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Experimental implementation of Hardy-like quantum pigeonhole paradoxes
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The general Hardy-like quantum pigeonhole paradoxes for n-qubit states were presented by Tang [W. Tang,
Phys. Rev. A 105, 032457 (2022)]. It has been shown that each of such paradoxes can be associated with an
uncolorable solution of a specific vertex-coloring problem induced from the projected-coloring graph (a kind
of unconventional graph). The Hardy-like quantum pigeonhole paradoxes can even give rise to a higher suc-
cess probability in demonstrating the conflict between quantum mechanics and local or noncontextual realism
than the previous Hardy’s paradoxes. Moreover, multiqubit states and high-dimensional states can exhibit
paradoxes. In contrast to only one type of contradiction presented in the original quantum pigeonhole paradox,
we discussed two kinds of three-qubit projected-coloring graph states as the minimal illustration in our work. An
optical experiment to verify such a stronger paradox is performed. This quantum paradox provides innovative
thoughts and methods for exploring new types of stronger multiparty quantum nonlocality. It may have potential
applications in untrusted multiparty communications and device-independent random number generation.
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I. INTRODUCTION

Nowadays, the use of quantum approaches to solve some
classical problems has attracted widespread attention. A suc-
cession of newly developed quantum technologies reveals
their power for some specific tasks, such as quantum network
[1–3], fault-tolerant quantum computation [4,5], and quantum
metrology [6]. Based on the definite quantum feature, ex-
perts even proposed some quantum resource theories [7–10].
Quantum nonlocality [11–15] and contextuality [16–21] are
two kinds of significant quantum resources. Not only do they
play a pivotal role in many quantum technologies, but they
may also produce many counterintuitive phenomena that may
deepen our understanding of nature. For example, the origi-
nal quantum pigeonhole paradox [22–26], as a paradigmatic
consequence of quantum nonlocality or contextuality [27],
presents a counterintuitive phenomenon: in a particular pre-
and postselection procedure [28,29], if three particles (dubbed
as three “quantum pigeons”) are put into two boxes, then
any pair of particles cannot stay in the same box, causing a
violation to the classical pigeonhole counting principle [23].
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Furthermore, quantum features can be visually exhibited
by some specific mathematical structures, including graphs
[30,31], braids [32], and knots [33], as well as some newly
defined geometric and topological objects [34,35]. Performing
coloring or sorting operations on such structures is the usual
method to investigate the expected nonclassical features. To
finish such a task, generally, the main challenge resides in
accurately mapping the systems to the correlated mathemat-
ical objects and making a suitable rule compatible with all the
quantum relations, but incompatible with at least one classical
restriction. A well-known example, the graphical proof of the
Kochen-Specker theorem [36–38] by the failure of noncon-
textuality (assigning values 0 or 1 to a set of rays), can be
converted to a special coloring problem associated with the
vertices of the induced orthogonal graph. Any pair of vertices
connected with an edge indicates a mutually orthogonal rela-
tionship of the correlated rays. In addition, we note that only
some special graphs can be regarded as orthogonal graphs.

Recently, a special counterintuitive mathematical ob-
ject, the projected-coloring graph (PCG), was presented in
Ref. [39]. The uncolorable PCGs can exhibit nonclassical
quantum features. In other words, such uncolorable objects
can only be simulated in some quantum processing rather than
in the classical scenario. The minimal example of the uncol-
orable PCG can be considered to be another Penrose triangle
description [40]. Moreover, the purpose of introducing this
mathematical object is to offer a more intuitive understanding
of a new kind of quantum pigeonhole paradox called the
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“Hardy-like quantum pigeonhole paradox.” Since the color-
ing problem in the PCGs belongs to a topological problem
and the (Hardy-like) quantum pigeonhole paradox is usually
described in an algebraic framework, one can consider the
former as a representation of the latter. The Hardy-like quan-
tum pigeonhole paradox exhibits the nonclassical counting
principle resorting to a Hardy-like argument [41–43]. Hardy’s
proof is arguably considered “one of the strangest and most
beautiful gems yet to be found in the extraordinary soil of
quantum mechanics” [44]. In addition, the Hardy-like para-
doxes may have applications in device-independent random
number generation [45,46].

In this work, we first introduce the Hardy-like quantum
pigeonhole paradox, then show how to relate it to a clas-
sical vertex-coloring problem of a kind of unconventional
graph, the projected-coloring graph. Here we realize a min-
imal experimental demonstration of this strong nonclassical
feature by a heralded entanglement source of three entan-
gled photons. Compared with Ref. [42], the demonstration
of such Hardy-like quantum pigeonhole paradoxes does not
require sophisticated techniques and is easier to implement.
This quantum paradox provides a valuable tool to explore
some new features of quantum mechanics. It also has practical
applications in specific quantum information protocols, such
as multiparty quantum communication tasks.

II. THEORETICAL DESCRIPTION OF HARDY-LIKE
QUANTUM PIGEONHOLE PARADOX

We organized the theoretical part as follows. In Sec. II A,
we first introduce the simplest Hardy-like quantum pigeon-
hole paradoxes, based on two three-qubit states and originally
presented in Ref. [39]. The generation of these two states and
the verification of the paradoxes are discussed in the next
section. In Secs. II B and II C, we summarize the general
Hardy-like pigeonhole paradoxes and introduce the related
graph projected-coloring problems according to Ref. [39]. For
a better understanding, we enumerate three kinds of quan-
tum states for this paradox in Appendix B, including two
kinds of general n-qubit states and one kind of n-qudit state.
Furthermore, a different version of the Hardy-like quantum
pigeonhole paradox, the quantum magic paradox, is presented
in Appendix C.

A. The simplest Hardy-like quantum pigeonhole paradox

We denote the usual Pauli matrix σx (σy, σz ) of the ith
qubit by Xi (Yi, Zi ), and let |0〉i, |1〉i be two eigenstates of Zi

associated with eigenvalues +1,−1, respectively. Analogous
to the conventional quantum pigeonhole paradox, the simplest
system to show the Hardy-like quantum pigeonhole paradox
requires three qubits [39], and the corresponding quantum
state can be chosen as

|S〉 = 1
2 (|000〉 − |011〉 − |101〉 − |110〉), (1a)

|S′〉 = 1
2 (|000〉 + |011〉 + |101〉 − |110〉). (1b)

The state |S〉 = (|���〉 + |���〉)/
√

2 is a special
Greenberger-Horne-Zeilinger (GHZ) state, where |�〉 =
(|0〉 + i|1〉)/

√
2 and |�〉 = (|0〉 − i|1〉)/

√
2). We discuss

state |S〉 in this section and state |S′〉 in Appendix A. Note
that if the ith qubit is measured and found in |0〉, the other
two must be in the eigenstate of XjXk with eigenvalue −1.
Therefore, one can get the following quantum predictions:

P(X2X3 = −1|Z1 = +1) = 1, (2a)

P(X1X3 = −1|Z2 = +1) = 1, (2b)

P(X1X2 = −1|Z3 = +1) = 1, (2c)

P(Z1 = Z2 = Z3 = +1) = 1
4 > 0. (2d)

Here, P(XjXk = −1|Zi = +1) = 1 denotes the conditional
probability that Xj and Xk are measured with outcomes sat-
isfying XjXk = −1 given the result of Zi = 1. P(Z1 = Z2 =
Z3 = +1) is the joint probability of obtaining Z1 = 1, Z2 =
1, Z3 = 1.

Consider a run of the experiment in which Z1, Z2, Z3 are
measured and the results Z1 = 1, Z2 = 1, Z3 = 1 are obtained
(the corresponding probability is 1/4). We assume that the
state |S〉 can be modeled by a local realistic description. Since
Z1 = 1 is obtained in this run of the experiment, according
to Eq. (2a), if X2 and X3 were measured in this run, their
results should satisfy X2X3 = −1, indicting that qubits 2 and
3 (“pigeons”) cannot stay in the same state (“box”). Likewise,
from Eq. (2b) and Eq. (2c), we can infer that qubits 1 and 3,
and qubits 1 and 2, cannot stay in the same box either, contra-
dicting the classical pigeonhole principle. We get a three-qubit
Hardy-like quantum pigeonhole paradox.

In addition, we can understand this paradox from
the angle of the conventional Hardy’s paradox based
on the constraint (I − X2X3)(I − X1X3)(I − X1X2)/8 = 0
as well. Similar to the standard construction of the
Hardy’s paradox presented in Ref. [14], we can get a
three-qubit common Hardy’s paradox by invoking four
extra constraints: P( I−X2X3

2 = 1|Z1 = +1) = 1, P( I−X1X3
2 =

1|Z2 = +1) = 1, P( I−X1X2
2 = 1|Z3 = +1) = 1, and P(Z1 =

Z2 = Z3 = +1) = 1/4. We stress that these constraints are
more general, in contrast to Eqs. (2a)–(2d), since in the afore-
mentioned argument of the Hardy-like pigeonhole paradox
we adopted a stronger realistic assumption. This replaces
(XiXj )(λ) with Xi(λ)Xj (λ), thus requiring the classical pi-
geonhole principle. In view of this, the Hardy-like pigeonhole
paradox is just a weaker version of the Hardy’s paradox. A
detailed discussion is in Appendix D.

Notice that in the above argument, we only discuss the
contradiction arising from the case in which Z1, Z2, Z3 are
measured with the results Z1 = 1, Z2 = 1, Z3 = 1. In fact,
by introducing other conditional probability constraints and
considering other results such as Z1 = 1, Z2 = −1, Z3 = −1,
three more similar paradoxes can be constructed. Namely,
sometimes a given quantum state may induce more than one
Hardy-like quantum pigeonhole paradox. But to simplify, here
we only discuss the paradox arising from the constraint given
by the joint probability that all the involved Zi are measured
with outcomes of +1.

B. General Hardy-like quantum pigeonhole paradoxes

The general Hardy-like quantum pigeonhole paradoxes can
be constructed based on a special kind of state called PCG
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states. The n-qubit PCG state can be defined as

|Pn〉 = 1√
p + 1

(
|00 · · · 0〉 −

∑
i∈I

θi|�0〉S i
|�1〉Si

)
, (3)

where Si ⊂ N , S i = N − Si and N = {1, 2, . . . , n}. The size
of Si satisfies 2 � |Si| < n and |Si ∪ S j | > max{|Si|, |S j |}
(i 	= j). In addition, |�0〉Si ≡ ⊗k∈Si |0〉k , |�1〉Si ≡ ⊗k∈S i

|1〉k ,
θi = ±1, and p = ∑

i∈I |θSi |. I is an index set, which is
used for labeling a group of specific subsets of N . If the
qubits in Si are measured and found in |�0〉S i

, then the others
are found in the eigenstate of

∏
k∈Si

Xk with eigenvalue θi.
Some tools are useful in the argument of Hardy-like quantum
pigeonhole paradoxes. First, a Hardy matrix A with respect
to a PCG state |Pn〉 can be defined as A = (Ai j )|I|×n with
elements Ai j = 1 if i ∈ I and j ∈ Si, and Ai j = 0 otherwise.
Next, an augmented Hardy matrix B is defined by a dilated

matrix B = (A| ��), where the ith element of the |I| vector ��
is �i = (θSi + |θSi |)/2. Then we can classify the PCG states
into two families: (1) rank(A) = rank(B) and (2) rank(A) 	=
rank(B).

For a state |Pn〉 in the form of Eq. (3) and sat-
isfying rank(A) 	= rank(B), we can get the following
conditions: ∏

k∈Si

Xk = −θi, (i ∈ I )

if Zj1 = Zj2 = · · · = Zjn−|Si | = 1, (4)

where j1, j2, . . . , jn−|Si| ∈ S i, and Zjl = 1 (l ∈ {1, 2, . . . , n})
denotes an event of measuring Zjl with an outcome of +1,
and likewise

∏
k∈Si

Xk = −θi. Equations (4) have a total of
|I| items. In addition, it has the following quantum prediction
as well:

P(Z1 = Z2 = · · · = Zn = 1) = 1

p + 1
> 0. (5)

The relationship rank(A) 	= rank(B) will cause
∏

k∈Si
Xk =

−θi (i ∈ I ) cannot be satisfied simultaneously by any local
hidden variable or noncontextual hidden variable models [39].
Then the classical pigeonhole counting principle is broken,
i.e., one gets an n-qubit Hardy-like quantum pigeonhole para-
dox. Based on Eqs. (3)–(5), we have designed three general
kinds of PCG states, i.e., two kinds of general n-qubit states
and one kind of n-qudit state (see Appendix B), which show
the n-qubit and n-qudit paradoxes, respectively.

C. Graph projected-coloring problems and beyond

In contrast to the lack of pictorial representations for a
common Hardy’s paradox, one can find some interesting rep-
resentations for the Hardy-like quantum pigeonhole paradox
by some mathematical objects (e.g., graphs) or problems.

First, we introduce a vertex-coloring problem [39] of an
n-vertex PCG which can be associated with the n-qubit Hardy-
like quantum pigeonhole paradox, i.e., an n-vertex PCG G
to an n-qubit PCG state |Pn〉, where a n-vertex PCG can be
defined as follows.

For any PCG state |Pn〉, a PCG G is defined as an unconven-
tional graph consisting of a set of vertices V = {1, 2, . . . , n}

and a set of weighted edges E = {Si|i = 1, 2, . . . , p}. The
weights of the edge Si are colored as red (R) and green (G),
and the corresponding coefficients θSi are equal to +1 and −1,
respectively. In contrast to a usual graph, two or more (but less
than n) vertices are allowed in an edge of an n-vertex PCG.
Moreover, to guarantee that there are no subedges inside any
edge in E , an extra constraint should be imposed, namely, for
any two edges Si and S j , |Si ∪ S j | > max{|Si|, |S j |}. Then
the rule of graph projected-coloring problem can be described
as follows:

(1) Each vertex vi ∈ V must be colored with either R or G;
the coloring value C(vi ) of a vertex vi is defined as C(vi ) =
−1 if the vertex vi is colored with red, and C(vi ) = +1 other-
wise.

(2) The coloring value C(Si ) of an edge Si can be defined
as C(Si ) = −1 if the related weight is R, and C(Si ) = +1
otherwise.

(3) A PCG G is colorable if
∏

vi∈Si
C(vi ) = C(Si ) holds for

any edge Si ∈ E , otherwise uncolorable.
According to Ref. [39], any uncolorable PCG is associ-

ated with a proof of Hardy-like quantum pigeonhole paradox,
which is related to a PCG state with rank(A) 	= rank(B). Note
that the uncolorable PCG is a different kind of impossible
object, which cannot exist in the classical world. In fact, using
impossible objects as analogies with some quantum features
is not rare in the study of quantum theories, such as the Hilbert
hotel [47] and Penrose square [48]. In this regard, another
example of this paradigm can be considered, using the uncol-
orable PCG to illustrate the Hardy-like quantum pigeonhole
paradox.

Take the case of three-vertex PCGs as an example. As
shown in Fig. 1, there are seven types of three-vertex PCGs,
where Figs. 1(a) and 1(b) are uncolorable PCGs, and the
others are all colorable PCGs. Figures 1(a) and 1(b) show two
three-qubit Hardy-like quantum pigeonhole paradoxes based
on the state |S〉 and |S′〉, respectively. We experimentally
measure the quantum feature based on these two states. In
all, |S〉 and |S′〉 are two minimal states which can induce
the Hardy-like quantum pigeonhole paradox. They are local
unitary equivalent as well as in experimental realization, but
reveal different two kinds of the Hardy-like quantum pigeon-
hole paradox. Moreover, in analogy to the hypergraph state
[49], here the PCG states can be considered as a kind of
generalized graph state as well.

Apart from the uncolorable PCG representation for the
Hardy-like quantum pigeonhole paradox, we can find other
representations for some special kinds of such paradoxes,
e.g., the quantum map coloring representation [39]. Another
interesting version of a kind of specific Hardy-like quantum
pigeonhole paradox is the quantum magic square paradox (for
more details, see Appendix C).

Compared with other versions of the Hardy’s paradox,
the Hardy-like quantum pigeonhole paradox has at least
two advantages: (1) a simpler and more intuitive graphical
representation (PCGs), and (2) sometimes a higher suc-
cess probability to show the contradiction between quantum
mechanics and local or noncontextual realism. For exam-
ple, considering the Hardy-like quantum pigeonhole paradox
based on the PCG state |S1(n)〉 (Appendix B), we can find
that the success probability is 1/(n + 1). By contrast, in the
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FIG. 1. The graph projected-coloring problem studies the colorability of vertices under the condition of given edge colors. There are
seven categories of three-vertex PCGs, and the constraint relations of the edges in each category are equivalent. The qubits on any edge
can be regarded as a postselected subsystem after projecting all the other qubits to the state |0〉. The color of this edge depends on the
parity of the constraint which specifies the number of qubits staying in the box of |+〉. A red edge ({ j, k}) visually shows the constraint
relation of different colors between the vertices j and k. It means that any pair of the qubits cannot stay in the same box (XjXk = −1) if
the other qubit is postselected to the state |0〉. And a green edge ({ j, k}) visually shows the constraint relation of the same color between
the vertices j and k. (a) The first type of three-qubit uncolorable PCGs, which contains only one PCG and corresponds to the PCG state
(|000〉 − |011〉 − |101〉 − |110〉)/2. Notice that three red edges imply a group of relations X1X2 = −1, X2X3 = −1, and X1X3 = −1. One
can find consistent solutions for each pair of them (from the classical perspective), but for all three of these relations, there are no globally
inconsistent solutions. Such a group of relations seems like a Penrose triangle in which individually consistent corners (a pair of edges generate
each corner) form a globally inconsistent structure. (b) A representative example of the second type of three-qubit uncolorable PCGs, which is
associated with another one PCG state (|000〉 + |011〉 + |101〉 − |110〉)/2. (c)–(g) Representative examples of all kinds of three-qubit colorable
PCGs.

generalized n-qubit Hardy’s paradox [42], this probability can
only be 1/2n−1.

III. EXPERIMENT

A. Methods

Our experimental setup for generating the states |S〉 and
|S′〉 is illustrated in Fig. 2. We first prepared two pairs
of polarized-entangled photons in the |ψ−〉 = (|H〉|V 〉 −
|V 〉|H〉)/

√
2, in which H (V ) denotes |0〉 (|1〉) and the horizon-

tal (vertical) polarization state of photons. We adopted type-II
phase-match beamlike compound β-barium (c-BBO) crystals,
with a 780-nm true-zero-order half-wave plate (HWP) in-
serted between BBOs, to obtain polarized-entangled photons.

Pumped by ultraviolet laser pulses, photons pairs in the
same state |He〉|Vo〉 are generated through spontaneous para-
metric down conversion since two BBO crystals have the
same cutting angle and are placed in the same manner. Here
subscripts o(e) indicate two spatial modes on which photons
are ordinary (extraordinary) light. Passing the true-zero-order
HWP at 45◦, the state of photon pairs generated by the left
BBO is converted to |Ve〉|Ho〉. By careful spatial and tempo-
ral compensations, polarized-entangled photons in the state
|ψ−〉 = (|He〉|Vo〉 − |Ve〉|Ho〉)/

√
2 are successfully prepared.

More details about this sandwich-structure c-BBO for gen-
erating a polarized-entangled source are in Ref. [50]. In our
experimental setup, pump pulses pass through two c-BBOs
successively. In this way, two photon pairs are prepared in

state,

|�1〉 = (|H〉e1 |V 〉o1 − |V 〉e1 |H〉o1

)/√
2

⊗ (|H〉e2 |V 〉o2 − |V 〉e2 |H〉o2

)/√
2, (6)

with nonvanishing probability, in which subscripts 1 and 2
are used to distinguish the photons generated from which
c-BBOs. Then by transforming the first photon pair to the Bell
state (|HH〉 − |VV 〉)/

√
2 with a HWP at 45◦ for the e1 mode

photon, we obtain the state

|�2〉 = (|H〉e1 |H〉o1 − |V 〉e1 |V 〉o1

)/√
2

⊗ (|H〉e2 |V 〉o2 − |V 〉e2 |H〉o2

)/√
2. (7)

The vertically polarized photon |V 〉o2 is used as a trigger
signal, and we use a HWP at 22.5◦ for the e2 mode photon.
Afterwards, the two photons in modes e1 and e2 are directly
combined on a PBS. The PBS transmits H and reflects V ,
leading to a coincidence registration of a single photon at
each output. In this way, the two terms |H〉e1 |H〉o1 |H〉e2 and
|V 〉e1 |V 〉o1 |V 〉e2 are postselected, i.e.,

|�3〉 = 1√
2

(|H〉e1 |H〉o1 |H〉e2 + |V 〉e1 |V 〉o1 |V 〉e2

)
. (8)

In this step, to achieve great spatial and temporal overlap, a
movable prime is used to guarantee the same delay between
the two spatial modes e1 and e2. The corresponding Hong-Ou-
Mandel interference is illustrated in Fig. 3. We add a QWP at
0◦ and a HWP at 22.5◦ in each mode e1, e2, and o1 to rotate
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FIG. 2. Experimental setup. The pump beam, with a central
wavelength of 390 nm, a duration of 140 fs, and a repetition rate of
76 MHz, passes through two c-BBO crystals successively to generate
two pairs of polarized-entangled photons. Photons in spatial modes
e1 and e2 overlap on PBS; a movable prime is used to guarantee
that the temporal delay between two paths is equal. Photons in
modes e1 and e2 are spectrally filtered with 3-nm bandwidth filters,
and photons in modes o1 and o2 are spectrally filtered with 8-nm
bandwidth filters for a better collection efficiency. We show that
the relative phase exists for two states |S〉 and |S′〉, only changing
one QWP’s angle from 0◦ to 45◦ (red mark). c-BBO: compound
β-barium borate crystal; LiNbO3: LiNbO3 crystal for spatial com-
pensation; TC-YVO4: YVO4 crystal for temporal compensation;
HWP: half-wave plate; QWP: quarter-wave plate; PBS: polarizing
beam splitter.

the state |�3〉 to

|�4〉 = 1
2

(|H〉e1 |H〉o1 |H〉e2 − |H〉e1 |V 〉o1 |V 〉e2

−|V 〉e1 |H〉o1 |V 〉e2 − |V 〉e1 |V 〉o1 |H〉e2

)
, (9)
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FIG. 3. The Hong-Ou-Mandel interference of our setup; its visi-
bility is 0.962 ± 0.015.

FIG. 4. Data show the quantum probabilities of measurements
for the Hardy-like pigeonhole paradox on three-qubit state |S〉.
(a) Experimental results for X2X3 if Z1 = +1, (b) experimental re-
sults for X1X3 if Z2 = +1, (c) experimental results for X1X2 if Z3 =
+1, (d) experimental results for Z1 = Z2 = Z3 = +1. The error bars
in both subplots correspond to 1σ standard deviation.

which is the state |S〉. Additionally, by only changing the
QWP’s angle from 0◦ to 45◦ (red mark), the state |S′〉 is
prepared.

In our experiment, the fidelity F =
[Tr(

√√
ρtρexp

√
ρt )]2 = 0.931 ± 0.023, where ρexp and

ρt = |S〉〈S| are the experimental and theoretical density
matrices, respectively. Here, the errors are calculated by
assuming Poisson distribution for counting statistics, and
resampling over recorded data. In addition, we observed
genuine tripartite entanglement of state ρexp by the tripartite
negativity [51],

N123(ρ) = (N1,(23)N2,(13)N3,(12) )
1/3, (10)

where the bipartite negativities are defined as NI,(JK ) =
−2

∑
i σi(ρT I ), with σi(ρT I ) being the negative eigenvalues of

ρT I . The partial transpose of ρ is with respect to subsystem I ,
〈iI , jJK |ρT I |kI , lJK〉 = 〈kI , lJK |ρ|iI , jJK 〉 with I = 1, 2, 3 and
JK = 23, 13, 12, respectively. We calculated the experimental
value of the tripartite negativity, N123(ρexp) = 0.974 ± 0.013,
which is close to the theoretical value 0.9785 and clearly
shows its genuine tripartite entanglement.

B. Experimental results of |S〉
As illustrated in Fig. 2, we can use this experiment setup

to verify the above quantum feature of the minimal system.
For the implementation of the three-qubit Hardy-like quantum
pigeonhole paradox, we measured Eqs. (2a)–(2c) and (2d). All
of these experimental results are shown in Fig. 4, where

〈X2X3〉 = −0.911 ± 0.012 if Z1 = +1, (11a)

〈X1X3〉 = −0.931 ± 0.017 if Z2 = +1, (11b)

〈X1X2〉 = −0.930 ± 0.020 if Z3 = +1, (11c)
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and the probability of event Z1 = Z2 = Z3 = +1 is

P(Z1 = Z2 = Z3 = +1) = 0.277 ± 0.009. (12)

In any local hidden variable theories or noncontextual hidden
variable theories, according to the classical pigeonhole prin-
ciple, events X1X2 = X1X3 = X2X3 = −1 cannot jointly hold,
which leads to a zero probability of obtaining Z1 = Z2 = Z3 =
+1. However, our experimental results show a probability of
0.277 ± 0.009 to get Z1 = Z2 = Z3 = +1. Although not per-
fect, it is enough to exhibit the Hardy-type all-versus-nothing
phenomenon and can successfully prove this nonclassical
problem.

In fact, the paradox constructed from this state is a rep-
resentative example corresponding to another kind of PCG
(see Fig. 1). Moreover, it is known that there are only two
types of Hardy-like quantum pigeonhole paradoxes for three-
qubit systems. In this sense, we have completely verified
this kind of quantum feature for the minimal systems. Only
projection measurements of a polarization degree of freedom
were performed in our experiment, and we did not introduce
other auxiliary qubits. It differs from previous experiments
that required weak measurements and additional resources.
In addition, there are two main reasons for the imperfect
experimental results. The first is the angle of all wave plates
in the experiments. The HWP in c-BBO and compensation
crystals affect the entangled source and the visibility of the
four-photon Hong-Ou-Mandel interference result. All HWPs
and QWPs used for projection measurements are manually
adjusted, introducing corresponding experimental errors. The
other is the stability of our optical setup. The raw experimental
correlation counts were obtained from two nights (16 hours in
total) of measurements, during which the pump laser power
would be slightly reduced. All these factors caused the exper-
imental results to deviate from the expected theoretical values.

IV. CONCLUSION AND DISCUSSION

In conclusion, with the general projected-coloring graph
states, we have studied the general Hardy-like quantum pi-
geonhole paradoxes and used the graph projected-coloring
problems to portray which coexisting postselections may lead
to noncoexisting colorings. We experimentally verified this
feature in the minimal three-qubit systems. Compared with
the original quantum pigeonhole paradox, which needs some
sophisticated skills such as weak measurement [25], the color-
ing problems (Hardy-like quantum pigeonhole paradoxes) are
more feasible in the experimental implementation.

These quantum paradoxes can be considered as a kind of
special many-particle Hardy paradox. One can use a special
kind of graph called projected-coloring graphs to design other
different paradoxes. There are more interesting problems that
are a particular case of these graph coloring problems, such
as the quantum magic square problems and quantum map col-
oring problems in Appendix C. Additionally, the Hardy-like
quantum pigeonhole paradox is a powerful tool to study a kind
of GHZ-like nonlocality unnoticed before. Unlike the com-
mon GHZ paradox, the proof for nonlocality is constructed
based on nonperfect correlations rather than constraints in-
duced by stabilizers.

Moreover, since this quantum paradox is essentially a
consequence of quantum nonlocality or contextuality, the fea-
tures of quantum mechanics that do not exist in classical
physics could lead to an operational advantage [7–9]. Thus
one may design some tasks, such as some generalizations
of the device-independent true random number generation
protocol proposed in Ref. [45], using this quantum feature as
a peculiar quantum resource.
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APPENDIX A: EXPERIMENTAL RESULTS OF |S′〉
Based on state |S′〉, we also can construct another Hardy-

like quantum pigeonhole paradox. It needs to measure
whether the following relations hold:

P(X2X3 = −1|Z1 = +1) = 1, (A1a)

P(X1X3 = +1|Z2 = +1) = 1, (A1b)

P(X1X2 = +1|Z3 = +1) = 1, (A1c)

P(Z1 = Z2 = Z3 = +1) = 1
4 . (A1d)

Similarly to |S〉 in the main text, we have measured
Eqs. (A1a)–(A1d),

〈X2X3〉 = −0.921 ± 0.011 if Z1 = +1, (A2a)

〈X1X3〉 = +0.911 ± 0.017 if Z2 = +1, (A2b)

〈X1X2〉 = +0.923 ± 0.008 if Z3 = +1, (A2c)

P(Z1 = Z2 = Z3 = +1) = 0.246 ± 0.014. (A2d)

In any local hidden variable theories or noncontextual hidden
variable theories, according to the classical pigeonhole prin-
ciple, events X2X3 = −1, X1X3 = +1 and X1X2 = +1 cannot
jointly hold, which leads to a zero probability of obtaining
Z1 = Z2 = Z3 = +1. But our experimental results show a
probability of 0.246 ± 0.014 to get Z1 = Z2 = Z3 = +1. All
these experimental results, including |S〉 and |S′〉, can discard
the Hardy-like all-versus-nothing phenomenon, and success-
fully verify the Hardy-like quantum pigeonhole paradoxes.

APPENDIX B: THREE KINDS OF PCG STATES

Here we enumerate three kinds of general quantum states
that can be used for the Hardy-like quantum pigeonhole
paradox once again. The simplest quantum state |S〉 in each
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category is consistent. The first kind of quantum state for the
Hardy-like pigeonhole paradox is

|S1(n)〉 = 1√
n + 1

[
| 0 · · · 00︸ ︷︷ ︸

n

〉 − |W ; n, 1〉
]
, (B1)

|W ; n, k〉 = | k · · · kk︸ ︷︷ ︸
n−1

0〉 + | k · · · k︸ ︷︷ ︸
n−2

0k〉 + · · ·

· · · + |k0 k · · · k︸ ︷︷ ︸
n−2

〉 + |0 kk · · · k︸ ︷︷ ︸
n−1

〉, (B2)

where n � 3 and n is odd. Apart from quantum states |S1〉,
another two kinds of quantum states are n-qubits states and
(d + 1)-qudit states, which can be written as

|S2〉 = 1√
1 + C2

n

[
| 0 · · · 00︸ ︷︷ ︸

n

〉 − |
〉
]
, (B3)

|S3〉 = 1

d

⎡
⎣| 0 · · · 00︸ ︷︷ ︸

d+1

〉 −
d−1∑
l=1

eilθ |W ; d + 1, l〉
⎤
⎦, (B4)

respectively. Here, |
〉 = ∑
perm |00 11 · · · 11︸ ︷︷ ︸

n−2

〉, where the

summation is over all permutations of |00 11 · · · 11︸ ︷︷ ︸
n−2

〉, n � 3,

and n is odd.

1. Multiqubit case 1

For quantum states |S1(n)〉, we can have

X2X3 · · · Xn = −1 if Z1 = 1,

X1X3 · · · Xn = −1 if Z2 = 1,

· · ·
X1X2 · · · Xn−1 = −1 if Zn = 1. (B5)

According to its classical assignment assumption in hidden
variable theory (HVTs), Xl and Zl can be assigned predefined
values xl and zl , respectively, where v = ±1, v ∈ {zl , xl}. It
follows that if the observables from one context (mutually
commuting) satisfy a certain algebraic relationship, then the
assigned predefined values obey the same algebraic constraint,
i.e.,

x2x3 · · · xn = −1 if z1 = 1,

x1x3 · · · xn = −1 if z2 = 1,

· · ·
x1x2 · · · xn−1 = −1 if zn = 1. (B6)

Using the form of conditional event, these n events can
be expressed as {x2x3 · · · xn = −1|z1 = +1}, {x1x3 · · · xn =
−1|z2 = +1}, · · · , and {x1x2 · · · xn−1 = −1|zn = +1}. The
probabilities of those n events are

PC (x2x3 · · · xn = −1|z1 = 1)

= PC (x1x3 · · · xn = −1|z2 = 1)

= PC (x1x2 · · · xn−1 = −1|zn = 1) = 1, (B7)

in which we utilize subscript C(Q) to denote classical (quan-
tum) probability.

According to the probabilities being 1 of those n events,
if event z1 = z2 = · · · = zn = 1 occurs, event x2x3 · · · xn =
x1x3 · · · xn = x1x2 · · · xn−1 = −1 will also occur at the same
time and be with the same probability, hence we can get

(x1x2 · · · xn−1xn)n = −1. (B8)

This method, multiplying both sides of the equations, usually
can be used in the all-versus-nothing proof. But, obviously,
(x1x2 · · · xn−1xn)n−1 must be non-negative since all xl are real
numbers and n − 1 is even. That is, the event x2x3 · · · xn =
x1x3 · · · xn = x1x2 · · · xn−1 = −1 cannot occur via a classical
assignment method. Therefore, it is logically appropriate that
events z1 = z2 = · · · = zn = 1 and x2x3 · · · xn = x1x3 · · · xn =
x1x2 · · · xn−1 = −1 occur simultaneously only when

PC (z1 = z2 = · · · = zn = 1) = 0. (B9)

On the other hand, the probability of classical event z1 = z2 =
· · · = zn = 1 is equal to its quantum scenery,

PQ(Z1 = Z2 = · · · = Zn = 1) = 1

n + 1
. (B10)

Equations (B9) and (B10) are contradictory. It is indicated that
we cannot make classical assignments to observable values,
and the hypothesis of HVTs is invalid. Therefore, for testing
the paradox based on the quantum state |S1〉, we only need to
measure Eqs. (B5) and (B10).

If n = 3, the state is

|S1(n = 3)〉 = (|000〉 − |011〉 − |101〉 − |110〉)/2, (B11)

which is the same as |S〉.

2. Multiqubit case 2

For quantum states |S2(n)〉, we can have

XmXn = −1 if all Zj 	=m,n = 1 and m 	= n. (B12)

Similar to above, according to its classical assignment as-
sumption in HVTs, its assigned predefined values obey the
same algebraic constraint, i.e.,

xmxn = −1 if all z j 	=m,n = 1 and m 	= n. (B13)

Using the form of conditional event, the probabilities of these
C2

n events are

PC (x1x2 = −1|z3 = · · · = zn = 1)

= PC (x1x3 = −1|z2 = z4 · · · = zn = 1)

= PC (xn−1xn|z1 = z2 · · · = zn = 1) = 1. (B14)

Hence we can also get

(x1x2 · · · xn−1xn)n−1 = −1. (B15)

But, obviously, (x1x2 · · · xn−1xn)n−1 must be non-negative
since all xl are +1 or −1, and n − 1 is even. Therefore,
it is logically appropriate that events z1 = z2 = · · · = zn = 1
and x1x2 = · · · = x1xn = · · · = xn−1xn = −1 occur simulta-
neously only when

PC (z1 = z2 = · · · = zn = 1) = 0. (B16)
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On the other hand, the probability of classical event z1 = z2 =
· · · = zn = 1 is equal to its quantum scenery,

PQ(Z1 = Z2 = · · · = Zn = 1) = 2

n(n − 1) + 2
. (B17)

Equations (B16) and (B17) are contradictory. It is indicated
that we cannot make classical assignments to observable val-
ues, and the hypothesis of HVTs is invalid. And, if n = 3, the
state is

|S2(n = 3)〉 = (|000〉 − |011〉 − |101〉 − |110〉)/2, (B18)

which is the same as |S〉.

3. Multiqudit case

The Pauli matrix group has applications in quantum com-
putation, quantum teleportation, and other quantum protocols.
This group is defined for a single qudit in the following man-
ner:

Zd =
d−1∑
n=0

einθ |n〉〈n|, (B19)

Xd =
d−1∑
n=0

|n ⊕ 1〉〈n|, (B20)

where θ = 2π/d , a ⊕ b = (a + b) mod d , and XZ = ZXeiθ .
Furthermore, the Y gate can be written Y = XZ .

For quantum states |S3(n)〉, we can have

d+1∏
j=1, j 	=k

Xj = e−iθ if Zk = 1, (B21)

where k = 1, 2, . . . , d + 1. According to its classical assign-
ment assumption in HVTs, its assigned predefined values
obey the same algebraic constraint, i.e.,

d+1∏
j=1, j 	=k

x j = e−iθ if zk = 1. (B22)

Using the form of conditional event, the probabilities of these
d events are

PC (x2x3 · · · xd+1 = e−iθ |z1 = 1)

= PC (x1x3 · · · xd+1 = e−iθ |z2 = 1)

= PC (x1x2 · · · xd = e−iθ |zd+1 = 1) = 1. (B23)

According to the probabilities being 1 of those n
events, if event z1 = z2 = · · · = zd = zd+1 = 1 occurs, event
x2x3 · · · xd+1 = x1x3 · · · xd+1 = · · · = x1x2 · · · xd = e−iθ will
also occur at the same time and be with the same probability;
hence we can get

(x1x2 · · · xd xd+1)d = e−idθ = −1. (B24)

But, obviously, (x1x2 · · · xn−1xn)n−1 must be non-negative.
Therefore, it is logically appropriate that events z1 =
z2 = · · · = zd = zd+1 = 1 and x2x3 · · · xd+1 = x1x3 · · · xd+1 =
· · · = x1x2 · · · xd = e−iθ occur simultaneously only when

PC (z1 = z2 = · · · = zd = zd+1 = 1) = 0. (B25)

FIG. 5. A 2 × 2 quantum magic square occupied by a four-qubit
quantum state.

On the other hand, the probability of classical event z1 = z2 =
· · · = zd = zd+1 = 1 is equal to its quantum scenery,

PQ(z1 = z2 = · · · = zd = zd+1 = 1) = 1

d2
. (B26)

Equations (B25) and (B26) are contradictory. It is indicated
that we cannot make classical assignments to observable val-
ues, and the hypothesis of HVTs is invalid. And if d = 2, the
state is

|S3(d = 2)〉 = (|000〉 − |011〉 − |101〉 − |110〉)/2, (B27)

which is also the same as |S〉.

APPENDIX C: QUANTUM MAGIC SQUARE PARADOX

Putting 1 to n2 (n � 3) in an n × n table such that the sum
of the numbers in each row, column, and both diagonals are
the same, one can get an nth-order magic square. A simplified
version is the binary case in which only 0 and 1 are allowed
to be filled, and such magic squares are called binary magic
squares. Similar to the construction of PCGs, if mapping 0 and
1 to X = 1 and X = −1, respectively, one can build a kind of
quantum magic square and the associated Hardy-like quantum
magic square paradox.

We present a Hardy-like quantum magic square paradox
based on a second-order quantum magic square as an exam-
ple, seen in Fig. 5. Four qubits are put in the 2 × 2 magic
square and labeled 1, 2, 3, and 4, from left to right and from
top to bottom. As referred above, the predefined value of Xi

on the ith qubit mapped to 0 or 1 can be considered as the
associated binary number filled in the magic square.

Consider the state |M〉 = (|0000〉 − |1100〉 − |1010〉 −
|1001〉 − |0110〉 − |0101〉 − |0011〉)/

√
7. One can check that

P(X3X4 = −1|Z1 = Z2 = 1) = 1, (C1a)

P(X2X4 = −1|Z1 = Z3 = 1) = 1, (C1b)

P(X2X3 = −1|Z1 = Z4 = 1) = 1, (C1c)

P(X1X4 = −1|Z2 = Z3 = 1) = 1, (C1d)

P(X1X3 = −1|Z2 = Z4 = 1) = 1, (C1e)

P(X1X2 = −1|Z3 = Z4 = 1) = 1, (C1f)

P(Z1 = Z2 = Z3 = Z4 = 1) = 1
7 . (C1g)

Therefore, if one measures Z1 and Z2 on qubits 1 and 2
and gets the outcomes of Z1 = 1 and Z2 = 1, one can infer
that X3X4 = −1, and likewise the others. If Z1 = Z2 = Z3 =
Z4 = 1 can jointly hold with a nonzero probability, then,
in the classical framework, X1X2 = X1X3 = X1X4 = X2X3 =
X2X4 = X3X4 = −1 is jointly held with a nonzero probabil-
ity. Using a similar argument of the case of the three-qubit
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Hardy-like quantum pigeonhole paradox, one can see that it is
impossible. Then, we have constructed a Hardy-like quantum
magic square paradox.

The following examples are more general Hardy-like quan-
tum magic square paradoxes.

Example 1. Consider a (4 × 4)-qubit PCG state |M(16)〉 =
1√
11

(|�0〉S − ∑10
i=1 |�1〉Si |�0〉S̄i

), where S = {1, 2, . . . , 16}
and {Si|i = 1, 2, . . . , 10} = {{4k + 1, 4k + 2, 4k + 3, 4k +
4}|k = 0, 1, 2, 3} ∪ {{l, 4 + l, 8 + l, 12 + l}|l = 1, 2, 3, 4} ∪
{1, 6, 11, 16} ∪ {4, 7, 10, 13}. Assume that |M(16)〉 can be
modeled by local hidden variable (LHV). Consider a run of
the experiment for which Z1, Z2, . . . , Z16 are measured and
the results Z1 = Z2 = · · · = Z16 = 1 are obtained. Similar to
the argument of the Hardy-like quantum pigeonhole (HLQP)
paradox in the main text, one can finally conclude that∏

j∈S1
Xj = ∏

j∈S2
Xj = · · · = ∏

j∈S10
Xj = −1. Based on

that, one can find some solutions for X1, X2, . . . , X16. There is
no contradiction.

Notice that
∏10

i=1(
∏

j∈Si
Xj ) = X1X4X6X7X10X11X13X16 =

1. We consider another PCG state, |M̃(16)〉 = 1√
12

(
√

11
|M(16)〉 − |1001011001101001〉). A new conditional con-
straint is as follows: If Z2 = Z3 = Z5 = Z8 = Z9 =
Z12 = Z14 = Z15 = 1 are obtained, then, necessarily,
X1X4X6X7X10X11X13X16 = −1. Next, we also consider a
run of the experiment for which Z1, Z2, . . . , Z16 are measured
and the results Z1 = Z2 = · · · = Z16 = 1 are obtained. This
extra constraint ensures that there is no consistent solution
for X1, X2, . . . , X16 in the classical world according to the
pigeonhole principle.

Let mr = (Xr + 1)/2 be the number arranged in the rth
grid of the binary magic square. Notice that

∏
j∈Si

Xj =
(−1)⊕ j∈Si m j = −1 and

X1X4X6X7X10X11X13X16

= (−1)m1⊕m4⊕m6⊕m7⊕m10⊕m11⊕m13⊕m16 = −1, (C2)

in which ⊕ stands for addition modulo 2 rather than modulo
n. It follows that ⊕ j∈S1 mj = ⊕ j∈S2 mj = · · · = ⊕ j∈S10 mj =
m1 ⊕ m4 ⊕ m6 ⊕ m7 ⊕ m10 ⊕ m11 ⊕ m13 ⊕ m16 = 1, a con-
tradiction (the assumption of local realism can “induce”
a binary magic square which is forbidden in the classical
world). Then we can get a fourth-order conditional (with an
extra constraint) Hardy-like quantum magic square paradox.

Remarks. Commonly, there are some prescribed con-
straints for a classical magic square (e.g., the 3 × 3 conven-
tional magic square is arranged with numbers 1, 2, . . . , 9).
Even for a binary magic square, usually the number of zeros
(or ones) to be arranged should be prescribed (e.g., four zeros
and five ones for a 3 × 3 binary magic square). However,
for a quantum binary magic square, we would like to choose
some other constraints, such as the extra constraint imposed
in the above example. After all, our goal is just to show that
a classically impossible magic square might be probabilisti-
cally produced if the associated quantum state admits a LHV
model.

Example 2. Consider a nine-qubit PCG state,
|M(9)〉 = 1

3 (|000000000〉 − |111000000〉 − |0001110000〉 −
|000000111〉 − |100100100〉 − |010010010〉 −
|001001001〉 − |100010001〉 − |001010100〉). Assume that

|M(9)〉 can be modeled by LHV. Consider a run of the
experiment for which Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9 are
measured and the results Z1 = Z2 = Z3 = Z4 = Z5 = Z6 =
Z7 = Z8 = Z9 = 1 are obtained. Likewise, one can conclude
that the relations X1X2X3 = X4X5X6 = X7X8X9 = X1X4X7 =
X2X5X8 = X3X6X9 = X1X5X9 = X3X5X7 = −1 should be
satisfied. There is also no contradiction.

Notice that the product of these above eight relations
gives rise to X1X3X7X9 = 1. One can use another PCG state,
|M̃(9)〉 = 1√

10
(3|M(9)〉 − |101000101〉), to construct a HLQP

paradox. Likewise, consider a run of the experiment for which
Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9 are measured and the results
Z1 = Z2 = Z3 = Z4 = Z5 = Z6 = Z7 = Z8 = Z9 = 1 are ob-
tained. In addition, X1X2X3 = X4X5X6 = X7X8X9 = X1X4X7 =
X2X5X8 = X3X6X9 = X1X5X9 = X3X5X7 = −1, and one can
get an extra relation X1X3X7X9 = −1. All such relations con-
tradict the pigeonhole principle.

Let mk = (Xk + 1)/2 be the number arranged in the kth
grid of the binary magic square. One can get m1 ⊕ m2 ⊕ m3 =
m4 ⊕ m5 ⊕ m6 = m7 ⊕ m8 ⊕ m9 = m1 ⊕ m4 ⊕ m7 = m2 ⊕
m5 ⊕ m8 = m3 ⊕ m6 ⊕ m9 = m1 ⊕ m5 ⊕ m9 = m3 ⊕ m5 ⊕
m7 = 1 and m1 ⊕ m3 ⊕ m7 ⊕ m9 = 1, which cannot hold si-
multaneously in the classical world. This contradiction can
induce another conditional Hardy-like quantum magic square
paradox.

Example 3. We generalize the notion of binary magic
square to the n-dimensional case. For example, a three-
dimensional binary magic square of the order of 2 is an
arrangement of k ones and 23 − k zeros in a 2 × 2 × 2 cube,
such that the XOR sum of the numbers in each edge, four main
diagonals, and 12 other diagonals is the same. Here the XOR
is the Exclusive OR logical gate that gives a true (1) output
when the number of true inputs is odd.

Consider an eight-qubit PCG state, |M(8)〉 = 1√
C2

8 +1

(|00000000〉 − ∑C2
8

i=1 |11〉Si |000000〉S̄i
), where Si = {ai, bi}

and ai 	= bi ∈ {1, 2, 3, . . . , 8}. Also assume that |M(8)〉 can be
modeled by LHV. Consider a run of the experiment for which
Z1, Z2, . . . , Z8 are measured and the results Z1 = Z2 = · · · =
Z8 = 1 are obtained. Likewise, one can finally conclude that∏

j∈S1
Xj = ∏

j∈S2
Xj = · · · = ∏

j∈S28
Xj = −1, which con-

tradict the pigeonhole principle.
Let mr = (Xr + 1)/2. Notice that

∏
j∈Si

Xj =
(−1)⊕ j∈Si m j = −1. Then one can get ⊕ j∈S1 mj = ⊕ j∈S2 mj =
· · · = ⊕ j∈S28 mj = 1, which is a contradiction. Namely, we
get a generalized Hardy-like quantum magic square paradox.

APPENDIX D: AN EQUIVALENT HARDY’S
PARADOX FOR THE THREE-QUBIT SCENARIO

First, let us consider a contextual version of Hardy’s
proof (the general Hardy’s paradox and the three parties
can even stay in the same place). Rewrite the state |S〉
as |S〉 = [|0〉i(|00〉 jk − |11〉 jk ) − |1〉i(|01〉 jk + |10〉 jk )]/2. Let
Ujk = (I − XjXk )/2, Di = (I + Zi )/2, and then one can get
the Hardy conditions:

U23U13U12 = 0, (D1a)

P(U23 = 1|D1 = 1) = 1, (D1b)
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P(U13 = 1|D2 = 1) = 1, (D1c)

P(U12 = 1|D3 = 1) = 1, (D1d)

P(D1 = 1, D2 = 1, D3 = 1) = 1/4. (D1e)

Similar to Ref. [14], we consider a run of the experiment in
which D1, D2, D3 are measured, and their outcomes D1 =
1, D2 = 1, D3 = 1 are obtained, whose probability is 1/4.
Since we have D1 = 1 in this run, one can infer from the above
Hardy conditions that U23 = 1.

Assume that |S〉 admits a noncontextual hidden variable
model; then the value of U23 is independent of the context.
It is measured with an independent measurement choice on
qubit 1. For this run, U23 determined by the hidden vari-
ables must be equal to 1, i.e., U23(λ) = 1 (precisely, [1 −
(X2X3)(λ)]/2 = 1). Likewise, one can infer that U13(λ) = 1,
and U12(λ) = 1 holds in this run as well. Therefore, in this run,
we have U12(λ)U13(λ)U23(λ) = 1. If one consider the values
of U12,U13,U23 in this run, one would have U23U13U12 =
1, which contradicts the Hardy condition (U23U13U12 = 0).
Next, we put the three photons in different places and assume
all the measurements performed on the photons are spacelike
separated.

The above proof can be converted into a nonlocality ver-
sion of the conventional Hardy’s paradox. In this scenario,

the system can be assumed to admit a LHV model rather
than a noncontextual hidden variable model. As a conse-
quence, for example, U23(λ) = [1 − (X2X3)(λ)]/2 = 1 in
the above proof will be replaced with [1 − X2(λ)X3(λ)]/2 =
1. The other arguments are similar. Precisely, the con-
straint (I − X2X3)(I − X1X3)(I − X1X2)/8 = 0 should be (I −
X2X3)(I − X1X3)(I − X1X2)/8 = 0 in the proof of nonlocal-
ity. Moreover, constructing a Hardy-like quantum pigeonhole
paradox also requires the assumption of local realism,
but does not necessarily invoke (I − X2X3)(I − X1X3)(I −
X1X2)/8 = 0. Instead, one can use the classical pigeon-
hole principle and Eqs. (2a)–(2d) to give a “sometimes”
contradiction.

However, there is another type of Hardy’s paradox, i.e.,
the version of the proof for contextuality. In that sce-
nario, spacelike separated conditions for the measurement
may not be satisfied. In a run of the experiment, the out-
comes of (X1X2), (X1X3), and (X2X3) usually cannot be
regarded as products of the outcomes of single opera-
tors X1X2, X1X3, and X2X3. Then one cannot construct a
contradiction based on the classical pigeonhole principle.
Besides such a contextual version of Hardy’s proof, one
can also get the contradiction by an inconsistent noncontex-
tual value assignment, where (X1X2)(X2X3) = X1X3 implies
v(X1X2) ∗ v(X2X3) = v(X1X3).
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