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Quantifying the influence of the initial state on the dynamics of an open quantum system
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A small system in contact with a macroscopic environment usually approaches an asymptotic state, determined
only by some macroscopic properties of the environment, such as the temperature or the chemical potential. In
the long-time limit, the state of the small system is thus expected to be independent of its initial state. In some
situations, however, the asymptotic state of the system is influenced by its initial state, and some information
about the initial state is kept for all times. Motivated by this finding, we propose a measure to quantify the
influence of the initial state of an open system on its dynamics. Using this measure we derive conditions
under which the asymptotic state exists and is unique and discuss how this can be used to characterize the
asymptotic behavior of an open system. We demonstrate our concepts for the dynamics of the spin-boson model,
identify three qualitatively different long-time behaviors, and discuss how they can be distinguished based on
the proposed measure.
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I. INTRODUCTION

If a small system is put into contact with a macroscopic
environment, the system comes to an equilibrium. This phe-
nomenon, usually called thermalization, has been known for
centuries. However, its emergence from the microscopic dy-
namics, described by Schrödinger’s equation, is still not fully
understood. To make this problem more accessible, thermal-
ization is decomposed into different aspects, which can be
discussed separately. Following this approach [1,2], a system
interacting with some environment is said to equilibrate if its
state evolves towards some particular state, called the equilib-
rium or asymptotic state, and remains close to it for almost all
times. The system thermalizes if the asymptotic state fulfills
the following three properties. First, the asymptotic state is
influenced by the initial state of the environment only via
some macroscopic properties, like the total energy. Second,
it is independent of the initial state of the small system. Third,
it is close to a Gibbs or thermal state.

Recently it was shown by Linden and co-workers [1] that
the equilibration of small subsystems is a general property of
quantum many-body systems. Assuming that the time evo-
lution of the joint system, i.e., system and environment, is
unitary, they showed that any small subsystem approaches
an asymptotic state and remains close to it for almost all
times, provided that the total Hamiltonian has nondegenerate
energy-level spacing [1]. They also showed that the asymp-
totic state does not depend on the precise initial state of the
environment and analyzed in which situations the asymptotic
state is independent of the initial state of the small system.

The discussion in Ref. [1] demonstrates that subsystem
equilibration can, in fact, be derived from the Schrödinger
equation if one assumes certain spectral properties of the

underlying Hamiltonian. On the other hand, it is known that
there are systems in contact with an environment which do
not equilibrate or thermalize [3–7]. Subsystems of many-body
localized systems also fail to thermalize locally due to the
absence of transport in these systems [8–10].

For finite-dimensional systems the spectrum of the total
Hamiltonian can be used to investigate subsystem equilibra-
tion. There are, however, some limitations to this approach.
First, the spectrum can only be calculated for relatively
small systems. Second, even if it was possible to calcu-
late the spectrum for arbitrarily large systems, this approach
cannot be used to investigate subsystem equilibration for
infinite-dimensional systems, which occur, for example, in
the description of condensed-phase environments, as the
spectrum of such systems is typically continuous. Third,
nondegenerate energy-level spacing of the Hamiltonian only
guarantees two aspects of thermalization: subsystem state
equilibration and bath state independence.

The third aspect of thermalization, the dependence of the
equilibrium state on the initial state of the subsystem, has
been investigated in [11], employing the time average of the
quantum dynamical map which encodes the time evolution of
a subsystem in contact with some environment. The analysis
of [11] focuses on the role of system-environment correlations
and changes in the environmental states in the thermalization
of open quantum systems. Here, we study the full time depen-
dence of the quantum dynamical map. This not only allows us
to discuss the influence of the initial state on the equilibrium
state, but also to derive an upper bound for the impact of the
initial state on expectation values at all times. Compared to the
analysis based on spectral properties of the total Hamiltonian,
an analysis of the dynamical map is much more feasible, as its
dimension is determined by the subsystem.
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A simple example for a dynamical map is provided by a
dynamical semigroup with a time-independent generator in
Lindblad form [12,13]. For this special case some properties
of the Lindblad generator which guarantee a unique asymp-
totic state are known. These include certain properties of the
Kossakowski matrix [14] or the algebra of the Lindblad gener-
ators [15–18]. On the other hand, it is known that even for the
simple situation of a time-independent generator in Lindblad
form, the asymptotic state can exhibit a dependence on the
initial state of the open system if the generator possesses
symmetries [19–23].

In general, the dynamics of an open system are not
described by a dynamical semigroup with a generator in
Lindblad form. In such situations, the classification of the
asymptotic behavior of the open system cannot be based on
properties of the generator. In this work, without assuming a
particular form of the dynamical map, we propose a measure
to quantify the influence of the initial state of an open system
on its dynamics and specifically on the long-time behavior
of the open system. Based on this measure, it is possible to
classify the long-time behavior of an open system in a rigorous
way without referring to the time evolution of a particular
initial state.

The paper is organized as follows: In Sec. II we briefly
review some basic concepts of the theory of open quantum
systems, introduce the dynamical map, and discuss how it
can be used to quantify the influence of the initial state on
the dynamics of an open system. To illustrate our theoretical
concepts we demonstrate them for a two-level system coupled
to a harmonic environment, also known as the spin-boson
model. We introduce the model as well as the method we use
to simulate the dynamics, the multilayer multiconfiguration
time-dependent Hartree approach (ML-MCTDH), in Sec. III.
In Sec. IV we apply our measure to the spin-boson model
and discuss how different long-time behaviors can be distin-
guished.

II. THEORY

An open quantum system S can be considered as a subsys-
tem of a larger system composed of S and another subsystem
E , its environment [24–26]. The Hilbert space of the joint
system S + E is given by

HSE = HS ⊗ HE , (1)

where HS and HE denote the Hilbert spaces of S and E , re-
spectively. Physical states of the joint system are represented
by linear, self-adjoint, positive semidefinite operators of unit
trace on HSE , also called density matrices. We denote the
set of all physical states over a Hilbert space H by S (H).
The state of the open system S is obtained by tracing out
the environmental degrees of freedom of ρSE ∈ S (HSE ), i.e.,
ρS = trE {ρSE }, where trE {·} denotes the partial trace over
the environment. Throughout this paper we consider finite-
dimensional open systems S, and thus the state of the open
system can be represented as a finite, Hermitian, positive
semidefinite matrix with trace 1.

We suppose that the joint system is closed and described
by a time-independent Hamiltonian of the form

H = HS + HE + HI , (2)

where HS (HE ) describes the Hamiltonian of the system
(environment), respectively, and HI describes the interaction
between the system and the environment.

Since the joint system is closed, its time evolution is de-
scribed by a unitary time-evolution operator U (t ) = e−iHt/h̄.
In the following we set h̄ = 1. Under the assumption of a
factorized initial state, i.e., ρSE (0) = ρS (0) ⊗ ρE (0), the state
of the open system ρS (t ) at time t is given by

ρS (t ) = trE {e−iHtρS (0) ⊗ ρE (0)eiHt }
= �tρS (0). (3)

For a fixed initial state of the environment ρE (0), Eq. (3)
defines a linear map �t on the set S (HS ) as

�t : S (HS ) → S (HS )

ρS (0) �→ ρS (t ). (4)

The map �t , called the dynamical map, is a superoperator
mapping any initial state of the open system to the correspond-
ing state at time t . Thus it encodes the complete information
on the time evolution of the open system. Using Eq. (3), one
can show that the dynamical map preserves the Hermiticity
and the trace of operators and that it is a positive map, i.e.,
�t maps positive operators to positive operators. Hence, �t

maps physical states to physical states, implying that S (HS )
is closed under the action of �t . Note that the dynamical map
is not only positive but also completely positive [24–26].

To discuss the long-time behavior of open quantum sys-
tems, we introduce the notion of an asymptotic state ρS,∞. For
a given initial state ρS (0), the corresponding asymptotic state
is defined as

ρS,∞ := lim
t→∞ �tρS (0), (5)

provided the limit exists. In general, the asymptotic state
can depend on the initial state. The set of all asymptotic
states is given by the image of all possible initial states of
the open system under the dynamical map. Formally, it is
defined as Im�∞ := limt→∞ �t (S (HS )). A state ρS is said
to be invariant if it is left unchanged by the dynamical map,
i.e., ρS = �tρS holds for all times t . Note that an asymptotic
state need not be an invariant state, i.e., �tρS,∞ �= ρS,∞. The
dynamical map �t is called relaxing if there exists a unique
state ρ̃∞ ∈ S (HS ) such that

ρ̃∞ = lim
t→∞ �tρS (0) (6)

holds for all possible initial states ρS (0) ∈ S (HS ) [14,15]. In
such a situation, the set of asymptotic states Im�∞ consists of
a single state, i.e., is zero dimensional. If the asymptotic state
of the open system depends on its initial state, the set Im�∞
contains more than one state. Using the dynamical map, we
later show for the spin-boson model how the set Im�∞ can be
classified in such situations. We note that there are situations
in which ρS (t ) does not become stationary as t → ∞ and the
limit in Eq. (5) does not exist. This happens, for example, if
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decoherence-free subspaces in the Hilbert space of the open
system exist [5].

To investigate the asymptotic behavior of the open system,
we consider the dynamical map �t , defined by Eqs. (3) and
(4), which encodes the full information about the dynamics of
the open system. Calculating the dynamical map is usually not
possible since it involves the time evolution of the joint sys-
tem. It is, however, possible to reconstruct the dynamical map
from the dynamics of the open system alone in the following
way. Let ρS,kl be the matrix representation of the reduced
density matrix, i.e., ρS,kl = 〈k|ρS|l〉, where |l〉 is some fixed
basis in the Hilbert space of the open system. The action
of the dynamical map on the reduced density matrix can be
written as

ρS,i j (t ) =
∑

kl

�t ;i j,klρS,kl (0), (7)

where �t ;i j,kl = tr{(|i〉 〈 j|)†�t |k〉 〈l| }. In this representation
the dynamical map is a rank-4 tensor with N4 complex el-
ements. The time evolution of N2 different initial states can
be used to invert Eq. (7), thus allowing reconstruction of the
dynamical map from the dynamics of the open system alone.
This approach was used by Kidon et al., for example, to obtain
the exact memory kernel for the generalized nonequilibrium
Anderson-Holstein model [27,28]. To obtain the time evo-
lution of the open system, any suitable impurity solver can
be used [29–32]. Experimentally, the time-dependent state of
the open system can be determined, for example, by standard
quantum-process tomography [33–35]. In this work we use
Eq. (7) to obtain the dynamical map, which defines the dy-
namical map as a map acting on a matrix representation of the
reduced state of the open system.

To analyze the influence of the initial state on its dynamics
it is more convenient to use the representation of the state of
the open system in terms of the (N2 − 1) dimensional Bloch
vector [36,37] or coherence vector [24,38]. Within this rep-
resentation the state ρS is expanded in terms of the (N2 − 1)
Hermitian and traceless generators of SU(N ) as

ρS = 1

N
1 + 1

2

N2−1∑
n=1

anTn, (8)

where 1 is the identity matrix, the matrices {Tn} are the (N2 −
1) generators of SU(N ), and {an} constitutes the (N2 − 1)
dimensional Bloch vector, i.e., an = tr{ρTn}. For a definition
of the matrices Tn, see, for example, Refs. [24,39]. Thus every
state ρS is represented by a unique element of RN2−1. This
representation guarantees hermiticity and unity of the trace
but not positivity. Thus not all elements of RN2−1 represent
physical states. The set of physical states is only a subset of
RN2−1, denoted by B(RN2−1), which represents S (HS ) and is
sometimes called the Bloch-vector space [39,40]. For N = 2,
B(RN2−1) is the well-known Bloch ball. For N � 3 only some
general properties of B(RN2−1) were proven [39–42]. For our
discussion, however, it is sufficient to know that B(RN2−1) is
mapped into itself under the dynamical map, which is guaran-
teed by the definition of the dynamical map.

To obtain the action of the dynamical map on the Bloch
vector, one can employ the fact that the dynamical map is

completely positive and trace preserving, and thus can be
represented in terms of a set of Kraus operators Bn as [24,43]

ρS (t ) =
N2∑

n=1

Bn(t )ρS (0)B†
n(t ), (9)

with
∑N2

n=1 B†
n(t )Bn(t ) = 1. Using this representation and the

expansion of the reduced density matrix in terms of the gen-
eralized Bloch vector given by Eq. (8), the action of the
dynamical map on the generalized Bloch vector, denoted by
φt , can be written as [24,44]

φt : B
(
RN2−1

) → B
(
RN2−1

)
a(0) �→ a(t ) = M(t )a(0) + b(t ). (10)

Here b(t ) ∈ RN2−1 and M(t ) ∈ R(N2−1)×(N2−1). The map φt

defines an affine transformation on B(RN2−1), relating the
initial Bloch vector a(0) to the corresponding Bloch vector
a(t ) at time t .

Equation (10) is the starting point of our analysis. First note
that if the time evolution of the open system is unitary, e.g.,
for vanishing system-environment coupling, one can show
that b(t ) = 0 and MT (t )M(t ) = 1, i.e., M(t ) is an orthogonal
matrix. The first equation can be shown by considering the
action of the dynamical map on the vector 0 = (0 0...)T . From
Eq. (8) it follows that 1 is conserved under a unitary trans-
formation. Thus φt 0 = 0, which directly implies b(t ) = 0 for
all times. The orthogonality of M(t ) follows from b(t ) = 0
and the fact that the Euclidean norm of the Bloch vector is
preserved under unitary time evolution [24]. This means that
for a unitary time evolution, ||a(t )||2 = ||a(0)||2 holds for all
times, where the Euclidean norm ||x||2 of a vector x is defined
as ||x||2 = √∑

n x2
n .

For a general φt , however, M(t ) need not to be orthogonal
and thus is not necessarily diagonalizable. To analyze the
asymptotic state of the open system, we thus make use of the
singular value decomposition given by

M(t ) = V(t )S(t )WT (t ). (11)

Since M(t ) has real entries, V(t ) and W(t ) can be chosen to
be real, orthogonal matrices and S(t ) is a positive-semidefinite
diagonal matrix.

We start our analysis of the influence of the initial state
by considering its influence on the expectation value of an
observable O. To quantify this influence, we consider two
different initial states of the open system, ρ1

S (0) and ρ2
S (0),

and define the quantity

δ1,2(t ; O) = ∣∣tr{O
[
ρ1

S (t ) − ρ2
S (t )

]}∣∣. (12)

δ1,2(t ; O) describes the difference of the expectation value of
O at time t between the two different initial states of the open
system. One can show that this quantity is bounded by

δ1,2(t ; O) � N3/2

√
2

|omax| Smax(t ) ||a1(0) − a2(0)||2. (13)

Here omax is the eigenvalue of O with the largest absolute
value, Smax(t ) is the largest singular value of M(t ) at time t ,
and ||x||2 is the Euclidean norm of the vector x. The proof
of Eq. (13) is provided in Appendix A. We note that the
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bound for δ1,2(t ; O) is very general. We will demonstrate later
that for a specific observable one can find tighter bounds by
employing properties of the observable of interest and their
relation to the generators of SU(N ).

Since Eq. (13) holds for any observable O, we conclude
that the largest singular value of M(t ) provides a general
bound for the influence of the initial state on the state at
time t . Consequently, the influence of the initial state on the
asymptotic state can be quantified by

Smax,∞ := lim
t→∞ Smax(t ), (14)

provided that the limit exists. Smax,∞ thus defines a measure
for the influence of the initial state on the asymptotic state.
We note that, in principle, the information about the influence
of the initial state on the asymptotic state is already contained
in the time evolution of the N2 linearly independent initial
states. It is, however, not obvious how the information about
the asymptotic behavior can be extracted from these trajec-
tories. The proposed measure, defined by Eq. (14), gives a
rigorous method for how the information about the asymptotic
behavior can be extracted from the time evolution and the
corresponding dynamical map.

In the following we discuss how this measure can be used
to distinguish qualitatively different asymptotic behaviors of
the open system in a rigorous way, without referring to the
time evolution of particular initial states. We begin with the
existence and uniqueness of an asymptotic state of the open
system. From Eq. (10) it directly follows that if the two limits

b∞ = lim
t→∞ b(t ), (15)

M∞ = lim
t→∞ M(t ) (16)

exist, every initial state has an asymptotic state, which is
given by

a∞ = b∞ + M∞a(0). (17)

In general, the initial state a(0) has an influence on the asymp-
totic state. We see from Eq. (17) that the asymptotic state
becomes independent of the initial state if all possible initial
states are mapped to the same vector b∞ ∈ RN2−1. This is
exactly the case if the image of M∞ is zero dimensional, i.e., if
M∞ = 0. This follows from the fact that for any dimension of
the open system the Bloch-vector space B(RN2−1) includes the

(N2 − 1)-dimensional sphere with radius rs =
√

2
N (N−1) [45].

The image of this sphere under φt is zero dimensional if and
only if M∞ = 0. In this case, Eq. (17) becomes independent of
the initial state and the unique asymptotic state is given by b∞.
Note that in this case δ1,2(t ; O) → 0 as t → ∞ independently
of O, implying that the expectation value of any observable
becomes independent of the initial state a(0).

We conclude that the asymptotic state exists for all initial
states if the limits (15) and (16) exist. The dynamical map is
relaxing, i.e., the asymptotic state is unique, if and only if all
singular values of M(t ) decay to zero as t → ∞. If the two
limits (15) and (16) exist but M∞ �= 0, then the asymptotic
state is not unique. If, on the other hand, one of the quantities
b(t ) or M(t ) remain time dependent at all times, there is at
least one initial state for which the asymptotic state does not

exist. Note that it is possible that the asymptotic state exists
for some initial states, whereas for others the state of the
open system remains time dependent at all times. In such a
situation, some singular values of M(t ) become stationary and
others remain time dependent.

III. MODEL AND METHOD

To illustrate the theoretical concepts obtained in Sec. II
and to demonstrate how the classification of the asymptotic
behavior of an open quantum system is done in practice,
we consider the spin-boson model as an example. The spin-
boson model involves a spin, or more generally, a two-level
system, interacting linearly with a bath of harmonic oscilla-
tors [46,47]. Despite its simple form, the spin-boson model
exhibits several interesting effects, such as a transition from
coherent dynamics to incoherent decay and a quantum phase
transition [3,4,48], and has been used to describe a variety of
different processes and phenomena, including electron trans-
fer [49] and macroscopic quantum coherence [50]. As we
will demonstrate later, the spin-boson model also exhibits
three qualitatively different long-time behaviors that make this
model a well-suited prototype to demonstrate and discuss the
above-introduced concepts.

For the purpose of this paper it is sufficient to consider
the unbiased spin-boson model. Employing mass-weighted
coordinates, the Hamiltonian reads

H = �σx + 1

2

N∑
n=1

(
p2

n + ω2
nq2

n

) + σz

N∑
n=1

cnqn, (18)

where σx and σz are the Pauli matrices, � denotes the tunnel-
ing between the two spin states, and ωn, qn, and pn represent
the frequency, position, and momentum of the bath oscillators,
respectively; cn denotes the coupling strength of the spin to
the nth harmonic oscillator of the bath. The properties of the
bath which influence the spin are summarized by the spectral
density [46,47]

J (ω) = π

2

N∑
n=1

c2
n

ωn
δ(ω − ωn). (19)

To realize different long-time behaviors of the spin, we
consider two different functional forms of the spectral density.
The first is the well-known Ohmic spectral density defined as
[46,47]

JO(ω) = π

2
αωe−ω/ωc , (20)

where α denotes the system-bath coupling strength and ωc the
characteristic frequency of the bath. For this spectral density,
it is known that in the scaling regime ωc � � the spin relaxes
to a unique asymptotic state for α < 1, whereas the spin
localizes for α > 1 and T = 0 [3,4,46,47,51].

The second model we consider is inspired by a recent ex-
perimental realization of the spin-boson model using trapped
ions [52]. The continuum limit of the spectral density was
obtained by fitting a continuous function to the parameters
of an experimental realization of the spin-boson model with
five environmental modes. The distinct feature of this model
is that the spectral density is gapped, i.e., the spectral density
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FIG. 1. Spectral densities considered in the model for α = 1. The
blue dashed line (left axes) shows the Ohmic spectral density for
ωc = �. The red solid line (right axes) shows the gapped spectral
density. The green markers represent the experimental parameters
[52]. Note that the gapped spectral density is zero below ωmin and
above ωmax.

is zero below some ωmin > 0. This results in a spectral density
of the form

JG(ω) = π

2
αa(ω − b)e−( ω−b

c )3
χ[ωmin,ωmax], (21)

where α denotes the coupling strength, χ[x,y] denotes the char-
acteristic function of the interval [x, y], and a, b, and c are
fitting parameters. The spectral density JG(ω) has a maximum
at the transition frequency of the spin, i.e., at ω = 2�. A
comparison between the two spectral densities showing the
qualitative differences is given in Fig. 1. A more detailed
description of the origin of the model and some details about
the fit are provided in Appendix B.

To simulate the dynamics of the spin-boson model, we
employ the multilayer multi-configuration time-dependent
Hartree (ML-MCTDH) approach [53–56], which allows us
to propagate the wave function of the joint system in a
numerically exact way. The ML-MCTDH approach repre-
sents a rigorous variational basis-set method, which uses a
multiconfiguration expansion of the wave function |�(t )〉,
employing time-dependent basis functions and a hierarchical
multilayer representation. Specifically, a representation of the
wave function |�(t )〉 which corresponds to a hierarchical
tensor decomposition in the form of a tensor tree network is
employed. Within this approach, the wave function is recur-
sively expanded as a superposition of Hartree products, the
so-called “single-particle functions” (SPFs). The hierarchy
is terminated by expanding the SPFs in the deepest layer
in terms of time-independent basis functions/configurations,
each of which may contain several physical degrees of free-
dom. For more technical details we refer the reader to earlier
work on the ML-MCTDH approach and its applications to
the spin-boson model [48,53–57]. The ML-MCTDH equa-
tions of motion for the expansion coefficients and the SPFs are
obtained by applying the Dirac-Frenkel variational principle
[30,53], thus ensuring convergence to the solution of the time-
dependent Schrödinger equation upon increasing the number
of variational parameters included in the calculation.

The ML-MCTDH approach allows for the simulation of
large but finite quantum systems. Thus, we represent the con-
tinuous bath by a finite number of modes. In this work we
use an equidistant distribution, but other choices are possi-
ble [57,58]. To ensure convergence to the continuum limit
over the timescale considered, we employ several hundreds of
modes. For a detailed discussion of the numerical treatment of
a continuous bath, see Ref. [57].

Here, we employ an implementation of the ML-MCTDH
theory with up to four dynamical layers plus one static layer.
To ensure that convergence is achieved, for each set of phys-
ical parameters a series of careful convergence tests was
performed with respect to all the variational parameters, such
as the number of bath modes, primitive basis functions, and
SPFs in each layer.

IV. RESULTS AND DISCUSSION

In this section we use the theoretical concepts introduced
above to analyze the initial state dependence for the example
of the spin-boson model. In the limit t → ∞, an open system
can exhibit three qualitatively different asymptotic behaviors.
First, the open system can relax to a unique asymptotic state.
Second, the open system can relax to an asymptotic state
which depends on the initial state. Last, the open system
may not relax to an asymptotic state and ρS (t ) remains time
dependent at all times. As we will demonstrate below, all these
cases can be distinguished by properties of the matrix M(t )
introduced in Sec. II.

To obtain M(t ) and b(t ) numerically we proceed as fol-
lows. Employing the ML-MCTDH method, we simulate the
dynamics for four linearly independent initial states of the re-
duced density matrix of the spin. From this we calculate the
representation of the dynamical map given by Eq. (7). Using
Eq. (10), the two quantities M(t ) and b(t ) can be calculated
numerically.

We focus on the zero temperature limit, where it is known
that the spin localizes in its initial state for an Ohmic spectral
density in the strong-coupling regime [3,4,48]. Consequently,
the harmonic oscillators of the bath are initially all in their
ground state. The spin is initially in a pure state of the form

|ψ (0)〉spin = cos
θ

2
|↑〉 + eiϕ sin

θ

2
|↓〉 , (22)

where θ and ϕ parametrize the direction of the spin at time
t = 0.

A. Ohmic spectral density

We begin our discussion with the Ohmic spectral den-
sity. It is known that in the scaling limit (ωc/� → ∞),
the dynamics of the spin can be grouped into three qual-
itatively different regimes, comprising coherent decay for
weak system-environment coupling (α < 0.5), incoherent de-
cay (intermediate coupling, 0.5 < α < 1), and localization
(strong coupling α > 1) [46,47,57]. Thus we expect that for
α < 1 the spin relaxes to a unique asymptotic state, whereas
for α > 1 the asymptotic state depends on the initial state. It
is also known that for finite ωc/� both critical couplings shift
to larger values [48,57,59,60].

022211-5



S. WENDEROTH, H.-P. BREUER, AND M. THOSS PHYSICAL REVIEW A 107, 022211 (2023)

FIG. 2. Singular values Sj (t ) of M(t ) as a function of time for the
Ohmic spectral density for ωc = 20� and α = 0.1. The inset shows
〈σz〉 (t ) for different initial states of the spin parametrized by θ . For
all initial states ϕ = 0. The black line in the inset shows Smax(t ).

In Fig. 2 the singular values of M(t ) are shown for a weak
coupling α and large ωc. It directly follows from Eq. (10)
that M(0) = 1, and thus all three singular values of M(0)
are initially 1. Over time they decay to zero, reflecting the
vanishing influence of the initial state on the dynamics. The
first two singular values exhibit periodic modulations. We find
that S1(t ) > S2(t ) for all times, i.e., the two singular values
never cross. The third singular value decays monotonically.

In the weak-coupling and large-ωc limit, an approximate
analytic solution can be used to connect the behavior of the
singular values with the dynamics of the spin [46,47,59]. The
equations for the Bloch vector a(t ), as well as the derivation
of M(t ) and b(t ) for the weak-coupling limit, are provided
in Appendix C. The analytic solution reveals that the periodi-
cally modulated singular values S1(t ) and S2(t ) are related to
the coherent decay of 〈σy〉 (t ) and 〈σz〉 (t ). The two singular
values are exponentially damped, with the same damping as
〈σy〉 (t ) and 〈σz〉 (t ). The frequency of the periodic modula-
tions of S1(t ) and S2(t ) is given by 2�̃, where �̃ denotes
the renormalized frequency of the spin. The monotonically
decaying singular value S3(t ) describes the monotonic decay
of 〈σx〉 (t ). Both the singular value S3(t ) and 〈σx〉 (t ) decay
exponentially with the same decay rate.

In the inset of Fig. 2, the vanishing influence of the ini-
tial state on the expectation value of σz is exemplified. As
predicted by the vanishing of the singular values, 〈σz〉 (t )
relaxes to an equilibrium value as t → ∞ independent of its
initial value. The black line is the largest singular value which
provides a bound for the influence of the initial state at all
times. Note that according to Eq. (13), the quantity δ1,2(t ; σz )
is bounded by 4Smax(t ), while we find δ1,2(t ; σz ) < 2Smax(t ).
This is related to the fact that in the derivation of Eq. (13)
no property of the observable O was used. For O = σz one
can employ that the expectation value of σx and σy vanishes in
both eigenstates of σz. Using this, one can show that δ1,2(t ; σz )
is bounded by 2Smax(t ).

For moderate couplings, 0.5 < α < 1, the spin exhibits
incoherent decay. In this regime the decay slows down as
the coupling strength is increased until the spin eventually

FIG. 3. The first and second singular value of M(t ) as a function
of time for different values of α and ωc = 20�.

localizes at α ≈ 1. In Fig. 3 the first and second singular
values of M(t ) are shown for ωc = 20� for different values
of the coupling strength α. The third singular value shows
a very similar behavior as the second one and thus is not
shown. Similar to the weak-coupling regime, we find that
all singular values of M(0) are initially 1. For 0.5 < α < 1,
the three singular values exhibit a monotonic decay to zero.
They show, however, an opposite trend upon increasing the
coupling strength. S2(t ) and S3(t ) decay faster for increasing
coupling strength, while the decay of S1(t ) slows down and
eventually approaches a nonzero value as t → ∞ for α � 1.
This is consistent with the transition from incoherent decay to
localization as the coupling strength approaches α ≈ 1. One
way to understand this localization was introduced by Silbey
and Harris by means of a renormalized system frequency �̃

[61,62]. For the Ohmic spectral density they used a variational
Polaron transformation to calculate �̃, showing that in the
limit �/ωc → 0 the renormalized system frequency vanishes
above a critical coupling αc, i.e., �̃ = 0 for α > αc. Due to
the vanishing of the effective coupling, the spin is frozen in its
initial state, explaining the dependence of the asymptotic state
on the initial state.

The dependence of the asymptotic state on the initial state
for strong coupling (α = 1.2) is exemplified in Fig. 4 for
the expectation value of σz. For all initial states of the spin,
the expectation value becomes stationary. However, the sta-
tionary value of 〈σz〉 (t ) depends on the initial state of the
spin. As discussed above, for α � 1 one singular value of
M(t ) approaches a nonzero value as t → ∞, implying that
the image of M∞ is a one-dimensional subset of the Bloch
sphere. First, this means that if the initial state of the spin
is not an element of this one-dimensional subset, the state of
the spin decays towards this subset, i.e., exhibits dynamics,
even in the localized phase. Second, some initial states are
mapped to the same asymptotic state. In order to classify those
initial states which are mapped to the same asymptotic state,
we consider the singular value decomposition of M∞, in the
following denoted by V∞S∞WT

∞. Assuming that only one
singular value is nonvanishing, the asymptotic state of the spin
can be written as

a∞ = s∞,1 〈w∞,1, a(0)〉 v∞,1 + b∞,1, (23)
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FIG. 4. 〈σz〉 as a function of time for different initial states
parametrized by θ . In this plot ωc = 20�, α = 1.2 and ϕ = 0. The
results show that the asymptotic state of the spin depends on the
initial state of the spin.

where v∞,1 (w∞,1) are the vectors formed by the first column
of the matrix V∞ (W∞), respectively, and 〈x, y〉 = ∑

n xnyn is
the standard scalar product between real vectors x and y. All
initial states a(0) for which the scalar product 〈w∞,1, a(0)〉 is
equal are mapped to the same asymptotic state. This means
that all initial states which are in a plane orthogonal to w∞,1

are mapped to the same asymptotic state. For the parameters
considered in Fig. 4, i.e., ωc = 20� and α = 1.2, we find
wT

∞,1 ≈ (0, 0.13, 0.99).

B. Gapped spectral density

To demonstrate the behavior of M(t ) for a case where the
open system does not approach an asymptotic state, we con-
sider the gapped spectral density defined in Eq. (21). Figure 5
shows the three singular values of M(t ) for weak coupling,
α = 0.1. The qualitative behavior is very similar to the Ohmic
spectral density, i.e., all singular values show an overall decay
to zero. S1(t ) and S2(t ) exhibit a periodically modulated de-

FIG. 5. Singular values Sj of M(t ) as a function of time for the
gapped spectral density for α = 0.1. The inset shows 〈σz〉 (t ) for
different initial states of the spin, where ϕ = 0. The black line in
the inset shows the largest singular value of M(t ).

FIG. 6. Singular values Sj of M(t ) as a function of time for α =
1.2. The inset shows the expectation value of σz for different initial
states of the open system, where ϕ = 0. The black line in the inset
shows the largest singular value of M(t ).

cay, where the frequency of the periodic modulations is twice
the frequency of the spin. S3(t ) decays in a nonoscillatory way.
The vanishing influence of the initial state is exemplified in the
inset of Fig. 5 for the expectation value of σz. The expectation
value of σz decays to zero for all values of θ . As indicated
by the black line, the quantity δ1,2(t ; σz ) is again bounded by
2Smax(t ).

In the strong-coupling regime, however, we find that the
spin does not approach an asymptotic state. This is illustrated
in Fig. 6, which shows the three singular values of M(t )
for α = 1.2. All three singular values exhibit a fast initial
decay. Unlike in the regimes discussed so far, the singular
values cross for t�/π � 5. After the initial decay, the smallest
singular value decays further and remains close to zero, while
the other two singular values of M(t ) exhibit undamped os-
cillations, which indicates the nonexistence of an asymptotic
state, i.e., the state of the open system remains time dependent
at all times. For these longer times, we find that S1(t ) > S2(t )
for all times, i.e., the two singular values do not cross. Similar
to the above-discussed cases, the period of the oscillations
of the singular values have twice the frequency of the spin.
In the inset of Fig. 6, the expectation value of σz is shown,
demonstrating that the expectation value does not approach
a stationary state and that the initial state has an influence on
〈σz〉 (t ) at all times. The influence of the initial state on 〈σz〉 (t )
is again bounded by 2Smax(t ) at all times.

This behavior can be understood in a similar way as the
localization in the Ohmic case. Using the same variational
polaron transformation as Silbey and Harris [61,62], one can
show numerically that the renormalized system frequency �̃

for the gapped spectral density is a monotonically decreas-
ing function of the coupling strength. For sufficiently strong
coupling α the renormalized system frequency is below the
smallest bath frequency. In this case, the bath cannot act
as a true environment and fails to equilibrate the spin, i.e.,
there exists a decoherence-free subspace. For α = 1.2 we find
that �̃ is close to the smallest bath frequency, resulting in a
partial decoherence of the spin on short timescales and persist-
ing oscillations on longer timescales. The initial state of the
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system has a nonzero overlap with states in the decoherence-
free subspace, explaining the persisting oscillations on longer
timescales.

V. CONCLUSION

In this paper we have proposed a measure to quantify the
influence of the initial state of an open system on its dynam-
ics based on the dynamical map, a quantity which describes
the time evolution of an open system in the presence of an
environment. Using this measure it is possible to analyze the
asymptotic behavior of a quantum system in contact with an
environment and to quantify the information stored in local
observables. We have demonstrated our theoretical concepts
for the well-known spin-boson model and identified three
qualitatively different long-time behaviors, which can be dis-
tinguished by considering the singular values of the dynamical
map. We note that it is possible to reconstruct the measure
from local expectation values alone, making it experimentally
accessible. It might be of interest to apply our measure to
analyze numerically observed bistabilities in more complex
systems like the one discussed in Ref. [7]. The investigation of
local memory in many-body quantum systems, e.g., systems
exhibiting many-body localization, based on the dependence
of the initial state of a subsystem is another interesting subject
of future work.
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APPENDIX A: PROOF OF THE BOUND FOR δ1,2(t; O)

In the following we proof the bound for δ1,2(t ; O),
defined as

δ1,2(t ; O) = |tr{O(ρ1(t ) − ρ2(t ))}|, (A1)

where O is some observable. The difference between the two
density matrices ρ1(t ) and ρ2(t ) can be written as

ρ1(t ) − ρ2(t ) = 1

2

N2−1∑
n=1

(
a1

n(t ) − a2
n(t )

)
Tn. (A2)

We evaluate the trace in the eigenbasis of O, yielding

δ1,2(t ; O) = 1

2

∣∣∣∣∣∣
N2−1∑
n=1

N∑
a=1

(
a1

n(t ) − a2
n(t )

)
oa 〈oa|Tn|oa〉

∣∣∣∣∣∣. (A3)

Using the triangular inequality and rearranging the sums
yields

δ1,2(t ; O) � 1

2

N2−1∑
n=1

∣∣(a1
n(t ) − a2

n(t )
)∣∣ N∑

a=1

|oa| | 〈oa|Tn|oa〉 |.

(A4)

Let omax be the eigenvalue of O with the largest absolute value.
The second sum is bounded by

N∑
a=1

|oa| | 〈oa|Tn|oa〉 | � |omax|
N∑

a=1

| 〈oa|Tn|oa〉 |. (A5)

Similarly, it can be shown that the expectation value of Tn in
an eigenstate of O is bounded by the eigenvalue of Tn with the
largest eigenvalue, which in this case depends on n:

|〈oa|Tn|oa〉| � tn,max. (A6)

From the definition of the generators of SU(N ) (see Ref. [39]),
it directly follows that tn,max is bounded by

√
2. Using this, one

obtains a bound for δ1,2(t ; O), reading

δ1,2(t ; O) � 1

2
|omax|

√
2N

N2−1∑
n=1

∣∣a1
n(t ) − a2

n(t )
∣∣, (A7)

where the factor N originates from the sum over the eigenbasis
of O. The remaining sum is the L1 norm of the vector a1(t ) −
a2(t ), i.e.,

δ1,2(t ; O) � 1
2 |omax|

√
2N

∣∣∣∣a1
n(t ) − a2

n(t )
∣∣∣∣

1. (A8)

To relate the distance between the time-dependent Bloch vec-
tors to the initial distance, we first employ that the L1 norm
of a vector x is bounded by the Euclidean norm as ||x||1 �√

N ||x||2. Using the singular value decomposition of M(t )
one can write∣∣∣∣a1

n(t ) − a2
n(t )

∣∣∣∣
2 = ∣∣∣∣V(t )S(t )WT (t )

(
a1

n(0) − a2
n(0)

)∣∣∣∣
2.

(A9)

Using the fact that S is a positive semidefinite diagonal matrix,
it is easy to show that ||Sx||2 < smax||x||2, where smax is the
largest diagonal element of S. Using this, together with the
fact that the Euclidean norm is invariant under orthogonal
transformations one can write

δ1,2(t ; O) � N3/2

√
2

|omax| smax(t ) ||a1(0) − a2(0)||2, (A10)

which finishes the proof of Eq. (13).

APPENDIX B: GAPPED SPECTRAL DENSITY

The gapped spectral density originates from an experimen-
tal realization of the spin-boson model using trapped ions
[52]. Using a linear Paul trap, a spin-boson model with up
to five bosonic degrees of freedom was realized. The distinct
feature of the experiment is that the smallest frequency of
the bosonic environment is determined by the frequency of
the trap and is thus always larger than zero. We consider the
continuum limit of the experimental spectral density, which is
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derived as follows. The spectral density of the five-ion model
is given by

J5(ω) = π

4
α

5∑
n=1

ωnM2
nδ(ω − ωn), (B1)

where ωn and Mn are determined from experimental param-
eters and the geometry of the trap [52,63,64]. α denotes the
coupling strength between the spin and the environment. To
study the dynamics for different coupling strengths α, we fit
the experimental parameters for J5(ω)/α with the function

Jfit (ω) = π

4
a(ω − b)e−( ω−b

c )3
, (B2)

where a, b, and c are fitting parameters. The gapped spectral
density we consider is thus given by

JG(ω/ω1) = α
π

4
a(ω − b)e−( ω−b

c )3
, (B3)

where α denotes the coupling strength, and (a, b, c) =
(0.677, 0.541, 1.280).

APPENDIX C: WEAK-COUPLING SOLUTION

In the weak-coupling limit, a perturbative approach can be
used to analyze the connection between the dynamics of the
spin and the singular values of M(t ) analytically. The starting
point is the second-order time convolutionless (TCL2) master
equation [65–67]. Within the TCL2 approach, the equations of
motion for the three expectation values read [25]

∂t 〈σx〉 (t ) = −�xx(t ) 〈σx〉 (t ) − �x(t ), (C1)

∂t 〈σy〉 (t ) = −2� 〈σz〉 (t ) − �yz(t ) 〈σz〉 (t ) − �yy(t ) 〈σy〉 (t ),

(C2)

∂t 〈σz〉 (t ) = 2� 〈σy〉 (t ), (C3)

where the time-dependent rates �i j (t ) are determined by the
spectral density J (ω) and �, and are defined in [[25]]. To

solve Eqs. (C1), (C2), and (C3) analytically, we consider
the stationary rate approximation, i.e., we replace the time-
dependent rates with their long time limit, in the following
denoted with �i j := limt→∞ �i j (t ). The resulting equations of
motion read

∂t 〈σx〉 (t ) = −�xx 〈σx〉 (t ) − �x, (C4)

∂t 〈σy〉 (t ) = −2� 〈σz〉 (t ) − �yz 〈σz〉 (t ) − �yy 〈σy〉 (t ),

(C5)

∂t z(t ) = 2� 〈σy〉 (t ). (C6)

Equations (C4), (C5), and (C6) constitute a system of first-
order autonomous differential equations and thus can be
solved analytically. Their solution read

〈σx〉 (t ) = e−�xxt 〈σx〉 (0) − �x

�xx
(1 − e−�xxt ), (C7)

〈σy〉 (t ) = e−�yy/2t

(
cos(�̃t ) 〈σy〉 (0) − �yy

2�̃
sin(�̃t ) 〈σy〉 (0)

− 2� − �yz

�̃
sin(�̃t ) 〈σz〉 (0)

)
, (C8)

〈σz〉 (t ) = e−�yy/2t

(
2�

�̃
sin(�̃t ) 〈σy〉 (0) + cos(�̃t ) 〈σz〉 (0)

+ �yy

2�̃
sin(�̃t ) 〈σz〉 (0)

)
, (C9)

where �̃ denotes the renormalized frequency of the spin and
is given by �̃ = 1

2

√
8�(2� − �yz ) − �2

yy . From Eqs. (C7),
(C8), and (C7), the quantities b(t ) and M(t ) can be identified
as

b(t ) = (
�x
�xx

(1 − e−�xxt ) 0 0
)T

, (C10)

M(t ) =

⎛
⎜⎜⎝

e−�xxt 0 0

0 e−�yy/2t
(

cos(�̃t ) − �yy

2�̃
sin(�̃t )

) − 2�−�yz

�̃
e−�yy/2t sin(�̃t )

0 2�

�̃
e−�yy/2t sin(�̃t ) e−�yy/2t

(
cos(�̃t ) + �yy

2�̃
sin(�̃t )

)

⎞
⎟⎟⎠. (C11)

Note that in this perturbative treatment, the time evolution of 〈σy〉 (t ) and 〈σz〉 (t ) is independent of 〈σx〉 (t ), and thus M(t ) is
block diagonal. The singular values of M(t ) are given by the square root of the eigenvalues of MT (t )M(t ). Thus the singular
value which is associated to the dynamics of 〈σx〉 is given by e−�xxt . The other two singular values are obtained by diagonalizing
the 2 × 2 block associated to the dynamics of 〈σy〉 and 〈σz〉. The two singular values S±(t ) are given by

S±(t ) = e−�yy/2t

2

(
A(t ) ±

√
A2(t ) − 4 B(t )

)
, (C12)

where we defined

A(t ) =
(

�2
yy

2�̃2
+ 4�2

�̃2
− (2� − �yz )2

�̃2

)
sin2(�̃t ) + 2 cos2(�̃t ),

B(t ) = �4
yy

8�̃4
sin4(�̃t ) − 2

�2
yy

4�̃2
sin2(�̃t ) cos2(�̃t ) − 4�2

�̃2

(2� − �yz )2

�̃2
sin4(�̃t ) + cos4(�̃t ).
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Since A(t ) and B(t ) are periodic with period 2�̃, it follows that S±(t ) are described by damped oscillations, where the damping
is given by e−�yy/2t and the period of the oscillation is 2�̃. These two singular values describe the coherent decay of 〈σy〉 (t ) and
〈σz〉 (t ).
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