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Quantum mechanics describes seemingly paradoxical relations between the outcomes of measurements that
cannot be performed jointly. In Hilbert space, the outcomes of such incompatible measurements are repre-
sented by nonorthogonal states. In this paper we investigate how the relation between outcomes represented
by nonorthogonal quantum states differs from the relations suggested by a joint assignment of measurement
outcomes that do not depend on the actual measurement context. The analysis is based on a well-known scenario
where three statements about the impossibilities of certain outcomes would seem to make a specific fourth
outcome impossible as well, yet quantum theory allows the observation of that outcome with a nonvanishing
probability. We show that the Hilbert space formalism modifies the relation between the four measurement
outcomes by defining a lower bound of the fourth probability that increases as the total probability of the first
three outcomes drops to zero. Quantum theory thus not only makes the violation of noncontextual consistency
between the measurement outcomes possible, but actually requires it as a necessary consequence of the Hilbert
space inner products that describe the contextual relation between the outcomes of different measurements.
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I. INTRODUCTION

As shown by the Bell-Kochen-Specker theorem, quantum
theory is not consistent with a measurement-independent as-
signment of outcomes to a set of different measurements that
cannot be performed jointly [1,2]. This inconsistency between
noncontextual models and quantum theory is usually charac-
terized as a violation of an inequality based on the statistics of
a set of incompatible measurements [3–13]. The best known
of these is the violation of Bell’s inequalities, which is widely
regarded as convincing evidence that quantum statistics can-
not be explained by local hidden variable theories that assign
outcomes to each measurement independent of whether the
measurement is performed or not [14–18]. It is therefore suf-
ficiently clear that quantum superpositions do not represent
classical alternatives. However, it is still somewhat unclear
how the relations between different measurements are mod-
ified by the Hilbert space formalism, since each measurement
probability is determined separately and the role that quantum
coherence plays in defining the relation between different
measurement contexts is represented by abstract algebraic
relations that have no obvious analog in Boolean logic.

In the present paper we investigate the relation between
the outcomes of incompatible measurements described by the
Hilbert space formalism and show that the nonorthogonality
of the state vectors representing the measurement outcomes
necessarily results in a violation of noncontextual logic. The
present analysis is based on the demonstration of inconsisten-
cies between different measurements presented by Frauchiger
and Renner [19]. This consistency paradox seems to
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represent a fundamental structure of quantum theory since it
is mathematically equivalent to both Hardy’s paradox [20–23]
and a Bell inequality violation [24,25]. The formulation of
Frauchiger and Renner is particularly convenient because it
is based on statements that correspond to probabilities of zero
for specific measurement outcomes. In noncontextual logic,
such statements can be used to eliminate combinatoric pos-
sibilities. In the case of the Frauchiger-Renner scenario, the
joint validity of three statements appears to require the validity
of a fourth statement relating to a probability of zero for
a fourth measurement outcome. However, the Hilbert space
formalism represents these statements as orthogonality rela-
tions. The first three orthogonality relations can be satisfied
by only one state in the four-dimensional Hilbert space of the
quantum system and this state necessarily violates the fourth
statement with a nonvanishing probability of exactly 1

12 . We
therefore find that the violation of noncontextual logic is a di-
rect consequence of the nonorthogonality of the Hilbert space
vectors representing the outcomes of different measurements.
Specifically, the representation of measurement outcomes by
Hilbert space vectors replaces the combinatoric arguments of
noncontextual logic with the more precise relations between
vectors defined by their inner products. These inner prod-
ucts determine a necessary violation of noncontextual logic
that can be expressed in terms of quantitative bounds for the
probabilities corresponding to the different statements in the
consistency paradox.

In the following, we analyze the Hilbert space relation be-
tween the four statements that define the consistency paradox
and derive a sufficiently tight bound for the probability that
expresses the violation of noncontextual logic. Specifically,
we replace the probabilities of zero corresponding to precise
statements with a probability representing the errors in the
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three initial statements. Since the three statements cannot be
verified jointly, this probability is a sum of three measure-
ment probabilities represented by nonorthogonal projection
operators. Our analysis thus demonstrates the counterintuitive
nature of the Hilbert space relation between measurement
outcomes represented by nonorthogonal states. The mini-
mal probability of violating noncontextuality by obtaining
the fourth measurement result is then found by analyzing
the optimal quantum coherences between the eigenstates of
the operator representing the probability sum. The method
used to derive the bound thus illustrates the extent to which
quantum interference effects determine the relation between
the measurement probabilities obtained in different mea-
surement contexts. The analysis presented below shows that
quantum contextuality is closely related to the relation be-
tween nonorthogonal state vectors in Hilbert space, resulting
in seemingly paradoxical results because the probability of
one measurement outcome depends on the possible coher-
ences between the eigenstates representing another set of
measurement outcomes. We therefore believe that the results
presented in this paper can greatly improve our understanding
of the paradoxical relation between the statistics of incompat-
ible measurements.

The rest of the paper is organized as follows. In Sec. II we
formulate the consistency paradox in terms of three statements
that can be represented by probabilities of zero and show
that the corresponding orthogonality relations necessarily vi-
olate noncontextuality. In Sec. III we derive the quantitative
relation between the measurement probabilities that make a
violation of noncontextuality necessary. In Sec. IV we for-
mulate quantitative lower bounds for the probabilities that
describe the violation of noncontextuality. It is shown that
the probability of violating the fourth statement can only be
reduced by increasing the probability of violating one of the
three initial statements, highlighting the difference between
the relation of statements in Hilbert space and noncontextual
logic. Section V summarizes the results and concludes the
paper.

II. CONSISTENCY PARADOX

Although the violation of an inequality provides com-
pelling quantitative evidence for the validity of the Bell-
Kochen-Specker theorem, the logical structure of the underly-
ing paradox is always represented by a contradiction between
a set of precise statements. It is therefore most instructive
to consider paradoxical situations where the statements can
be identified directly with experimentally accessible mea-
surement outcomes. A contradiction can then be certified
whenever a state that always satisfies a set of initial conditions
results in a measurement outcome that seems to contradict the
statements associated with these initial conditions. A partic-
ularly clear description of such a contradiction was provided
by Frauchiger and Renner [19], who discussed the internal
consistency of quantum mechanics based on the idea that
superpositions represent alternative possibilities even when
there is no external measurement. Here we focus on the struc-
ture of the argument, which the scenario shares with Hardy’s
paradox [20,21]. Since we would like to focus on the rela-
tion between the different possible measurement outcomes

defined by their Hilbert space formalism, we refer to this sce-
nario as the consistency paradox. Although the Hilbert space
formalism provides a consistent description of all possible
measurements, it is not possible to reconcile the measure-
ment outcomes of different measurement contexts with each
because the Hilbert space formalism does not allow the simul-
taneous observation of outcomes described by Hilbert space
vectors that are neither orthogonal nor parallel to each other
in Hilbert space, preventing any physically meaningful assign-
ment of joint realities to such outcomes.

The consistency paradox concerns a pair of identical phys-
ical systems 1 and 2 with two observable properties Fi and Wi

(i = 1, 2) each, where the property Fi is either 0 or 1 and the
property Wi is either a or b. The goal is to identify the relations
between Fi and Wi without making any direct statements about
the relation between Fi and Wi in the same system. This is
achieved by considering only statements about the correla-
tions between the two systems. Suppose the following three
statements are true.

(i) If W1 = a, then F2 = 1 [PWF(a, 0) = 0].
(ii) If W2 = a, then F1 = 1 [PFW(0, a) = 0].
(iii) F1 and F2 cannot both be 1 [PFF(1, 1) = 0].
The probabilities of the form Pmn(x, y) in the statements

(i)–(iii) are the joint probabilities of the possible measurement
outcomes x of property m in system 1 and y of property n in
system 2. We can then use the following logic to conclude
that the two properties W1 and W2 cannot both be a at the
same time [PWW(a, a) = 0]. According to statements (i) and
(ii), W1 and W2 can only be a when F1 and F2 are both 1.
However, this conclusion contradicts statement (iii). There-
fore, any observation of the outcome (a, a) contradicts at least
one of the three statements above. It is possible to express
this precise relation between the statements in terms of the
statistics of the outcomes (a, a), (a, 0), (0, a), and (1,1). Since
the outcome (a, a) can only be obtained when one of the state-
ments (i)–(iii) is false, the probability of finding (a, a) should
not be larger than the probability of finding an error in state-
ments (i)–(iii). Using the probabilities of the outcomes (a, 0),
(0, a), and (1,1), the probability of (a, a) should satisfy the
inequality

PWW(a, a) � PWF(a, 0) + PFW(0, a) + PFF(1, 1). (1)

This inequality defines the bound that applies if the outcomes
(a, a), (a, 0), (0, a), and (1,1) are related to each other by
noncontextual logic. Conversely, a violation of this inequality
indicates that it is not possible to assign outcomes to Fi when
Wi is obtained instead and vice versa, even if the correlations
between the outcomes in the two systems seems to permit it.
It may be worth noting that the formulation of noncontextual
logic given above implicitly refers to the quantum mechanics
of the situation by ruling out a joint measurement of Fi and
Wi in the same system i. Each system is therefore represented
by a two-dimensional Hilbert space, where the measurement
outcomes of each measurement represents a complete basis.
The reason for the failure of noncontextual logic in quantum
mechanics can be found in the very specific relations between
the eigenstates of the noncommuting operators F̂i and Ŵi that
represent the physical properties in the quantum formalism.
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As shown by Frauchiger and Renner, quantum systems can
satisfy all three statements (i)–(iii) with precision so that the
right-hand side of the inequality (1) is zero. However, the
probability of finding the outcome (a, a) will not be zero,
resulting in a particularly striking violation of the inequality.
We will now consider the quantum mechanics of the scenario
by representing the two systems 1 and 2 as two-level sys-
tems where the outcomes |0〉 and |1〉 are the eigenstates of
the operators F̂i, and |a〉 and |b〉 are the eigenstates of the
operators Ŵi. Since the eigenstates are defined in the same
two-dimensional Hilbert space, they must be related to each
other by superpositions. The closest analog to the assumption
that the outcomes can be defined independently is the assump-
tion that the eigenstates are mutually unbiased, so the relation
between them can be defined as

|a〉 = 1√
2

(|0〉 − |1〉),

|b〉 = 1√
2

(|0〉 + |1〉). (2)

The eigenstates of the two operators overlap in Hilbert space,
describing a specific relation between them that is fundamen-
tally different from the relations of noncontextual logic, where
it is implied that different combinations of (a, b) and (0,1) can
describe a noncontextual joint reality of F̂i and Ŵi. However,
a direct observation of the relation between F̂i and Ŵi is
impossible because of the incompatibility of their measure-
ments. This impossibility is particularly visible in the relation
between the outcomes (a, 0) and (0, a) in statements (i) and
(ii). These outcomes are represented by nonorthogonal states
with an overlap of 〈a, 0|0, a〉 = 1

2 in the four-dimensional
Hilbert space of the two systems. This overlap indicates that
the statements cannot represent a joint reality, since it is im-
possible to obtain the outcomes (a, 0) and (0, a) in the same
measurement.

We can explore the consequences of this difference be-
tween noncontextual logic and the Hilbert space formalism
by formulating the statements (i)–(iii) in terms of their Hilbert
space relations. Since all three statements refer to probabilities
of zero for specific outcomes, it is possible to represent them
as orthogonality relations between specific directions in the
four-dimensional Hilbert space and the initial state |φ0〉.
(a) 〈a, 0|φ0〉 = 0 [PWF(a, 0) = 0];

therefore 〈0, 0|φ0〉 = 〈1, 0|φ0〉.
(b) 〈0, a|φ0〉 = 0 [PFW(0, a) = 0];

therefore 〈0, 0|φ0〉 = 〈0, 1|φ0〉.
(c) 〈1, 1|φ0〉 = 0 [PFF(1, 1) = 0].

Since the two systems are described by a four-dimensional
Hilbert space, the three conditions uniquely define the state
|φ0〉 as the only state that is orthogonal to all three measure-
ment outcomes. In the (F̂1, F̂2) basis, the state is given by

|φ0〉 = 1√
3

(|0, 0〉 + |0, 1〉 + |1, 0〉). (3)

Similar to noncontextual logic, the Hilbert space relations
corresponding to statements (a)–(c) also give a precise and
well-defined solution. However, this solution results in a finite
probability for the outcome (a, a) defined by the inner product
of the Hilbert space vectors |a, a〉 and |φ0〉. The result is not

zero, but

PWW(a, a) = 1
12 . (4)

The nonorthogonal relation between the states |a, 0〉 and |0, a〉
thus results in a specific probability of finding (a, a). This
result apparently contradicts the noncontextual logic accord-
ing to which (a, a) can only be obtained when one of the
three statements (i)–(iii) is false. In quantum mechanics, the
orthogonality conditions corresponding to the three state-
ments actually require a nonvanishing probability of (a, a)
by defining a specific quantum state that is not orthogonal
to |a, a〉. The orthogonality relations given above are there-
fore fundamentally different from noncontextual statements
of impossibility, despite the apparent similarity in their exper-
imental observation. Even in the limit of precise statements,
quantum mechanics cannot be interpreted by identifying the
measurement outcomes with measurement independent real-
ities. For the Hilbert space formalism, this means that we
cannot identify the components of a state vector with phys-
ical properties of the system unless these physical properties
are actually measured. The focus of our investigation should
therefore be the role of quantum superpositions in the def-
inition of the relation between the outcomes of different
measurements.

The practical problem of identifying the actual relation
between different measurements is that Hilbert space inner
products can only be observed as measurement probabilities.
Unless the probabilities are zero or one, a quantitative sta-
tistical approach is needed to make sense of the relation. It
is therefore useful to consider the type of quantitative rela-
tion that the Hilbert space formalism establishes between the
probability PWW(a, a) and the three probabilities PWF(a, 0),
PFW(0, a), and PFF(1, 1). We have already seen that a proba-
bility of precisely PWW(a, a) = 1

12 is obtained when the three
probabilities are zero. We can now formulate a corresponding
relation that also applies when the probabilities of the out-
comes (a, 0), (0, a), and (1,1) are nonzero.

III. HILBERT SPACE RELATIONS BETWEEN
INCOMPATIBLE MEASUREMENT OUTCOMES

In the preceding section we have seen that the inner
products of Hilbert space expression modify the relations
between the statements associated with the corresponding
measurement outcomes. The reason why these inner products
are nonzero is that the statements belong to incompatible
measurement contexts and cannot be confirmed jointly in
a single measurement of both Ŵ and F̂ . As we have seen
in the previous section, the quantum formalism requires a
nonvanishing value of PWW(a, a) = 1

12 for the validity of the
three statements (i)–(iii). It is therefore necessary to violate
at least one of these conditions in order to suppress the
probability PWW(a, a) to zero. Different from noncontextual
logic, the Hilbert space formalism thus defines the relation
between measurement outcomes as a quantitative relation be-
tween their probabilities. In the following, we will investigate
the quantitative relation between the probabilities PWF(a, 0),
PFW(0, a), and PFF(1, 1) corresponding to the statements (i)–
(iii) and the probability PWW(a, a) described by the Hilbert
space formalism. In particular we will be interested in the
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minimal value of PWW(a, a) required in the limit of low values
of the probability sum,

PS = PWF(a, 0) + PFW(0, a) + PFF(1, 1). (5)

As the indices show, the three probabilities in this sum refer to
measurement outcomes obtained in three different measure-
ment contexts. Specifically, (a, 0) and (0, a) could both be
true at the same time, since they do not exclude each other.
This means that the probability sum could have a value of up
to 2 within the bounds of noncontextual logic.

The probability sum in Eq. (5) corresponds to a collective
measure of the violation of statements (i)–(iii), with the PS

being the minimal probability that all three statements are
correct. The inequality given in Eq. (1) then simplifies to
PWW(a, a) � PS and the corresponding relations in Hilbert
space can be investigated using the quantum-mechanical ex-
pressions for these two quantities. Specifically, the probability
sum PS can be written as the expectation value of a single op-
erator �̂S defined by the sum of the three projection operators
corresponding to the outcomes (a, 0), (0, a) and (1,1),

�̂S = |a, 0〉〈a, 0| + |0, a〉〈0, a| + |1, 1〉〈1, 1|. (6)

It is worth noting that this operator summarizes projectors
that do not commute. Specifically, the nonorthogonality of the
states |a, 0〉 and |0, a〉 means that it is not possible to assign
outcomes of zero or one to both projectors at the same time.
However, the Hilbert space formalism still assigns eigenvalues
and eigenstates to the sum of all three projectors. Of particu-
lar interest is the state |φ0〉 defined by a probability sum of
PS = 0. Since this is an extremal value of the probability sum,
it represents an eigenvalue of �̂S with |φ0〉 as its eigenstate,

�̂S|φ0〉 = 0. (7)

This eigenstate is nondegenerate, so it is uniquely defined by
the probability sum of PS = 0. We can now find the remaining
eigenstates of the operator �̂S and express it in its spectral
decomposition,

�̂S = 1
2 |ν1〉〈ν1| + |ν2〉〈ν2| + 3

2 |ν3〉〈ν3|. (8)

As Eq. (7) and the spectral decomposition show, the probabil-
ity sum has eigenvalues of 0, 1

2 , 1, and 3
2 . The corresponding

eigenstates are given by |φ0〉 shown in Eq. (3) and

|ν1〉 = 1√
2

(|0, 1〉 − |1, 0〉),

|ν2〉 = |1, 1〉,
|ν3〉 = 1√

6
(2|0, 0〉 − |0, 1〉 − |1, 0〉). (9)

Note that the state |1, 1〉 is an eigenstate of the probability
sum because it is orthogonal to the states |a, 0〉 and |0, a〉 rep-
resenting the other two outcomes. Neither |a, 0〉 nor |0, a〉 is
an eigenstate of the operator �̂S. This is a direct consequence
of the overlap between the two nonorthogonal states. The
sum of the two projectors |a, 0〉〈a, 0| and |0, a〉〈0, a| results
in eigenstates that are linear combinations of the two states
|a, 0〉 and |0, a〉, where |ν1〉 represents destructive interfer-
ences between the two states resulting in an eigenvalue of 1

2
and |ν3〉 represents constructive interference resulting in an
eigenvalue of 3

2 . The precision of these eigenvalues would

seem to suggest that it is somehow possible that exactly 1
2

or exactly 3
2 of the two outcomes (a, 0) and (0, a) is true,

defying the conventional limitation of truth values to 0 or
1. The eigenvalues of the probability sum operator �̂S are
therefore a clear indication of the contextual nature of the
statements involved. Since the two outcomes (a, 0) and (0, a)
never appear in the same measurement context, the sum of
their truth value operators given by �̂S can only be observed
in a third measurement context that contains neither |a, 0〉
nor |0, a〉. Since we are only interested in the probability
sum and not in the individual contributions to it, this third
context is more suitable to describe the relation between PS

and PWW(a, a) than the individual statements regarding the
outcomes (a, 0) and (0, a).

The correct relation between PS and PWW(a, a) can be
derived by expressing a possible quantum state |ψ〉 as a su-
perposition of the eigenstates of the operator �̂S,

|ψ〉 = C0|φ0〉 + C1|ν1〉 + C2|ν2〉 + C3|ν3〉, (10)

where the coefficients C0, C1, C2, and C3 are the probability
amplitudes of the four eigenstates. The probability sum PS

can then be expressed using the eigenvalues of �̂S and the
probabilities associated with these coefficients,

PS = 1
2 |C1|2 + |C2|2 + 3

2 |C3|2. (11)

Since the eigenstates of the operator �̂S form a complete
orthogonal basis of the four-dimensional Hilbert space, we
can also express the state |a, a〉 representing the measurement
outcome of a measurement of Ŵ1 and Ŵ2 in this basis,

|a, a〉 = − 1

2
√

3
|φ0〉 + 1

2
|ν2〉 +

√
2

3
|ν3〉. (12)

Note that |a, a〉 is orthogonal to |ν1〉 because of the symmetry
between system 1 and system 2. It is therefore possible to
express the probability PWW(a, a) using the three probability
amplitudes C0, C2, and C3,

PWW(a, a) =
∣∣∣∣∣ 1

2
√

3
C0 − 1

2
C2 −

√
2

3
C3

∣∣∣∣∣
2

. (13)

Since both the probability sum PS and the probability
PWW(a, a) are expressed in terms of the same probability
amplitudes in Eqs. (11) and (13), respectively, these two
equations describe a fundamental relation between these two
probabilities. As shown in Sec. II, a probability of PS = 0
necessarily requires a probability of PWW(a, a) = 1

12 . This
result can now be reproduced by considering Eq. (11), where
PS = 0 requires amplitudes of zero for C1, C2, and C3, leaving
C0 = 1 as the only possible input state. Equation (13) then
confirms the probability of PWW(a, a) = 1

12 .
The relation between the probabilities PS and PWW(a, a)

becomes more complicated when PS is not zero. In that case,
Eq. (11) does not have a unique solution and many different
values for the coefficients Ci (i = 0, 1, 2, 3) are possible. In
general, PS > 0 requires that |C0| < 1, with nonzero values for
C1, C2, and C3. This will result in a change of PWW(a, a) due
to the interferences between the eigenstates |φ0〉, |ν2〉, and |ν3〉
of the operator �̂S. It is worth noting that these interferences
are described by negative signs for the coefficients C2 and C3
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corresponding to the eigenstates |ν2〉 and |ν3〉, indicating that
the interferences with |φ0〉 are destructive whenever the co-
efficients are all real and positive. We can therefore conclude
that a small increase of PS can result in a much larger decrease
of PWW(a, a) as a result of destructive interferences between
the probability amplitudes in Eq. (13).

IV. STATISTICAL BOUNDS FOR DIFFERENT
MEASUREMENT CONTEXTS

Equation (13) shows how destructive interferences be-
tween |φ0〉 and a linear combination of |ν2〉 and |ν3〉 can re-
duce the probability PWW(a, a) to values below PWW(a, a) =
1

12 . The magnitude of the effect depends on the probability
amplitudes C2 and C3, requiring a nonzero contribution of
|ν2〉 and |ν3〉 to the probability sum PS shown in Eq. (11). We
can now identify the quantitative relation between the possible
reduction of PWW(a, a) and the necessary probability sum PS

by finding the minimal value of PWW(a, a) for a given value of
PS. In particular, we can find out how high PS must be to avoid
a violation of the inequality in Eq. (1), providing a quantitative
measure of the contradiction between noncontextual logic and
the contextuality of the Hilbert space formalism for incompat-
ible measurements.

As a first step, we observe that the state |ν1〉 is orthogonal
to the state |a, a〉, which means that the state |ν1〉 is a joint
eigenstate of the operators |a, a〉〈a, a| and �̂S with eigen-
values of 0 and 1

2 , respectively. In a superposition of |φ0〉
and |ν1〉, the probability amplitude C1 reduces PWW(a, a) by
1

12 |C1|2 while increasing the probability PS by 1
2 |C1|2. Quan-

tum interference effects will reduce PWW(a, a) more rapidly
for the same cost of increased PS. We therefore conclude
that the states with the minimal value of PWW(a, a) for a
given value of PS always have C1 = 0. These optimal states
can thus be found by distributing the probability PS between
the eigenstates |ν2〉 and |ν3〉. It is convenient to express this
distribution by trigonometric functions of a parameter θ so
that the probability amplitudes can be given by

C2 = √
PS cos θ,

C3 =
√

2

3
PS sin θ. (14)

Inserting Eq. (14) into Eqs. (11) and (13), we can express the
probability PWW(a, a) as a function of the probability sum
PS and the parameter θ expressing the balance between the
contributions of |ν2〉 and |ν3〉. Since Eq. (13) describes an
interference effect between C0 and a linear combination of C2

and C3, it is convenient to express the result in terms of two
amplitudes associated with these components,

PWW(a, a) = [A0(θ ) − AS(θ )]2. (15)

Here A0(θ ) represents the contribution of C0. It depends on θ

because the reduction of C0 depends on the total magnitude of
C2 and C3. Expressed as a function of PS and θ , the amplitude
A0(θ ) is given by

A0(θ ) =
√

1

12

{
1 − PS

[
1 − 1

3
(sin θ )2

]}
. (16)

A much stronger dependence on PS and θ is obtained for the
amplitude AS(θ ) representing the contributions of C2 and C3,

AS(θ ) = 5
6

(
3
5 cos θ + 4

5 sin θ
)√

PS. (17)

We can now consider the dependence of Eq. (15) on the
parameter θ to find the minimal value of PWW(a, a) for a given
probability sum PS. Although it would be possible to minimize
Eq. (15) directly, the different dependences on θ in A0(θ ) and
in AS(θ ) allow us to derive an initial bound by separately
optimizing A0(θ ) and AS(θ ). This procedure has the advantage
that we can better understand the origin of the bound.

At low values of PS, A0(θ ) is greater than AS(θ ). Equa-
tion (15) thus indicates that the minimal value of PWW(a, a)
is obtained when the amplitude A0(θ ) is minimal and the
amplitude AS(θ ) is maximal. This means that the bound of
PWW(a, a) can be obtained from the two bounds for A0(θ ) and
for AS(θ ) given by

A0(θ ) �
√

1

12
(1 − PS),

AS(θ ) � 5

6

√
PS. (18)

Note that the bound we are deriving is only valid when A0(θ )
is greater than AS(θ ), since the bound for PWW(a, a) drops
to zero when A0(θ ) can be equal to AS(θ ). Using the bounds
in Eq. (18), this occurs at PS = 3

28 , a numerical value of
about 0.1071. The corresponding lower bound of PWW(a, a)
is therefore

PWW(a, a) �
(√

1

12
(1 − PS) − 5

6

√
PS

)2

for PS � 3

28
.

(19)
It is easy to see that this bound is tight for PS = 0, where
the value of PWW(a, a) can only be 1

12 . However, we expect
the bound to become less tight as the value of PS increases,
since we used separate optimization procedures for A0(θ ) and
AS(θ ). To see how tight the bound is at the maximal value of
PS = 3

28 , it is convenient to determine the actual value of PS at
which Eq. (15) achieves a probability of PWW(a, a) = 0. The
condition we need to satisfy is

A0(θ ) = AS(θ ). (20)

This condition also depends on θ , so we need to identify the
value of the parameter θ at which the lowest value of PS is
obtained. The θ -dependent relation is

PS[PWW(a, a) = 0] = 1

5 − cos(2θ ) + 4 sin(2θ )
. (21)

The lowest value of the probability sum PS at which
PWW(a, a) = 0 is possible is found at cos(2θ ) = −1/

√
17 and

the lower bound of PS for PWW(a, a) = 0 is given by

PS[PWW(a, a) = 0] � 1

5 + √
17

. (22)

This bound is very close to the limit of PS � 3
28 in Eq. (19),

indicating that the bound is already rather tight. Numerically,
the lowest value of PS at which PWW(a, a) can be zero is at
0.1096, only 0.0025 higher than the value at which the bound
in Eq. (19) drops to zero.
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Even though the bound is already rather tight, it may be
interesting to consider the possibility of tightening it even
further by making use of the precise bound in Eq. (22).
As mentioned above, the bound is obtained at cos(2θ ) =
−1/

√
17, corresponding to a value of sin θ = 0.7882. By

comparing this value with the value of sin θ = 0.8 that maxi-
mizes AS in Eq. (17), we can conclude that the optimal value
of sin θ drops continuously from its initial value of sin θ = 0.8
to a final value of sin θ = 0.7882 as the probability sum PS in-
creases from zero to its maximal value of 0.1096. The optimal
value of sin θ is never close to the value of zero that maximizes
the value of A0 in Eq. (20). We can therefore identify a tighter
limit for A0 by adding the condition that sin θ > 0.7882. This
tighter bound of A0 can be approximated by

A0(θ ) �
√

1

12

(
1 − 4

5
PS

)
. (23)

Note that the value of 4
5 is used in place of a more precise

numerical value of 0.7929 obtained from sin θ > 0.7882 in
order to present a more concise formula. The effect of the
small difference on the tightness of the bound is negligibly
small. The tighter bound is then given by

PWW(a, a) �
(√

1

12
(1 − 4

5
PS) − 5

6

√
PS

)2

for PS

� 0.109 489, (24)

where the limit of PS = 0.109 489 is only slightly lower than
the actual value at which the bound drops to zero. The exact
value is found between 0.109 489 and 0.109 490, so the lower
value has been chosen to ensure that the bound is valid at the
maximally allowed value of PS.

This tighter bound is still a bit lower than the actual lower
bound determined from a joint optimization of A0(θ ) and
AS(θ ) since the bound overestimates the value of AS(θ ) by
not taking into account the reduction of AS(θ ) caused by the
lower value of θ needed to optimize the contribution of A0(θ ).
However, the tighter bound is much closer to the tight bound
in Eq. (22). The more precise numerical value of the tight
bound is PS[PWW(a.a) = 0] � 0.109 612. The difference be-
tween the upper limit of PS in the tighter bound of PWW(a, a)
given by Eq. (24) and the tight bound of PS in Eq. (22) is only
0.000 123, a reduction of a factor of 20 when compared to the
bound in Eq. (19). We conclude that Eq. (24) is sufficiently
close to the actual lower bound of PWW(a, a) for most practi-
cal purposes.

The lower bound in Eq. (24) illustrates the fundamental
relation between the probability sum PS and the probability of
the outcome (a, a) described by the Hilbert space formalism.
It directly contradicts the relation predicted by noncontextual
logic and expressed by the inequality in Eq. (1). According
to quantum mechanics, a probability sum of zero requires a
probability of PWW(a, a) = 1

12 , and lower probabilities can
only be achieved by destructive quantum interferences with
the eigenstates |ν2〉 and |ν3〉 of the probability sum operator
with eigenvalues of 1 and 3

2 . Hilbert space thus defines a
forbidden region around the result expected from the logi-
cal relation between noncontextual statements, where PS = 0

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

Pcr=0.0243

Forbidden
Region

P W
W
(a
,a
)

PS

FIG. 1. Illustration of the lower bound of PWW(a, a) given by
Eq. (24). Quantum mechanics defines a forbidden region around
the noncontextual expectation that PS = 0 requires PWW(a, a) = 0.
The dashed line shows the value of the critical probability sum
Pcr = 0.0243 below which quantum mechanics requires a violation
of the inequality given in Eq. (1).

requires PWW(a, a) = 0. In fact, quantum mechanics even
requires a minimal probability sum PS � Pcr in order to sat-
isfy the inequality in Eq. (1). For all smaller probability
sums, quantum mechanics necessarily violates this inequal-
ity. The critical probability sum Pcr at which PWW(a, a) =
PS is possible can be obtained from Eq. (24). Its numerical
value is

Pcr = 0.0243. (25)

We can therefore conclude that quantum mechanics requires a
violation of noncontextual logic whenever the sum probability
PS is below a value of 0.0243. A suppression of the sum of the
probabilities of (a, 0), (0, a), and (1,1) below this value will
necessarily result in a probability of the outcome (a, a) that is
higher than this sum.

The bound given by Eq. (24) and the critical probability
sum Pcr are shown in Fig. 1. The minimal value of PWW(a, a)
required by low sum probabilities PS drops quickly from
its initial value of 1

12 at PS = 0, achieving equality with PS

at the critical probability sum of Pcr = 0.0243. Below this
critical probability sum, the relation between measurement
outcomes described by state vectors in Hilbert space neces-
sarily contradicts the logical relations between statements that
do not depend on the measurement context. We can there-
fore conclude that quantum superpositions do not describe
measurement-independent realities even when each element
of reality can be predicted with a precision approaching
certainty. In fact, the bound derived above shows that the
expectation of a measurement independent reality necessarily
fails in the limit of high precision, where the probability
sum describing the rate of errors in the statements (i)–(iii)
is extremely low. The bound given by Eq. (24) and shown
in Fig. 1 successfully generalizes the observation in Sec. II
that the relation between measurement outcomes represented
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by nonorthogonal quantum states is fundamentally different
from the relation between measurement-independent state-
ments even when these statements can be verified with a
success probability of one because they can be represented
by orthogonality relations in Hilbert space.

V. CONCLUSION

We have investigated the nonclassical relation between out-
comes represented by nonorthogonal states in Hilbert space
based on the contradiction between context-independent logic
and quantum mechanics described by the consistency para-
dox. We observed that the contradiction is caused by the
manner in which orthogonality relations in Hilbert space re-
late nonorthogonal states to each other. This difference also
appears in the eigenstates and the eigenvalues of the sum of
projection operators that described the sum of measurement
probabilities obtained in separate measurements. We have
analyzed the relation between the probability sum PS asso-
ciated with errors in the initial statement and the probability
PWW(a, a) associated with errors in the necessary conclusion
by expressing the state |a, a〉 in terms of the eigenstates of the
operator �̂S representing the probability sum PS. The analysis
showed that quantum interferences between the eigenstates
are necessary to reduce the probability PWW(a, a) below its
value of 1

12 obtained for PS = 0. Thus, the nonorthogonal-
ity of |a, a〉 and the eigenstates of �̂S in Hilbert space not
only results in a necessary violation of noncontextual logic, it
also provides a precise quantitative bound assigning a min-
imal probability of PS to values of PWW(a, a) below 1

12 . A
violation of the inequality required by noncontextual logic

is necessarily observed whenever the probability sum PS is
below a critical value of 0.0243. We therefore concluded that
the violation of noncontextual logic is an unavoidable conse-
quence of the precise relations between outcomes represented
by nonorthogonal states in Hilbert space.

The analysis presented above may have important implica-
tions for a wide range of quantum paradoxes. At the heart of
our investigation is the rather unusual way in which probabil-
ities are defined by quantum interference effects. Inequalities
such as (1) can be violated because the statistics of quantum
states do not correspond to joint probabilities of outcomes
described by nonorthogonal states. It has been pointed out
that the contextuality relations responsible for the violation
of inequalities such as Eq. (1) correspond to the assignment
of negative probabilities [26] and these negative probabilities
seem to be fundamentally related to the change of quantum
coherences by unitary transformations [27,28]. The correct
conclusion seems to be that violations of inequalities are
related to negative quasiprobabilities, establishing a link be-
tween paradoxes motivated by weak measurements [27,29–
31] and the inequality violations that indicate contextuality
[32]. However, it is also clear that the negative values of
quasiprobabilities are fundamentally linked to quantum in-
terference effects. In the present analysis, we have provided
a more direct link between the role of quantum interference
effects in the definition of probabilities and the violation
of an inequality associated with the assumption of noncon-
textual realism. We believe that this analysis can provide
a useful starting point for a more systematic investigation
of the role of quantum superpositions in defining the rela-
tion between the statistics observed in different measurement
contexts.
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