Tr(BTν ) (A18)

is obtained by means of Eqs. (A9), (A11)–(A13). Therefore,
SW-5 is also satisfied.

To this end, we conclude that Eq. (19) used in the main text
is a SW kernel. �

APPENDIX B: DERIVATION OF THE
SECOND LINE IN EQ. (8)

The changing rate of the relative purity is given by

Ṗt (ρ0, ρt ) = Tr(ρ0ρ̇t ) = 1

ih̄
Tr(ρ0[H, ρt ]). (B1)

According to Eqs. (1) and (3), we have

Ṗt (ρ0, ρt ) = 1

ih̄

∫
dμ(η)F−s

ρ0
(η)Tr[[H, ρt ]�

s(η)]. (B2)

Then, substituting the phase-space form of H =∫
dμ(η′)F s′

H (η′)�−s′
(η′) and ρ = ∫

dμ(η′′)F s′′
ρt

(η′′)�−s′′
(η′′)

in Eq. (B2), we obtain

Ṗt (ρ0, ρt ) = 1

ih̄

∫
dμ(η)F−s

ρ0
(η)

(
F s

H � F s
ρt

− F s
ρt

� F s
H

)
(η)

=
∫

dμ(η)F−s
ρ0

(η)
{{

F s
H , F s

ρt

}}
(η), (B3)

where we have employed the generalized star product
[Eq. (7)] and Moyal bracket [Eq. (6)] defined in the main text.
Then, by means of Tr(ρ0[H, ρt ]) = Tr(ρt [ρ0, H]) and similar
procedures performed in Eqs. (B2) and (B3), we have

Ṗt (ρ0, ρt ) =
∫

dμ(η)F−s
ρt

(η)
{{

F s
ρ0

, F s
H

}}
(η), (B4)

which is the second line in Eq. (8) in the main text.
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APPENDIX C: QUANTUM SPEED LIMITS OF A SINGLE-MODE FREE FIELD OR A ONE-DIMENSIONAL
HARMONIC OSCILLATOR IN s-PARAMETRIZED PHASE SPACES

We consider a one-dimensional harmonic oscillator or a single-mode free field prepared in a coherent state |α0〉 and evolved
under the control of Hamiltonian H = h̄ω(a†a + 1

2 ). So the evolved density operator can be written as ρt = |α〉 〈α|, where we
have used the definition of α := α0e−iωt [95]. Then the SW symbol of the coherent state can be derived in terms of the SW kernel

F s
ρt

(η) = Tr[ρt�
s(η)] = Tr[|α〉 〈α| D(η)�sD†(η)] = κ exp(−κ|α − η|2), (C1)

where D(η) is a displaced operator, �s := 2
1−s ( s+1

s−1 )a†a (−1 � s < 1) is a s-parametrized parity operator [96], and κ := 2/(1 −
s). Note that the SW kernel written in the above equation is equivalent to the one in Eq. (14).

Then, the changing rate of F s
ρt

(η) is obtained

∂F s
ρt

(η)

∂t
= iωκ2(α∗η − αη∗) exp(−κ|α − η|2). (C2)

To this end, we are ready to calculate the two components of V s
QSL(t ):

(χ s
t )2 = κ2

π

∫
exp(−2κ|α − η|2)d2η = κ2

π
exp(−2κ|α|2)

∫
exp(2κα∗η) exp(2καη∗ − 2κ|η|2)d2η = κ

2
= 1

1 − s
, (C3)

and

vs
QSL(t )2 = ω2κ4

π

∫
[2|α|2|η|2 − α2(η∗)2 − (α∗)2

η2] exp(−2κ|α − η|2)d2η

= ω2κ4

π
exp(−2κ|α|2)

∫
[2|α|2|η|2 − α2(η∗)2 − (α∗)2

η2] exp(2κα∗η) exp(2καη∗ − 2κ|η|2)d2η

= ω2κ4 exp(−2κ|α|2)

[ |α|2 exp(2κ|α|2)

2κ2
+ |α|4

κ
exp(2κ|α|2) − |α|4

κ
exp(2κ|α|2)

]

= κ2ω2|α|2
2

= 2

(1 − s)2 ω2|α0|2, (C4)

where we employ the formula

1

π

∫
|x|2m f (x) exp

(
yx∗ − z|x|2)d2x = 1

zm+1

dm
[( y

z

)m
f
( y

z

)]
d
( y

z

)m , (C5)

in the derivation of the above Eqs. (C3) and (C4). Here, we summarize the basic idea for the proof of Eq. (C5). Note that the
following x, y, z parameters are all complex numbers:

1

π

∫
|x|2m f (x) exp(yx∗ − z|x|2)d2x =

∑
n

cnKn, (C6)

where

Kn = 1

π

∫
|x|2mxn (x∗)nyn

n!
exp(−z|x|2)d2x = yn

πn!

∫
|x|2(n+m) exp(−z|x|2)d2x = yn(n + m)!

zn+m+1n!
. (C7)

Then we have

1

π

∫
|x|2m f (x) exp(yx∗ − z|x|2)d2x =

∑
n

cn
yn(n + m)!

zn+m+1n!
= 1

zm+1

dm
[( y

z

)m
f
( y

z

)]
d
( y

z

)m , (C8)

which ends our proof.
With Eqs. (C3) and (C4), we obtain

V s
QSL = χ−svs

QSL =
√

2ω|α0|
(1 − s)

√
1 + s

(C9)

in the main text [see Eq. (17)].
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APPENDIX D: QUANTUM SPEED LIMITS OF N-LEVEL
QUANTUM SYSTEMS IN HILBERT SPACE

The QSL bound of N-level quantum systems is given by

∣∣Ṗt (ρ0, ρt )
∣∣ � VQSL(t ) =

√
Tr

(
ρ2

0

)
Tr(|ρ̇t |2). (D1)

According to the von Neumann equation and Eqs. (18) and
(21) in the main text, we have ρ̇t = 1

h̄ hνbλ(t ) fνλξ Tξ . Thus

VQSL(t ) = 1

2h̄

√(
2

N
+ b2

ι

)
hνbλ(t )hβbγ (t ) fνλξ fβγ ξ , (D2)

which equals to the QSL bound in W phase space (s = 0) in
the main text [Eqs. (22) and (23)].

APPENDIX E: QUBITS IN A DISCRETE PHASE SPACE

The discrete phase-space function represents a quantum
state that assigns a number to each lattice point [106]. We

need only to replace the generalized Moyal bracket and the
star product with the corresponding discrete ones.

For illustration, we still consider the qubit case (N =
2). We can label the phase-space points η with coordi-
nates (a1, a2) (a1(2) = 0, 1). The corresponding SW kernel
is [76]

�s(η) = 1

2
1 +

√
3

4rs

[
(−1)a1σz + (−1)a2σx + (−1)a1+a2σy

]
,

(E1)
which obviously satisfies the SW correspondence, with∫

dμ(η) replaced by 1
2

∑
η. Here, rs = 1

2 (31+s)1/2, with s =
−1, 0, 1 representing the Q, W , and P representations, re-
spectively. By replacing the generalized star product in Eq. (7)
with (F s

A � F s
B )(η) = �ηβγ

2 F s
A (β )F s

B (γ ) [76], we can obtain the
QSL bound. Here, �ηβγ = δηβ + δηγ + δβγ − 1

2 − i
∑

κ εηβγ κ

is the three-point structure function, and ε is antisymmetric
in all of its indices. We then immediately have χ s

t = [ 1
2 +

2
3 |�bt |2r2

s ]
1
2 and vs

QSL(t ) = 1
h̄

√
2
3 rs|�h × �bt |, which are in agree-

ment with N = 2 in Sec. III B.
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[9] B. Zieliński and M. Zych, Phys. Rev. A 74, 034301 (2006).

[10] N. Margolus, arXiv:1109.4994.
[11] S. Luo, Phys. D (Amsterdam, Neth.) 189, 1 (2004).
[12] L. B. Levitin and T. Toffoli, Phys. Rev. Lett. 103, 160502

(2009).
[13] G. Ness, A. Alberti, and Y. Sagi, Phys. Rev. Lett. 129, 140403

(2022).
[14] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de

Matos Filho, Phys. Rev. Lett. 110, 050402 (2013).
[15] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga,

Phys. Rev. Lett. 110, 050403 (2013).
[16] S. Deffner and E. Lutz, Phys. Rev. Lett. 111, 010402 (2013).
[17] Y.-J. Zhang, W. Han, Y.-J. Xia, J.-P. Cao, and H. Fan, Sci. Rep.

4, 4890 (2014).
[18] I. Marvian and D. A. Lidar, Phys. Rev. Lett. 115, 210402

(2015).
[19] D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and D. O.

Soares-Pinto, Phys. Rev. X 6, 021031 (2016).
[20] Z. Xu, New J. Phys. 18, 073005 (2016).
[21] F. Fröwis, Phys. Rev. A 85, 052127 (2012).
[22] Z. Xu, S. Luo, W. L. Yang, C. Liu, and S. Zhu, Phys. Rev. A

89, 012307 (2014).

[23] Y.-J. Zhang, W. Han, Y.-J. Xia, J.-P. Cao, and H. Fan, Phys.
Rev. A 91, 032112 (2015).

[24] H.-B. Liu, W. L. Yang, J.-H. An, and Z. Xu, Phys. Rev. A 93,
020105(R) (2016).

[25] X. Cai and Y. Zheng, Phys. Rev. A 95, 052104 (2017).
[26] W. Wu and J.-H. An, Phys. Rev. A 106, 062438 (2022).
[27] F. Campaioli, F. A. Pollock, F. C. Binder, and K. Modi, Phys.

Rev. Lett. 120, 060409 (2018).
[28] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Phys. Rev.

Lett. 96, 060503 (2006).
[29] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero,

V. Giovannetti, and G. E. Santoro, Phys. Rev. Lett. 103,
240501 (2009).

[30] G. C. Hegerfeldt, Phys. Rev. Lett. 111, 260501 (2013).
[31] X. Wang, M. Allegra, K. Jacobs, S. Lloyd, C. Lupo, and M.

Mohseni, Phys. Rev. Lett. 114, 170501 (2015).
[32] J. Geng, Y. Wu, X. Wang, K. Xu, F. Shi, Y. Xie, X. Rong, and

J. Du, Phys. Rev. Lett. 117, 170501 (2016).
[33] N. Shiraishi, K. Funo, and K. Saito, Phys. Rev. Lett. 121,

070601 (2018).
[34] L. P. García-Pintos and A. del Campo, New J. Phys. 21,

033012 (2019).
[35] R. Hamazaki, PRX Quantum 3, 020319 (2022).
[36] S. Sun and Y. Zheng, Phys. Rev. Lett. 123, 180403 (2019).
[37] S. Sun, Y. Peng, X. Hu, and Y. Zheng, Phys. Rev. Lett. 127,

100404 (2021).
[38] F. Impens, F. M. D’Angelis, F. A. Pinheiro, and D. Guéry-

Odelin, Phys. Rev. A 104, 052620 (2021).
[39] T. Fogarty, S. Deffner, T. Busch, and S. Campbell, Phys. Rev.

Lett. 124, 110601 (2020).
[40] K. Suzuki and K. Takahashi, Phys. Rev. Res. 2, 032016(R)

(2020).
[41] L. P. García-Pintos, S. B. Nicholson, J. R. Green, A. del

Campo, and A. V. Gorshkov, Phys. Rev. X 12, 011038 (2022).
[42] B. Mohan and A. K. Pati, Phys. Rev. A 106, 042436 (2022).

022212-8

https://doi.org/10.1103/RevModPhys.67.759
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1088/0305-4470/16/13/021
https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1016/S0167-2789(98)00054-2
https://doi.org/10.1007/s11005-004-5095-4
https://doi.org/10.1103/PhysRevA.74.034301
http://arxiv.org/abs/arXiv:1109.4994
https://doi.org/10.1016/j.physd.2003.10.001
https://doi.org/10.1103/PhysRevLett.103.160502
https://doi.org/10.1103/PhysRevLett.129.140403
https://doi.org/10.1103/PhysRevLett.110.050402
https://doi.org/10.1103/PhysRevLett.110.050403
https://doi.org/10.1103/PhysRevLett.111.010402
https://doi.org/10.1038/srep04890
https://doi.org/10.1103/PhysRevLett.115.210402
https://doi.org/10.1103/PhysRevX.6.021031
https://doi.org/10.1088/1367-2630/18/7/073005
https://doi.org/10.1103/PhysRevA.85.052127
https://doi.org/10.1103/PhysRevA.89.012307
https://doi.org/10.1103/PhysRevA.91.032112
https://doi.org/10.1103/PhysRevA.93.020105
https://doi.org/10.1103/PhysRevA.95.052104
https://doi.org/10.1103/PhysRevA.106.062438
https://doi.org/10.1103/PhysRevLett.120.060409
https://doi.org/10.1103/PhysRevLett.96.060503
https://doi.org/10.1103/PhysRevLett.103.240501
https://doi.org/10.1103/PhysRevLett.111.260501
https://doi.org/10.1103/PhysRevLett.114.170501
https://doi.org/10.1103/PhysRevLett.117.170501
https://doi.org/10.1103/PhysRevLett.121.070601
https://doi.org/10.1088/1367-2630/ab099e
https://doi.org/10.1103/PRXQuantum.3.020319
https://doi.org/10.1103/PhysRevLett.123.180403
https://doi.org/10.1103/PhysRevLett.127.100404
https://doi.org/10.1103/PhysRevA.104.052620
https://doi.org/10.1103/PhysRevLett.124.110601
https://doi.org/10.1103/PhysRevResearch.2.032016
https://doi.org/10.1103/PhysRevX.12.011038
https://doi.org/10.1103/PhysRevA.106.042436


QUANTUM SPEED LIMITS IN ARBITRARY PHASE SPACES PHYSICAL REVIEW A 107, 022212 (2023)

[43] N. Carabba, N. Hörnedal, and A. del Campo, Quantum 6, 884
(2022).

[44] T. Van Vu and K. Saito, Phys. Rev. Lett. 130, 010402 (2023).
[45] S. Lloyd, Nature (London) 406, 1047 (2000).
[46] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5,

222 (2011).
[47] M. Barbieri, PRX Quantum 3, 010202 (2022).
[48] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold,

S. Vinjanampathy, and K. Modi, Phys. Rev. Lett. 118, 150601
(2017).

[49] S. Campbell and S. Deffner, Phys. Rev. Lett. 118, 100601
(2017).

[50] K. Funo, J.-N. Zhang, C. Chatou, K. Kim, M. Ueda, and A. del
Campo, Phys. Rev. Lett. 118, 100602 (2017).

[51] Z. Xu, W.-L. You, Y.-L. Dong, C. Zhang, and W. L. Yang,
Phys. Rev. A 97, 032115 (2018).

[52] S. B. Nicholson, L. P. García-Pintos, A. del Campo, and J. R.
Green, Nat. Phys. 16, 1211 (2020).

[53] G. Falasco and M. Esposito, Phys. Rev. Lett. 125, 120604
(2020).

[54] L. P. García-Pintos, A. Hamma, and A. del Campo, Phys. Rev.
Lett. 125, 040601 (2020).

[55] T. Van Vu and Y. Hasegawa, Phys. Rev. Lett. 126, 010601
(2021).

[56] Y.-Z. Zhen, D. Egloff, K. Modi, and O. Dahlsten, Phys. Rev.
Lett. 127, 190602 (2021).

[57] A. D. Cimmarusti, Z. Yan, B. D. Patterson, L. P. Corcos,
L. A. Orozco, and S. Deffner, Phys. Rev. Lett. 114, 233602
(2015).

[58] G. Ness, M. R. Lam, W. Alt, D. Meschede, Y. Sagi, and A.
Alberti, Sci. Adv. 7, eabj9119 (2021).

[59] A. del Campo, Phys. Rev. Lett. 126, 180603 (2021).
[60] M. R. Lam, N. Peter, T. Groh, W. Alt, C. Robens, D.

Meschede, A. Negretti, S. Montangero, T. Calarco, and A.
Alberti, Phys. Rev. X 11, 011035 (2021).

[61] L.-L. Yan, J.-W. Zhang, M.-R. Yun, J.-C. Li, G.-Y. Ding, J.-F.
Wei, J.-T. Bu, B. Wang, L. Chen, S.-L. Su, F. Zhou, Y. Jia, E.-J.
Liang, and M. Feng, Phys. Rev. Lett. 128, 050603 (2022).

[62] T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Concise
Treatise on Quantum Mechanics in Phase Space (World Sci-
entific, Singapore, 2014).

[63] S. Deffner, New J. Phys. 19, 103018 (2017).
[64] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo,

Phys. Rev. Lett. 120, 070401 (2018).
[65] M. Okuyama and M. Ohzeki, Phys. Rev. Lett. 120, 070402

(2018).
[66] K. Bolonek-Lasoń, J. Gonera, and P. Kosiński, Quantum 5,

482 (2021).
[67] P. M. Poggi, S. Campbell, and S. Deffner, PRX Quantum 2,

040349 (2021).
[68] E. Wigner, Phys. Rev. 40, 749 (1932).
[69] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[70] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
[71] U. Leonhardt, Quasiprobability distributions, in Essential

Quantum Optics: From Quantum Measurements to Black Holes
(Cambridge University Press, Cambridge, 2010), pp. 63–91.

[72] K. Husimi, Proc. Phys.-Math. Soc. Jpn. 22, 264 (1940).
[73] K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969).
[74] K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1882 (1969).
[75] R. P. Rundle and M. J. Everitt, Adv. Quantum Technol. 4,

2100016 (2021).
[76] W. K. Wootters, Ann. Phys. (NY) 176, 1 (1987).
[77] S. Heiss and S. Weigert, Phys. Rev. A 63, 012105 (2000).
[78] H. Zhu, Phys. Rev. Lett. 116, 040501 (2016).
[79] U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995).
[80] E. F. Galvão, Phys. Rev. A 71, 042302 (2005).
[81] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, New J. Phys.

14, 113011 (2012).
[82] M. Howard, J. Wallman, V. Veitch, and J. Emerson, Nature

(London) 510, 351 (2014).
[83] J. Schachenmayer, A. Pikovski, and A. M. Rey, Phys. Rev. X

5, 011022 (2015).
[84] C. D. Mink, D. Petrosyan, and M. Fleischhauer, Phys. Rev.

Res. 4, 043136 (2022).
[85] G. S. Agarwal, Phys. Rev. A 24, 2889 (1981).
[86] C. Brif and A. Mann, J. Phys. A: Math. Gen. 31, L9 (1998).
[87] C. Brif and A. Mann, Phys. Rev. A 59, 971 (1999).
[88] A. Luis, Phys. Rev. A 69, 052112 (2004).
[89] T. Tilma and K. Nemoto, J. Phys. A: Math. Theor. 45, 015302

(2012).
[90] T. Tilma, M. J. Everitt, J. H. Samson, W. J. Munro, and K.

Nemoto, Phys. Rev. Lett. 117, 180401 (2016).
[91] R. P. Rundle, T. Tilma, J. H. Samson, V. M. Dwyer, R. F.

Bishop, and M. J. Everitt, Phys. Rev. A 99, 012115 (2019).
[92] J. E. Runeson and J. O. Richardson, Phys. Rev. Lett. 127,

250403 (2021).
[93] R. L. Stratonovich, Sov. Phys. JETP 4, 891 (1957).
[94] Since the two components of the QSL bound are in dual

phase spaces with opposite s, we may use s := (−s, s) in the
definition of V s

QSL(t ). For simplicity, we still use V s
QSL(t ) in the

main text.
[95] C. Gerry and P. Knight, Introductory Quantum Optics (Cam-

bridge University Press, Cambridge, 2004).
[96] A. B. Klimov and S. M. Chumakov, A Group-Theoretical Ap-

proach to Quantum Optics: Models of Atom-Field Interactions
(Wiley VCH, Weinheim, 2009).

[97] F. T. Hioe and J. H. Eberly, Phys. Rev. Lett. 47, 838 (1981).
[98] H. E. Haber, SciPost Phys. Lect. Notes, 21 (2021).
[99] J. E. Runeson and J. O. Richardson, J. Chem. Phys. 152,

084110 (2020).
[100] Y. Tian, Z. Wang, P. Zhang, G. Li, J. Li, and T. Zhang, Phys.

Rev. A 97, 013840 (2018).
[101] B. Chen, J. Geng, F. Zhou, L. Song, H. Shen, and N. Xu, Appl.

Phys. Lett. 114, 041102 (2019).
[102] L. G. Lutterbach and L. Davidovich, Phys. Rev. Lett. 78, 2547

(1997).
[103] T. Tufarelli, A. Ferraro, M. S. Kim, and S. Bose, Phys. Rev. A

85, 032334 (2012).
[104] Z. Xu and A. del Campo, Phys. Rev. Lett. 122, 160602 (2019).
[105] Z. Cao, Z. Xu, and A. del Campo, Phys. Rev. Res. 4, 033093

(2022).
[106] A. Vourdas, Rep. Prog. Phys. 67, 267 (2004).

022212-9

https://doi.org/10.22331/q-2022-12-22-884
https://doi.org/10.1103/PhysRevLett.130.010402
https://doi.org/10.1038/35023282
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PRXQuantum.3.010202
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevLett.118.100601
https://doi.org/10.1103/PhysRevLett.118.100602
https://doi.org/10.1103/PhysRevA.97.032115
https://doi.org/10.1038/s41567-020-0981-y
https://doi.org/10.1103/PhysRevLett.125.120604
https://doi.org/10.1103/PhysRevLett.125.040601
https://doi.org/10.1103/PhysRevLett.126.010601
https://doi.org/10.1103/PhysRevLett.127.190602
https://doi.org/10.1103/PhysRevLett.114.233602
https://doi.org/10.1126/sciadv.abj9119
https://doi.org/10.1103/PhysRevLett.126.180603
https://doi.org/10.1103/PhysRevX.11.011035
https://doi.org/10.1103/PhysRevLett.128.050603
https://doi.org/10.1088/1367-2630/aa83dc
https://doi.org/10.1103/PhysRevLett.120.070401
https://doi.org/10.1103/PhysRevLett.120.070402
https://doi.org/10.22331/q-2021-06-24-482
https://doi.org/10.1103/PRXQuantum.2.040349
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.11429/ppmsj1919.22.4_264
https://doi.org/10.1103/PhysRev.177.1857
https://doi.org/10.1103/PhysRev.177.1882
https://doi.org/10.1002/qute.202100016
https://doi.org/10.1016/0003-4916(87)90176-X
https://doi.org/10.1103/PhysRevA.63.012105
https://doi.org/10.1103/PhysRevLett.116.040501
https://doi.org/10.1103/PhysRevLett.74.4101
https://doi.org/10.1103/PhysRevA.71.042302
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1038/nature13460
https://doi.org/10.1103/PhysRevX.5.011022
https://doi.org/10.1103/PhysRevResearch.4.043136
https://doi.org/10.1103/PhysRevA.24.2889
https://doi.org/10.1088/0305-4470/31/1/002
https://doi.org/10.1103/PhysRevA.59.971
https://doi.org/10.1103/PhysRevA.69.052112
https://doi.org/10.1088/1751-8113/45/1/015302
https://doi.org/10.1103/PhysRevLett.117.180401
https://doi.org/10.1103/PhysRevA.99.012115
https://doi.org/10.1103/PhysRevLett.127.250403
https://doi.org/10.1103/PhysRevLett.47.838
https://doi.org/10.21468/SciPostPhysLectNotes.21
https://doi.org/10.1063/1.5143412
https://doi.org/10.1103/PhysRevA.97.013840
https://doi.org/10.1063/1.5082878
https://doi.org/10.1103/PhysRevLett.78.2547
https://doi.org/10.1103/PhysRevA.85.032334
https://doi.org/10.1103/PhysRevLett.122.160602
https://doi.org/10.1103/PhysRevResearch.4.033093
https://doi.org/10.1088/0034-4885/67/3/R03

