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Bounding the detection efficiency threshold in Bell tests using multiple copies of the maximally
entangled two-qubit state carried by a single pair of particles
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In this paper, we investigate the critical efficiency of detectors to observe Bell nonlocality using multiple copies
of the maximally entangled two-qubit state carried by a single pair of particles, such as hyperentangled states,
and the product of Pauli measurements. It is known that in a Clauser-Horne-Shimony-Holt (CHSH) Bell test
the symmetric detection efficiency of 82.84% can be tolerated for the two-qubit maximally entangled state. We
beat this enigmatic threshold by entangling two particles with multiple degrees of freedom. The obtained upper
bounds of the symmetric detection efficiency thresholds are 80.86%, 73.99%, and 69.29% for two, three, and
four copies of the two-qubit maximally entangled state, respectively. The number of measurements and outcomes
in the respective cases are 4, 8, and 16. To find the improved thresholds, we use large-scale convex optimization
tools, which allows us to significantly go beyond state-of-the-art results. The proof is exact up to three copies,
while for four copies it is due to reliable numerical computations. Specifically, we used linear programming to
obtain the two-copy threshold and the corresponding Bell inequality, and convex optimization based on Gilbert’s
algorithm for three and four copies of the two-qubit state. We show analytically that the symmetric detection
efficiency threshold decays exponentially with the number of copies of the two-qubit state. Our techniques can
also be applied to more general Bell nonlocality scenarios with more than two parties.
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I. INTRODUCTION

Quantum theory predicts that there exist correlations in
nature that cannot be simulated with classical resources.
In particular, measurements on separated parts of entangled
quantum systems can produce outcomes whose correla-
tions cannot be explained by any local classical model.
These strong correlations can be witnessed by violating Bell
inequalities [1].

The violation of Bell inequalities has been demonstrated
in several laboratory experiments over the last 50 years. The
very first conclusive experiment was performed by Freedman
and Clauser [2] in 1972. However, this experiment did not
close the locality loophole. Note that Bell experiments can
have a number of loopholes due to technical imperfections
[3]. The first pioneering experiment with time-varying polar-
ization analyzers—still not loophole-free—was carried out by
Aspect and his colleagues [4] in 1982. In fact, loophole-free
Bell violations have only recently become possible [5–8].
These latter experiments provide the strongest evidence yet
that nature is nonlocal.

One of the main technical difficulties in achieving a
loophole-free violation is the finite detection efficiency of the
detectors [9]. In a Bell test, due to the imperfect efficiency
of the detectors, some of the emitted systems are not de-
tected during the detection process, and this failure can be
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exploited by a local classical model to reproduce the statistics
of the experiment. For each Bell inequality, a threshold can
be computed above which the detection loophole closes (see,
for example, the recent works in Refs. [10–12]). For a typi-
cal Bell inequality, however, this threshold is relatively high.
The first detection-loophole-free Bell tests [5–7] performed in
2015 were all based on the violation of the Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality [13]. In fact, this is
the simplest bipartite Bell inequality, consisting of two set-
tings (m = 2) with two outcomes (o = 2) per party, and the
detection efficiency required to see a Bell violation is at
least η = 2(

√
2 − 1) � 0.8284 using the maximally entan-

gled two-qubit state [14,15]:

|ϕ+〉 = |0, 0〉 + |1, 1〉√
2

. (1)

To determine the threshold 2(
√

2 − 1), one assumes that all
detectors have the same detection efficiency η. Using Bell
inequalities with more than two settings per party (m > 2)
and a two-qubit maximally entangled state, only minor im-
provements were reported. To the best of our knowledge,
the lowest reported symmetric detection efficiency threshold
is 0.8214 for two measurement outcomes and a maximally
entangled two-qubit system [16]. This efficiency threshold is
given by the four-setting Bell inequality A5 from the list of
Avis et al. [17]. Exactly the same threshold was obtained by
Massar et al. [18] in the case of four settings, who used a
geometric approach to study Bell inequalities with multiple
settings. We also note that for the maximally entangled state
(1), a lower bound of 2/3 on the threshold η has been proved
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for any number of two-outcome settings [19]. However, it is
not known whether this lower bound of 2/3 is achievable,
or whether a higher lower bound can be obtained using the
maximally entangled state (1) and possibly an infinite number
of measurement settings.

In the present work, we study Bell inequalities with finite
detection efficiencies using multiple copies of the two-qubit
maximally entangled state (1), which state is carried by a sin-
gle pair of particles. Note that n copies of the state (1) (or any
other two-qubit maximally entangled state) can be considered
as a maximally entangled (2n × 2n)-dimensional state. We use
this n-copy state along with a product of Pauli measurements
acting on the n individual copies. The resulting probabilities
define a Bell setup with m = 2n settings and o = 2n outcomes.
Let us denote by η(n)

sym the lowest possible symmetric detection
efficiency threshold in this n-copy scenario. By symmetric,
we mean that each detector is modeled by the same detection
efficiency. In this work, we give upper bounds on the above
threshold. We can reduce the critical detection efficiency value
well below 0.8214 for n � 2. In particular, the critical value
η(n)

sym is shown to decrease exponentially in the number of n
copies. To this end, in Sec. III, we consider multiple copies of
the CHSH expression. This inequality is sufficient to show the
exponentially decreasing behavior of the critical value.

In Secs. IV and V, however, we give even lower upper
bounds on η(n)

sym by constructing optimal Bell inequalities
based on a geometric approach. In particular, we obtain upper
bounds of η(2)

sym � 0.8086 and η(3)
sym � 0.7399 for two and three

copies, respectively. It is noted that for a single copy, we
have the exact value η(1)

sym = 2(
√

2 − 1), which is provided
by the CHSH inequality. It is difficult to obtain exact bounds
for more than three copies due to the computation of the
local bound, but our reliable numerical calculations strongly
support an upper bound of η(4)

sym � 0.6929. We also consider
the case when the efficiency of one party’s detectors is unity
(i.e., say, Bob has perfect detectors), in which case we denote
the corresponding n-copy threshold by η(n)

asym. In this case, we
also obtain improved upper bounds compared to the one-copy
threshold η(1)

asym = 1/
√

2 � 0.7071 (see, e.g., Refs. [20,21]).
Note that our approach apart from the above cases is also
applicable in the more general case when the detection ef-
ficiencies depend on the settings [22]. Such a more general
setup fits, for example, to Bell experiments using hybrid
measurements.

In addition to the numerical treatment, we analytically
upper bound η(n)

sym and find that the value 2/3 in the paper by
Gisin and Gisin [19] can be surpassed by n � 13 copies of the
maximally entangled two-qubit state and m = 213 measure-
ment settings per party. This result also indicates how difficult
it is to significantly reduce the required detection efficiency in
the number of settings to observe a Bell violation in the n-copy
scenario. In another high-dimensional scenario, Massar [23]
obtained the threshold values

ηsym � D3/42−0.0035D (2)

for a special family of 2D-setting Bell inequalities using (D ×
D)-dimensional maximally entangled states. If we consider
this high-dimensional entangled state to be many copies of
the maximally entangled two-qubit state (1), we find that n
must be greater than 10 (and the number of settings m = 2D

greater than the astronomically large number 21024) to make
ηsym < 2/3.

Another approach to the detection efficiency problem,
which is particularly fruitful in photonic experiments [6,7],
is to use partially entangled states instead of the maximally
entangled two-qubit state. By modifying the state (and the
measurements) in this way, the detection efficiency threshold
for the CHSH inequality [13] can be reduced from 0.8284
down to 2/3, the so-called Eberhard limit [24]. However, to
reach this value, both the state and the applied measurements
must be fine-tuned, which is experimentally challenging. In-
deed, in the limiting case of 2/3, the state has to be a pure state
close to the product state and the measurements must corre-
spond to observables which are almost commuting [24,25].
Related to this, a recent experimental study has shown that
almost product states are very fragile for obtaining a high rate
of random bits [26] from Bell violations [27,28].

In this study, we take a somewhat opposite approach to the
one using partially entangled states discussed above. We con-
sider a measurement setup with products of Pauli observables
on both sides and multiple copies of the two-qubit maximally
entangled state (1) encoded into a pair of particles. It is noted
that the state (1) is equivalent to the singlet state up to a local
change of basis, which gives the threshold value of ηsym =
2(

√
2 − 1) for the CHSH inequality [13]. In the next section,

we reproduce this known value [14,15]. We then show that
this value can be reduced significantly by considering mul-
tiple copies of the maximally entangled two-qubit state and
by performing anticommuting Pauli measurements on half
of the two-qubit state. We note that the decreasing behavior
of the detection efficiency threshold using multiple copies of
the two-qubit state has been conjectured by Barrett et al. [29].

Note that for two copies of the maximally entangled two-
qubit state, i.e., a maximally entangled 4 × 4 state, the lowest
detection efficiency threshold found so far corresponds to the
inequality I4

4422 [16], which gives the threshold efficiency of
ηsym = 0.7698 [30]. In fact, more recent studies using Bell
inequalities with multiple outcomes and higher-dimensional
maximally entangled states have found no improvement on
this value [12,31]. While our results do not improve on pre-
vious works for the maximally entangled 4 × 4 dimensional
state, by adding a third copy of the maximally entangled
two-qubit state to obtain an 8 × 8 state encoded in a single pair
of particles, we achieve η(3)

sym � 0.7399. Our result is promis-
ing from an experimental point of view, considering recent
progress on hyperentanglement [32,33] and various sources of
high-dimensional entanglement (see Ref. [34] for a review).

The structure of the paper is as follows. In Sec. II, we
introduce two-party correlation-type Bell inequalities (and in
particular the CHSH inequality) and discuss their detection
efficiency threshold. In Sec. III, we present an nth iterated
version of the CHSH inequality and give upper bounds on
the detection efficiency thresholds of this particular inequality.
This in turn defines an upper bound on η(n)

sym and η(n)
asym. In

Secs. IV and V we present our geometric approaches based
on convex optimization (linear programming and Gilbert’s
method). These methods allow us to further improve the above
upper bounds for small values of n (e.g., n = 2, 3 and 4). The
paper concludes with a discussion in Sec. VI.
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II. BELL INEQUALITIES
AND DETECTION EFFICIENCIES

A. The CHSH inequality

We use the maximally entangled two-qubit state (1), locally
equivalent to the singlet state (|0, 1〉 − |1, 0〉)/

√
2. On the

other hand, Alice’s and Bob’s measurements are

Ma|x = (1 + (−1)a�ax · �σ )/2,

Mb|y = (1 + (−1)b�by · �σ )/2, (3)

where the outputs are labeled by a, b = {0, 1} and the inputs
by x, y = {0, 1}, and �σ = (σx, σy, σz ) is the vector of Pauli
matrices. With the Bell state (1) and measurement directions
(i.e., the Bloch vectors) �ax for Alice and �by for Bob, the
correlations are given by

P(a, b|x, y) = Tr (|ϕ+〉〈ϕ+|Ma|x ⊗ Mb|y)

= 1

4
(1 + (−1)a⊕b�ax · �b′

y), (4)

where �b′
y = (by

1,−by
2, by

3) and a ⊕ b is the sum of bits a and b
modulo 2.

If we choose the measurement directions

�a0 = (1, 0, 0)

�a1 = (0, 0, 1) (5)

on Alice’s side and measurement directions

�b0 = (1, 0, 1)/
√

2

�b1 = (1, 0,−1)/
√

2 (6)

on Bob’s side, we obtain the following statistics:

P(a, b|x, y) = 1

4

[
1 + (−1)a⊕b(−1)xy

√
2

2

]
, (7)

where a, b, x, y are assumed to have values in {0, 1}. These
correlations give the symmetric detection efficiency threshold
ηsym = 2(

√
2 − 1) [14,15]. To derive this value, let us first

consider the more general case where Alice detects her par-
ticle with an efficiency ηA and Bob detects his particle with
an efficiency ηB for all their input settings. In the special
symmetric case ηsym = ηA = ηB.

Let us write the CHSH inequality [13] in the form [35]

CHSH(a, b, x, y) = P(00|00) + P(11|00) + P(00|01)

+ P(11|01) + P(00|10) + P(11|10)

+ P(01|11) + P(10|11) � L, (8)

where L = 3 is the local bound, which can be achieved by
suitable local deterministic strategies. Such an appropriate
strategy is the following. Alice outputs a = 1 for x = 0 and
x = 1, and Bob outputs b = 1 for y = 0 and y = 1. That is,
the correlations are

PL(a, b|x, y) = δa,1δb,1, (9)

where δi, j is the Kronecker delta function:

δi, j =
{

1, if i = j
0, otherwise. (10)

Note that the above form (8) is less common than the stan-
dard correlation form of the CHSH inequality (16), but they
are equivalent up to relabeling of the measurement outcomes.
Substituting the value of (7) into (8) gives the quantum value
Q = (2 + √

2) for the CHSH expression (8). This value gives
the maximum violation of the CHSH inequality (8), as shown
by Tsirelson [36]. However, this value can be obtained in the
ideal case when Alice and Bob’s detectors are perfect, that is,
the efficiency of the detectors is unity (ηA = ηB = 1). We then
consider the case of finite efficiency, especially focusing on
two limiting cases, ηsym = ηA = ηB and ηasym = ηA, ηB = 1.
In case of nondetection let Alice and Bob agree to output
the value corresponding to the deterministic strategy above
(9), which gives the local bound 3. We then distinguish four
cases according to the detection and nondetection events of
Alice’s and Bob’s detectors. Below MA (MB) denotes the Bell
value in the case where only Alice’s (Bob’s) detectors fire
and X denotes the Bell value in the case where none of the
detectors fire:

(1) Both Alice’s and Bob’s detectors fire, which happens
with probability ηAηB, in which case CHSH = Q = 2 + √

2.
(2) Only Alice’s detectors fire, which happens with

probability ηA(1 − ηB), in which case the correlations are
P(a, b|x, y) = (1/2)δb,1 entailing CHSH = MA = 2. In that
case Bob’s detectors output b = 1 for every y = 0, 1.

(3) Only Bob’s detectors fire. This happens with probabil-
ity (1 − ηA)ηB, and we have P(a, b|x, y) = δa,1(1/2) resulting
in CHSH = MB = 2. In that case, Alice’s detector outputs
a = 1 for every x = 0, 1 in case of nondetection.

(4) Neither detector fires, which happens with probability
(1 − ηA)(1 − ηB). In this case, the statistics (9) gives the local
bound L = 3, that is, CHSH = X = 3.

We then obtain the following Bell inequality, which de-
pends on the detection efficiencies:

I (ηA, ηB) = ηA(1 − ηB)MA + (1 − ηA)ηBMB

+ ηAηBQ + (1 − ηA)(1 − ηB)X � L. (11)

Whenever this inequality is violated, the original Bell inequal-
ity is violated with detection efficiencies ηA and ηB. In the case
that X = L and from (11), we obtain the threshold efficiency
for the symmetric case:

ηsym = 2L − MA − MB

Q + L − MA − MB
. (12)

On the other hand, the following threshold is obtained in the
asymmetric case:

ηasym = L − MA

Q − MA
. (13)

Note that the latter inequality does not depend on X . For
the standard single-copy CHSH case, we have the parameters
Q = 2 + √

2, MA = MB = 2, and L = 3, which, substituted
into (12) and (13), give the following values:

ηsym = 2(
√

2 − 1),

ηasym = 1/
√

2, (14)

reproducing the well-known thresholds [14,15].
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B. Correlation-type Bell inequalities

The CHSH inequality discussed above is a special type of
correlation inequality. Indeed, if the two-party correlations are
defined as

Ex,y = P(00|xy) + P(11|xy) − P(01|xy) − P(10|xy), (15)

then (8) can be written as follows:

CHSH = E0,0 + E0,1 + E1,0 − E1,1 � 2, (16)

where 2 is the local bound. Consider now generic correlation-
type Bell inequalities, in which case the Bell inequality can be
expressed as follows:

I =
m∑

x=1

m∑
y=1

Mx,yEx,y � L, (17)

where Mx,y are the Bell coefficients, m is the number of set-
tings per party, and L is the local bound.

Let us show that we can slightly beat the value of ηsym in
(14) if m > 2 settings are available. For the two-qubit maxi-
mally entangled state with traceless observables in Eq. (11),
we have MA = MB = 0. Hence, for a correlation-type Bell
inequality (17) with the two-qubit maximum quantum value
Q and local bound L, we obtain the following thresholds:

ηsym = 2

(Q/L) + 1
,

ηasym = L

Q
(18)

using formulas (12) and (13). From the relation of the max-
imum quantum violation of correlation-type Bell inequalities
with two-qubit states and the Grothendieck constant of order
three, KG(3), [37,38], we obtain

1.4359 � Q

L
� 1.4644, (19)

where the upper bound is from Ref. [39] and the lower bound
is from Ref. [40]. The left-hand side of (19) gives ηsym �
0.8211 and ηasym � 0.6964. Note that ηsym is slightly lower
than 0.8214, which is the lowest reported threshold value
that can be achieved using the maximally entangled two-qubit
state. However, the inequality A5 providing this value is not a
correlation-type Bell inequality.

III. MULTIPLE COPIES OF THE CHSH EXPRESSION

In this section, we investigate the detection efficiency
thresholds for the iterated version of the CHSH inequality
[29,41]. For two copies we have the double-CHSH expression

CHSH2(a1, a2, b1, b2, x1, x2, y1, y2)

= CHSH(a1, b1, x1, y1) × CHSH(a2, b2, x2, y2), (20)

where CHSH is defined by expression (8). Similarly, the nth
iterated version is defined by the following product:

CHSHn(a1, . . . , an, b1, . . . , bn, x1, . . . , xn, y1, . . . , yn)

= �n
i=1CHSH(ai, bi, xi, yi ), (21)

where ai (b j) corresponds to Alice’s (Bob’s) output for the ith
copy ( jth copy). Furthermore, xi (y j) corresponds to Alice’s

FIG. 1. Setup for two copies of the CHSH boxes (n = 2). Here a1

and a2 (b1 and b2) correspond to Alice’s (Bob’s) output. Similarly, x1

and x2 (y1 and y2) correspond to Alice’s (Bob’s) inputs. All inputs and
outputs are binary, so the total number of inputs and outputs is 2n. For
n = 2, this corresponds to a Bell scenario with four inputs and four
outputs per party. The quantum maximum is obtained by encoding
two copies of the maximally entangled two-qubit states |�+〉 into a
single pair of particles, and each local measurement (represented by
a dashed ellipse) corresponds to a joint two-qubit measurement. The
nondetection outcomes are associated with outputs a = (1, 1) and
b = (1, 1).

(Bob’s) input for the ith copy ( jth copy). Therefore, the cor-
responding CHSHn inequality has m = 2n inputs and o = 2n

outputs.

A. Quantum value

Now let us look at the quantum value of the CHSHn ex-
pression. We examine the setup with n copies of the two-qubit
maximally entangled state and local measurements that are
the product of Pauli measurements acting on the n-qubit states
(see Fig. 1 in the case of n = 2, where the blue ellipses rep-
resent the local measurements). In this case, the probabilities
factorize. For example, for the double-CHSH scenario (20),
i.e., n = 2, we get the following joint correlations:

P(a1, a2, b1, b2|x1, x2, y1, y2)

= P(a1, b1|x1, y1) × P(a2, b2|x2, y2), (22)

where the distribution P(ai, bi|xi, yi ) is given by (7). For n
copies we have the quantum correlations

P(a1, . . . , an, b1, . . . , bn|x1, . . . , xn, y1, . . . , yn)

= �n
i=1P(ai, bi|xi, yi ). (23)

This scenario has m = 2n inputs and o = 2n outputs.
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Now we calculate the quantum value Q(n) of the nth iter-
ated CHSH expression CHSHn. Denote the local bound by
L(n). First, we consider the double-CHSH inequality (n = 2).
CHSH2 is a product of two CHSH expressions, and since the
probabilities factorize [see Eq. (22)], we obtain

Q(2) = Q(CHSH) × Q(CHSH) = Q2 = (2 +
√

2)2. (24)

As we see, the quantum value is simply squared. Similarly, for
n copies, we have Q(n) = (2 + √

2)n. It is also known [41] that
this value is the Tsirelson bound of the CHSHn expression,
that is, the maximum quantum value that can be obtained in
the presence of arbitrary quantum resources (and in particular
when probabilities do not factorize).

B. Local bound

When calculating the local bound, however, the probabili-
ties do not necessarily factorize with respect to each copy as
in Eq. (23). For n = 2 they are as follows:

PL(a1, a2, b1, b2|x1, x2, y1, y2)

=
∑

λ

PA(a1, a2|x1, x2, λ)PB(b1, b2|y1, y2, λ)q(λ), (25)

where λ is a shared random variable with
∑

λ q(λ) = 1,
and PA and PB are arbitrary conditional probability functions
(labeled by λ) on Alice’s and Bob’s side. Therefore, it is
generally allowed to exploit (classical) strategies between dif-
ferent copies. Such a joint strategy is when a1 on Alice’s side
may depend not only on x1 but also on x2. Indeed, it turns
out that the local value L(2) of the Bell expression CHSH2 is
L(2) = 10, which is larger than L2 = 32. To attain the value
of 10, the parties can use the following local deterministic
strategies PA(a1, a2|x1, x2) and PB(b1, b2|y1, y2) in Eq. (25):

PA(11|00) = PA(11|01) = PA(11|10) = PA(10|11) = 1,

PB(11|00) = PB(11|01) = PB(11|10) = PB(10|11) = 1
(26)

for the respective functions of Alice and Bob. The maximum
local value L(2) = 10 corresponding to the above strategy
has been obtained independently by Barrett et al. [29] and
Aaronson (see the footnotes in Ref. [41]). Similarly, for the
three-copy CHSH3 case, we obtain L(3) = 31. Note that this
value is larger than L(CHSH) × L(CHSH2) = 30. The value
of L(3) = 31 is due to Aaronson and Toner by means of an
exhaustive computer search, which was noted in the footnotes
of Ref. [41]. For n > 3, empirical values of L(4) = 100, L(5) =
310 and L(6) = 1000 are available, which were recently found
in Ref. [42]. Furthermore, the following analytic upper bound
holds for L(n):

L(n) � (1 +
√

5)n, (27)

which asymptotically becomes an equality for large n. The
upper bound (27) is due to Ambainis (see Ref. [43]), who
builds on Ref. [44].

C. Detection efficiencies

Let η(n)
sym and η(n)

asym denote the symmetric and asymmetric
detection efficiency thresholds obtained by n copies of the
maximally entangled two-qubit state and anticommuting Pauli
measurements. In particular, the n-copy distribution (23) cor-
responds to this scenario. We now upper bound the thresholds
of η(n)

sym and η(n)
asym. To this end, we consider n copies of the

CHSH expression, that is, the CHSHn expression. Any upper
bound on the detection efficiency threshold of the CHSHn in-
equality provides an upper bound on the detection efficiencies
η(n)

sym and η(n)
asym for the case of generic Bell inequalities as well.

The derivation of the detection-efficiency-dependent Bell
inequalities follows the standard procedure. However, see,
e.g., Refs. [12,18] for a different way to treat the finite ef-
ficiency of the detectors. To take into account inconclusive
events, the parties for each of their settings assign one of the
valid outcomes to the nondetection event. This approach has
already been discussed in Sec. II using the CHSH inequality
as an example. Similarly to that case, we associate the non-
detection outcome with the particular outcome for which the
local deterministic strategy gives the maximum local value of
the Bell inequality. We first discuss the CHSH2 case described
by (20), which we later generalize for larger n. This setup is
depicted in Fig. 1.

We now calculate the relevant quantities for this scenario.
The quantum value Q(2) = Q2 = (2 + √

2)2 is due to Eq. (24).
We will show that M (2)

A = 22 (M (2)
B = 22), where only Alice’s

(Bob’s) detectors fire, respectively.

D. Proof

If only Alice’s detectors fire, we have

P(a1, a2, b1, b2|x1, x2, y1, y2) = (1/4)PB(b1, b2|y1, y2),
(28)

that is, the probability distribution does not depend on Alice’s
outputs a = (a1, a2). Using this probability distribution we
get

M (2)
A =

∑
b1,b2,y1,y2

PB(b1, b2|y1, y2) = 4 (29)

for CHSH2 in (20). This value of 4 is due to two features of
the double-CHSH expression: (i) all nonzero Bell coefficients
are 1, and (ii) for every x = (x1, x2) input of Alice, every
y = (y1, y2) input of Bob, and every output a = (a1, a2) of
Alice, there is a single nonzero coefficient for Bob’s output.
That is, the Bell inequality corresponds to a so-called unique
game [45]. Note that this value does not depend on the actual
deterministic strategy to be used in the case of a nondetection
event. Similarly, we obtain M (2)

B = 22 in the case where Bob’s
detectors fire. �

For general n, relying on the two features (i) and (ii) above,
we obtain M (n)

A = M (n)
B = 2n.

Plugging the above numbers into (12) and (13), we get
upper bounds on the detection efficiencies η(n)

sym and η(n)
asym

required to see Bell nonlocality. In particular, we have Q(n) =
(2 + √

2)n, M (n)
A = M (n)

B = 2n, and for L(n) we used the upper
bound value in Eq. (27). Then we obtain the following upper
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TABLE I. Table for the detection efficiency thresholds of the
CHSHn expression. (First column) The number of copies n. Note
that the dimension d of the bipartite (d × d )-dimensional system is
2n. (Second column) The upper bound on the symmetric detection
efficiency threshold η(n)

sym arising from the CHSHn expression. (Third
column) The upper bound on the asymmetric detection efficiency
threshold η(n)

asym arising from the CHSHn expression. The values in
parentheses are calculated from the empirical value of the local
bound of CHSHn.

n η(n)
sym � η(n)

asym �

1 0.8284 0.7071
2 0.8787 0.7836
3 0.8394 0.7233
4 0.8772(0.8240) 0.7813(0.7007)
5 0.8555(0.7832) 0.7475(0.6436)
6 0.8328(0.7622) 0.7135(0.6158)
7 0.8093 0.6796
8 0.7853 0.6464
9 0.7610 0.6142
10 0.7367 0.5832
11 0.7125 0.5534
12 0.7367 0.6142
13 0.6647 0.4978
20 0.5101 0.3424
50 0.1284 0.0686
100 0.0094 0.0047

bounds for n � 1:

η(n)
sym � 2L(n) − M (n)

A − M (n)
B

Q(n) + L(n) − M (n)
A − M (n)

B

� 2((1 + √
5)n − 2n)

−2(n+1) + (2 + √
2)n + (1 + √

5)n
(30)

and

η(n)
asym � L(n) − M (n)

A

Q(n) − M (n)
A

� 2n − (1 + √
5)n

2n − (2 + √
2)n

. (31)

We show that it is valid to use the upper bound on L(n) to
achieve these bounds. Indeed, we have Q(n) > L(n), L(n) >

M (n)
A , and L(n) > M (n)

B . Then, both (12) and (13) increase when
L(n) is replaced by the upper bound (27), leading to an upper
bound on the detection efficiency thresholds. We note that
for n = 1, 2, 3, we know the exact L(n) values for CHSHn,
which can be used to give improved upper bounds on η(n)

sym and
η(n)

asym. The corresponding upper bounds for some n values are
given in Table I. Note that the values given in parentheses are
calculated from the empirical values of the local bounds L(n).
In these cases, however, we used the see-saw iteration [40,42],
which is very efficient for such complexity of problems, and
the large number of runs provides very strong evidence of
optimality. Notably, η(13)

sym beats the 2/3 limit of Eberhard and
η13

asym beats the 1/2 limit corresponding to the single-copy
CHSH inequality in the case of partially entangled states. Note
that, asymptotically, both upper bounds (on η(n)

sym and η(n)
asym)

tend exponentially to zero in the number of copies n (but not in
the number of measurement settings m and outcomes o, where

FIG. 2. Three curves are shown for the upper bounds of the
detection efficiency η(n)

sym. The red dots and green crosses are based
on the iterated CHSHn inequalities. The red curve (dots) is calculated
from the formula (30), while the green curve (+ markers) is obtained
from the exact L(n) values for n = 1, 2, 3. On the other hand, we
used their empirical values for n = 4, 5, 6, which nevertheless gives
very strong evidence of optimality. The values corresponding to the
blue × markers are based on the geometric approach, where the
optimal Bell inequality was used.

m = o = 2n). The results are shown in Fig. 2, where the red
curve (dots) represents the values given by (30).

IV. GEOMETRIC APPROACH BASED
ON LINEAR PROGRAMMING

We next use the following more general approach to find
tighter upper bounds on η(n)

sym and η(n)
asym. We do not fix the

Bell inequality in advance, but we explore the possibly best
inequality, where our probability distribution is defined by the
n-fold product (23) of the distribution (7).

In this section, we will focus on the case n = 2, and then
in the next section we turn to cases n = 3, 4. In both cases,
we will follow a geometric approach developed by Massar
et al. [18]. For n = 2 we use linear programming, which will
provide us with numerically exact values. For higher values
of n our geometric approach will be based on Gilbert’s algo-
rithm. Note that in this case, we do not choose a specific Bell
inequality in advance. Hence, any upper bound on the detec-
tion efficiency threshold based on an optimal Bell inequality
obtained in this geometric approach will be at least as low as
the threshold calculated for the special CHSHn expression.

In order to take into account finite detection efficiency in
this method, we modify the probability distribution P(ab|xy).
This way we obtain a probability distribution depending on
the detection efficiencies. Note that in the previous sec-
tions, in contrast, the Bell expression itself has depended
on the detection efficiencies [see Eq. (11) for the single
copy case]. To take care of the inconclusive events due
to finite detection efficiency, Alice simply chooses the last
output a = (a1, a2, . . . , an) = (1, 1, . . . , 1) for every input
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x = (x1, x2, . . . , xn) in case of nondetection. Similarly,
for every input y = (y1, y2, . . . , yn) Bob outputs b =
(b1, b2, . . . , bn) = (1, 1, . . . , 1) in case of nondetection. As a
result, the probabilities apart from the last outcome for Alice
and Bob are modified as follows:

PηA,ηB (ab|xy) = ηAηBP(ab|xy),

PA
ηA

(a|x) = ηAPA(a|x),

PB
ηB

(b|y) = ηBPB(b|y) (32)

for all (x, y) and (a, b) except for the outputs a =
(a1, a2, . . . , an) = (1, 1, . . . , 1) and b = (b1, b2, . . . , bn) =
(1, 1, . . . , 1). Above PA and PB are the marginal distributions
of Alice and Bob, defined as follows:

PA(a|x) =
∑

b

P(ab|xy) for all y,

PB(b|y) =
∑

a

P(ab|xy) for all x. (33)

Note that the set of probabilities (32) completely determines
the probability distribution, since the missing probabilities
corresponding to the last 2nth outcome of Alice and Bob
are completely determined by (32) due to the no-signaling
conditions on the probabilities (33). Hence, from the set of
distributions (32) we can construct the full set of probabilities:

�PηA,ηB ≡ {PηA,ηB (ab|xy)}a,b,x,y. (34)

Given the above set (34), our task is to decide whether or not
this probability distribution can be described by a local model.
For a fixed (ηA, ηB) pair of detection efficiencies, this is a fea-
sibility problem, which in turn casts as a linear programming
(LP) task. It is noted that there are other ways to handle a
nondetection event, see, e.g., Refs. [12,18]. In these works,
the nondetection event is treated as an additional outcome for
each measurement. For a Bell setup with a given number of
settings, the extra outcome may reduce the critical detection
efficiency. For instance, in the case of three two-outcome set-
tings per party, the symmetric detection efficiency threshold
for the maximally entangled state is reduced from 0.8284 to
0.8217 if the nondetection event is treated as an additional
outcome [18]. We will see that modeling the detection failure
as an additional outcome can also be beneficial in our multi-
copy Bell setup. Note, however, that the additional outcome
also increases the dimension of the original probability space.

The local set L for a finite number of inputs m and outputs
o is a polytope, the so-called Bell polytope, which is the
convex hull of a finite number of points defined by its vertices.
The vertices are given by the local deterministic strategies
PD(ab|xy) = DA(a|x)DB(b|y), where DA(a|x) and DB(b|y) are
the deterministic response functions of Alice and Bob, respec-
tively. Alice and Bob each have om such functions, so there are
o2m deterministic strategies in total,

�P(λ)
D := {

P(λ)
D (ab|xy)

}
a,b,x,y, (35)

where λ = (1, . . . , o2m). Each strategy λ translates to a single
vertex of the (o2m2)-dimensional Bell polytope L. Any point
inside this polytope is a convex combination of vertices �P(λ)

D
with some positive weights q(λ).

For the special case of n copies of the probability distribu-
tion (7), we have the Bell scenario m = o = 2n. Let us denote
the corresponding polytope in this case by L(n). In particular,
if the probability point �PηA,ηB lies outside the Bell polytope,
it cannot be written as a convex combination of the vertices
of the Bell polytope. In this case, we can find the hyperplane
separating the polytope L(n) from the point �PηA,ηB . This plane
is identified with the Bell expression C below the probability
point (34), ∑

a,b,x,y

Ca,b,x,yPL(a, b|x, y) � 0, (36)

where Ca,b,x,y are the Bell coefficients and �PL = {PL(ab|xy)}
is any local distribution satisfying the locality conditions (25).
In geometric terms, �PL can be any point located inside the Bell
polytope L(n).

To obtain the Bell expression C below the point (34), we
choose fixed parameters ηA and ηB, and solve an LP task as
follows:

Q ≡ max
Ca,b,x,y

∑
a,b,x,y

Ca,b,x,yPηA,ηB (a, b|x, y)

s.t .
∑

a,b,x,y

Ca,b,x,yP(λ)
D (a, b|x, y) � 0 for all λ,

Ca,b,x,y � 1 for all a, b, x, y, (37)

where the index λ runs over all local deterministic strategies
�P(λ)
D in Eq. (35), and the conditions in the last line take care of

the upper limit 1 on the coefficients Ca,b,x,y. These coefficients
are our optimization variables. As mentioned above, there are
in total (om)(om) different local deterministic strategies �P(λ)

D .
Therefore, in the n-copy case, o = m = 2n, which amounts to
2n2n+1

strategies. In our special case of n = 2, there are 216

strategies. This is the number of vectors we have to provide
as an input to the LP, the complexity of which is feasible on a
standard desktop computer.

Note that in the implementation of the algorithm, instead
of solving the LP in (37), we have solved a task where the
full set of probabilites (34) (having dimension 16 × 16) is
replaced by the smaller set (32) with dimension 13 × 13. The
corresponding objective function in the optimization (37) is
given by ∑

a,x

CA
a|xPA(a|x) +

∑
b,y

CB
b|yPB(b|y)

+
∑

a,b,x,y

Ca,b,x,yPηA,ηB (a, b|x, y), (38)

where the sum for outputs a and b runs over the first
three outputs, that is, (a1, a2) = (0, 0), (0, 1), (1, 0) and
(b1, b2) = (0, 0), (0, 1), (1, 0). However, the sum for inputs
x and y runs through all the inputs, that is, (x1, x2) =
(0, 0), (0, 1), (1, 0), (1, 1) for Alice, and similarly for Bob.
We used MOSEK [46] to perform this LP task, which returned
the solution to this LP problem within a few seconds.

If the solution to the linear program (37) above is Q > 0,
this indicates that the point (34) with given (ηA, ηB) values
lies outside the polytope. In the symmetric case, we specify
ηsym = ηA = ηB, and our aim is to choose the smallest ηsym
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such that Q > 0. We do the same for the asymmetric case,
ηasym = ηA and ηB = 1. In the limit of the smallest such ηsym

and ηasym, the point (32) lies on the boundary of the local set.
In the actual computation, ηsym and ηasym are chosen such that
Q is slightly greater than zero. We next give detailed results
for n = 2 copies of running the above LP problem (37) for
both symmetric and asymmetric detection efficiencies.

A. Symmetric detection efficiency for two copies

Let us focus on the symmetric case for n = 2. Here we
are left with a single parameter, ηsym = ηA = ηB. Given the
probability distribution �PηA,ηB in (37), our task is to find ηsym

such that the solution Q is some small number (we set Q in the

range 0.001). As a solution to LP (37), we obtain the following
form of Bell inequality Isym � 0:

Isym =
3∑

a=1

4∑
x=1

CA
a|xPA(a|x) +

3∑
b=1

4∑
y=1

CB
b|yPB(b|y)

+
3∑

a=1

3∑
b=1

4∑
x=1

4∑
y=1

CabxyP(ab|xy), (39)

where Alice’s marginal coefficients are CA
1|1 = CA

1|2 = CA
1|3 =

CA
1|4 = CA

2|2 = CA
3|3 = −2, CA

2|1 = CA
3|1 = −1 and all other en-

tries of CA are zero. Also, Bob has CB = CA. On the other
hand, the matrix C of size 13 × 13 is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 1 −1 2 −1 1 2 0 0
0 0 0 1 1 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1 1 0 1
2 1 0 0 1 −1 2 1 0 0 1 −1
1 1 0 1 1 −1 0 2 0 2 0 0

−1 0 0 −1 −1 −1 1 0 2 −1 0 −1
2 0 1 2 0 1 0 −1 1 0 −1 1

−1 0 0 1 2 0 −1 −1 −1 −1 −1 0
1 0 1 0 0 2 1 −1 1 2 0 0
2 1 1 0 2 −1 0 −1 2 −2 −1 −1
0 1 0 1 0 0 −1 −1 0 −1 −1 0
0 0 1 −1 0 −1 1 0 0 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

where an element Ca,b,x,y has been written above as an element
(a, b) of the 3 × 3 submatrix at the coordinate (x, y). Note
that a positive multiplicative constant does not change the Bell
inequality. In fact, we have doubled the Bell coefficients C,
CA, and CB coming from the solution of the LP task to obtain
integer values. Also, notice the symmetry of the matrix C with
respect to transposition.

From this inequality, we can analytically calculate the crit-
ical value of ηsym in the two-copy case, which we denote by
η(2)

sym. To this end, we apply formula (12) to calculate ηsym

given the Q, L, the MA (MB) and X values.
We obtain Q = 4(

√
2 − 1) by substituting (40) into (39),

where the probabilities are given by the tensor product (22).
The local bound L, on the other hand, is L = 0. This value
can be achieved by a deterministic strategy where for every
x, y the fourth output [a = (1, 1) and b = (1, 1)] is given
deterministically. Hence, X = L = 0 and the corresponding
distribution is PL(ab|xy) = δa,4δb,4 for every input (x, y). In
fact, we have chosen the last outcome for the nondetec-
tion event to obtain (32). For Alice’s nondetection result,
P(ab|xy) = (1/4)δb,4, which gives MA = −14/4 for the Bell
expression in (39). Similarly, for Bob’s nondetection re-
sult, P(ab|xy) = δa,4(1/4), which implies MB = −14/4 for
the Bell expression in (39). Putting these values together,
we have

η(2)
sym = 2L − MA − MB

Q + L − MA − MB
= 28

√
2 − 21

23
� 0.8086. (41)

We would like to emphasize that this value is an exact up-
per bound on η(2)

sym for the product of Pauli measurements

performed on two copies of the maximally entangled two-
qubit state. This value is shown in Fig. 2 by the blue cross
for n = 2. As mentioned previously, a more general treatment
of modeling the detection failure can be achieved by associ-
ating an additional outcome with the nondetection event, as
opposed to grouping the detection failure with one output.
In this more general case, the extra outcome corresponding
to nondetection occurs with probability ηA on Alice’s side
and ηB on Bob’s side, for each measurement independently.
In the case of symmetric detection efficiency ηA = ηB = η,
in the two-copy case (n = 2), using linear programming we
find a threshold of 0.8054 compared to the threshold of
0.8086 given by Eq. (41). Note that the linear programming
approach for n > 2 is not feasible on a desktop computer.
However, we expect from this more general treatment fur-
ther lowering of the threshold for more than two copies
(n > 2). On the negative side, if such a more general model-
ing of the failure is used, the dimension of the no-signaling
probability space is increased. Recall that for n = 2, with
no additional outcome, the dimension of the no-signaling
probability space is 13 × 13. With one additional outcome
per input, however, the no-signaling space becomes 17 × 17
dimensional.

B. Asymmetric detection efficiencies for two copies

Now consider the asymmetric case for n = 2, where we
have ηasym = ηA and ηB = 1. We solve the LP (37) for ηasym

such that the solution Q is a small number (in the range 0.001)
in the actual computation. As a result, we obtain the Bell
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inequality Iasym � 0 defined similarly to (39), where

Iasym =
3∑

a=1

4∑
x=1

CA
a|xPA(a|x) +

3∑
b=1

4∑
y=1

CB
b|yPB(b|y)

+
∑

a,b,x,y

Cab|xy. (42)

Multiplying all the Bell coefficients by three to get integer
values gives

CB
1|1 = CB

1|2 = CB
2|2 = CB

4|1 = CB
4|3 = −1,

CB
2|1 = CB

3|1 = −2 (43)

and

CA
1|1 = CA

2|1 = CA
3|1 = −3,

CA
1|2 = CA

2|2 = CA
1|3 = CA

3|3 = −3,

CA
1|4 = CA

2|4 = CA
3|4 = −2, (44)

and all other coefficients appearing in CA and CB are zero. In
addition, we have the matrix C:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 2 0 0 2 0 0 1 0 0
0 2 0 0 1 0 0 1 0 0 2 0
0 0 2 0 0 1 0 0 1 0 0 2
1 0 0 0 2 0 2 0 0 0 1 0
0 2 0 1 0 0 0 1 0 2 0 0
0 0 2 −1 −1 −1 0 0 1 −2 −2 −2
1 0 0 2 0 0 0 0 2 0 0 1
0 2 0 0 1 0 −1 −1 −1 −2 −2 −2
0 0 2 0 0 1 1 0 0 2 0 0
1 0 0 0 2 0 0 0 2 −1 −1 −1
0 2 0 1 0 0 −1 −1 −1 0 0 2
0 0 2 −1 −1 −1 1 0 0 0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (45)

where an element Cabxy is written as an element (a, b) of the
3 × 3 submatrix at the coordinate (x, y). Using the inequality
(42), we can give analytically the critical value of ηasym in the
two-copy case, denoted by η(2)

asym. We apply formula (13) for
the calculation of ηasym given the parameters Q, L, and MA. To
this end, we substitute (45) into (42), where the probabilities
are given by the tensor product (22), and obtain

Q = (9/2)(1 +
√

2) − 9. (46)

The local bound of (45) is L = 0, which can be achieved
by a deterministic strategy where for every input (x, y) the
output is given by the fourth outcome [i.e., a = b = (1, 1)].
That is, we have the local distribution PL(ab|xy) = δa,4δb,4

for every (x, y). According to (32), we have chosen this
particular outcome for the nondetection event, and then we
get P(ab|xy) = (1/4)δb,4 when Alice’s detector fires, which
results in MA = −9/4. Putting these together, we arrive at the
following result:

η(2)
asym = L − MA

Q − MA
= (1 + 2

√
2)/7 � 0.5469. (47)

This value can be contrasted with the lowest known critical
value ηasym = 0.6520 among the four-setting two-outcome
Bell inequalities [47]. This value in particular corresponds to
the A44 inequality from the list of Bell inequalities in Ref. [17].

V. GEOMETRIC APPROACH BASED
ON GILBERT’S ALGORITHM

Unfortunately, the LP (37) used in the preceding section for
n > 2 is not feasible on a standard desktop computer. This is
mainly due to the very large number of vectors corresponding
to the different deterministic strategies that must be given as

an input to the LP problem. Note that for n = 3 we already
have 248 different strategies, where each strategy translates to
a vector with 4096 entries.

However, for the n � 3 case we can use an iterative algo-
rithm, the so-called Gilbert algorithm [48], to obtain bounds
on η(n)

sym and η(n)
asym. This algorithm avoids the problem of enter-

ing all deterministic strategies in LP and also provides us with
the underlying Bell inequality. For n � 3 our method gives
correct upper bounds, while for n = 4 the calculated bound
partly relies on heuristic numerical computations. However,
we are confident in the validity of the obtained bounds in this
case as well.

The values η(n)
sym and η(n)

asym we obtain in this section for
n = 3 and n = 4 are considerably lower than the thresholds
corresponding to the case n = 2 in Sec. IV, and also much
lower than the values obtained from the iterated CHSHn in-
equalities for n = 3, 4. We conjecture that the obtained values
for n = 3 and n = 4 are close to those that could have been
obtained by linear programming (assuming the computations
could be performed). Here we also give the Bell matrices C
obtained by Gilbert’s distance method, which are provided as
auxiliary data files due to their large size.

First, we briefly describe Gilbert’s distance algorithm [48],
which is a popular numerical method for collision detec-
tion problems (i.e., it detects collisions between rigid convex
bodies). In particular, this algorithm estimates the distance
between a point �P and an arbitrary convex set S in a finite-
dimensional Euclidean space Rd via calls to an oracle that
performs linear optimizations over the set S . The running
time and the convergence properties of the algorithm are
very favorable. These properties have been analyzed in detail
in Ref. [49] along with a number of applications in quan-
tum information. A similar method has been used recently
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in Ref. [50] to discriminate nonlocal correlations, and fur-
ther applications in entanglement detection have appeared in
Refs. [51,52].

In our particular case, the point �PηA,ηB is defined by the
probability distribution (34) for the given values of ηA and
ηB. Let us first focus on the symmetric case η = ηA = ηB, in
which case we obtain a one-parameter family of points �P(η).
We fix η such that �P(η) is outside the local Bell polytope L(n)

(we can take η as the best upper bound so far on η(n)
sym). The

vertices of the Bell polytope are defined by the deterministic
vectors �P(λ)

D in (35). For n copies, we have m = o = 2n, and
there are N = o2m = 2n2n+1

corners of this polytope in dimen-
sion D = (om)2 = 24n.

We run Gilbert’s distance algorithm, where the inputs to the
problem for fixed η are the target point �P(η) and the vertex
description �P(λ)

D , λ = (1, . . . , N ) of the Bell local polytope
L(n). It is important to keep in mind, however, that this al-
gorithm does not require storing all this data in the computer
memory, unlike the linear programming algorithm discussed
in Sec. IV. This is a big advantage of the Gilbert method
over the LP-based method, since we have already seen that
for n = 3 copies, the number of vertices N = 2n2n+1 = 248 is
too large to be stored in the computer memory.

Gilbert’s algorithm outputs (an estimate to) the distance
between the point �P(η) and the polytope L(n) by providing
a separating hyperplane with normal vector �C between the
point �P(η) and the polytope L(n). We identify this hyperplane
with the matrix C of Bell coefficients we are looking for. The
description of Gilbert’s algorithm adapted to our particular
case is given in the Appendix, where we also discuss possi-
ble improvements to the algorithm by exploiting symmetry
properties of the probability distribution �P(η).

A. Detection efficiencies with Gilbert’s method
for multiple copies

Below we give our computational results on the upper
bounds for η(n)

sym and η(n)
asym using Gilbert’s method discussed

above. This includes the C matrices obtained for n = 2, 3,
and 4 copies for both symmetric and asymmetric detection
efficiencies.

We used MATLAB for all the calculations in this paper.
The routines test_sym_n.m and test_asym_n.m test certain
properties of the Bell matrices C. In the different scenarios,
the Bell matrices are named Csym_n.txt and Casym_n.txt,
where n denotes the number of copies n = 2, 3, 4 and
sym/asym denotes the case of symmetric/asymmetric de-
tection efficiency. These MATLAB routines and data files are
provided as an ancillary file in Ref. [53].

The routines test_sym_n.m and test_asym_n.m define
n copies of the quantum state (1) and the measurement op-
erators (3), which are used to build up the n-copy statistics
(7). From this, the routines compute the following quantities
that appear in formulas (12) and (13): Q, MA, MB, L, and X .
These values are evaluated for the Bell expression C. In the
computation of X , the last outcome is given in the case of a
nondetection event.

The values listed above give η(n)
asym according to formula

(13). On the other hand, the value η(n)
sym is obtained solving for

TABLE II. Table for calculating upper bounds on the symmetric
detection efficiency thresholds η(n)

sym = ηA = ηB for n = 2, 3, and 4
copies. The corresponding Bell expression C has m = 2n inputs and
o = 2n outputs. We note that C is invariant under the exchange of
parties, so MA and MB are equal. The values of X and L are integers,
since the Bell coefficients are rounded to integers. The value of L for
n = 4 is a lower bound coming from a heuristic, but is assumed to be
exact. Hence, the upper bound to η(4)

sym is also a conjectured value.

n = 2 n = 3 n = 4

Q 7411.71 2562.88 88170.56
MA 1697.25 9524.25 35297
MB 1697.25 9524.25 35297
X 5579 18949 60869
L 5580 18979 63096
η(n)

sym � 0.8091 � 0.7399 � 0.6929

η the quadratic equation

η2Q + η(1 − η)(MA + MB)(1 − η)2X = L. (48)

For the case of symmetric detection efficiency, we obtain
Table II. Let us remark that for n = 2, the result η(2)

sym �
0.8091 is consistent with the exact η(2)

sym = 0.8086 obtained
with the LP-based algorithm in Sec. IV. On the other hand,
for n = 4, we had to resort to a heuristic numerical search to
obtain the value of L, so the obtained value is only a lower
bound on L. Nevertheless, we still have good confidence in
the value due to the efficient numerical procedure used (see
Refs. [42,54]). Let us also mention that, despite the enormous
number of different strategies (2128), a branch-and-bound type
algorithm may still allow to tackle this problem, similarly to
the two-party two-outcome problem used in Ref. [40]. On the
other hand, Table III presents the asymmetric case.

We note that, similarly to the symmetric case, the upper
bound of 0.5562 for the 2-copy (n = 2) justifies the usage of
Gilbert’s method. This value is consistent with the numeri-
cally exact value of 0.5469 computed with LP in Sec. IV.
Note that the value η(4)

asym falls below 1/2, corresponding to
the bound ηasym for Bell experiments with two inputs and
an arbitrary number of outputs. In fact, any Bell test with N
inputs will not tolerate ηasym less than 1/N [55]. Note also the
decreasing upper bound on η(n)

asym as n increases.

TABLE III. Table for the asymmetric detection efficiency thresh-
old η(n)

asym = ηA and ηB = 1 for n = 2, 3, and 4 copies. The Bell
expression C has m = 2n inputs and o = 2n outputs. Unlike the case
of symmetric detection efficiency, this is not invariant under party
exchange. We only present MA, which is required to calculate η(n)

asym

according to (13). The values of X and L are integers, since all Bell
coefficients are integers. The value of L for n = 4 is numerically
conjectured. Hence, the upper bound to η(4)

asym is also conjectured.

n = 2 n = 3 n = 4

Q 7156.47 28160.33 108734.28
MA 3766.50 16009.87 55054.62
L 5652 22308 79664
η(n)

asym � 0.5562 � 0.5183 � 0.4584

022205-10



BOUNDING THE DETECTION EFFICIENCY THRESHOLD … PHYSICAL REVIEW A 107, 022205 (2023)

VI. DISCUSSION

In this paper, we investigated the critical efficiency of de-
tectors for observing Bell nonlocality using multiple copies of
the two-qubit maximally entangled state encoded in a single
pair of particles, and the product of qubit Pauli observables
acting in the corresponding tensor product of qubit subspaces.
The above measurements give the Tsirelson bound of the
CHSH inequality for each copy of the state. We showed that
the symmetric detection efficiency threshold � 82.84% corre-
sponding to the CHSH-Bell test with the two-qubit maximally
entangled state can be considerably lowered by using multiple
copies of the state. To this end, we first analytically inves-
tigated a special Bell inequality, the nth iterative version of
the CHSH inequality, and found that the detection efficiency
threshold of this composite Bell inequality tends to zero as n
increases. For small n, we construct Bell inequalities based on
a geometric approach which for a given n gives even lower
critical detection efficiencies. We used linear programming
for n = 2 copies and Gilbert’s algorithm for n = 3 and n = 4
copies to obtain Bell inequalities that outperform the nth iter-
ated CHSH inequality.

In the symmetric case, using n = 2, 3, 4 copies of the
maximally entangled two-qubit state, we find the respective
upper bounds of 80.86%, 73.99%, and 69.29% on η(n)

sym. For
the asymmetric case (when one party has unit detection ef-
ficiency) the upper bounds of 54.69%, 51.83%, and 45.84%
have been obtained on η(n)

asym using n = 2, 3, and 4. The num-
ber of measurements and number of outcomes per party for
n = 2, 3, and 4 copies are 4, 8, and 16, respectively.

Note that the above values for n = 4 are in the same
range as the emblematic Eberhard thresholds ηsym = 2/3 and
ηasym = 1/2, which correspond to two partially entangled
qubits [24]. However, in contrast to Eberhard’s result, we
used multiple maximally entangled Bell pairs. Both cases
have their own advantages in terms of possible technological
implementation, and we believe that our setup may offer a
promising alternative to the Eberhard setup used in the exper-
iments of Refs. [6,7] to obtain a loophole-free Bell violation.
We also note that very recently similar ideas, based in part
on our current methods, have been used to obtain bipartite
Bell inequalities with very low critical detection efficiency
[56–58]. On a different note, we also mention that in a
broadcast scenario [59] using a single copy of a two-qubit
maximally entangled state, one can achieve the detection effi-
ciency threshold 0.7355, as recently shown in Ref. [60].
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APPENDIX: GILBERT’S ALGORITHM ADAPTED
TO THE DETECTION EFFICIENCY PROBLEM

In this Appendix, we discuss the Gilbert algorithm adapted
to the detection efficiency problem in Bell setups. Gilbert’s
algorithm outputs (an estimate to) the distance between a point

�P and an arbitrary convex set S by calling an oracle that carries
out a linear optimization over S. In our case the point is �P(η)
from (34) (wherein the symmetric case we set η = ηA = ηB)
and the convex set is the local Bell polytope L(n) defined
by the vertices in (35). The algorithm provides a separating
hyperplane with normal vector �C between the point �P(η) and
the polytope L(n). We identify this hyperplane with the matrix
C of Bell coefficients we are looking for. The algorithm in our
particular case is defined as follows [48,49]:

Inputs: the vector �P(η) specified by the number of copies n
and the parameter η and the description of the polytope L(n).
The steps are as follows:

(1) Set k = 0 and a value of ε (typically small), and pick
an arbitrary point �Pk within the polytope L(n).

(2) Given the point �Pk and the target point �P(η), run an
oracle, that maximizes the overlap [ �P(η) − �Pk] · �P(λ)

D over all
vertices �P(λ)

D ∈ L, λ = 1, . . . , N , where N = 2n2n+1
. Denote

the index of the local deterministic point returned by the
oracle by k′ and the corresponding point by �P(k′ )

D .
(3) Let us find the point �Pk+1 as the convex combination

of �Pk and �P(k′ )
D that minimizes the distance ‖ �P(η) − �Pk+1‖.

(4) Let k = k + 1 and go to Step 2 until the distance
‖ �P(η) − �Pk‖ � ε.

Output: �C ≡ �P(η) − �Pk .
The Bell matrix C is then identified with the returned

solution vector �C. Below we give possible modifications to
the above algorithm.

In step 2 we have to maximize the overlap [ �P(η) − �Pk] ·
�P(λ)
D over N = 2n2n+1

deterministic vectors. This number is
exponential in the number of measurement settings m = 2n. In
fact, this maximization task is an NP-hard problem [61], and
it seems unlikely to find an efficient solution in the general
case. Therefore, we resort to a heuristic search instead of the
exact enumeration method. The description of this method can
be found in Refs. [39,49] for the special case of two outcomes
and in Refs. [42,54] for the case with more than two outcomes.

The returned vector �C has entries Cabxy, where a, b, x, y =
(1, . . . , 2n). This �C corresponds to a separating hyperplane,
which separates the point �P(η) from the Bell polytope L(n).
From �C we can produce the matrix C, where the element Cabxy

is written as the element (a, b) of the 2n × 2n submatrix at the
coordinate (x, y). Note, however, that the oracle in step 2 has
a heuristic nature. Therefore, we also run a brute force com-
putation by enumerating all the 2n2n+1

strategies to check that
the local bound for the Bell expression C is given correctly.
This check has been carried out for n = 2 and n = 3, but the
case of n = 4 is computationally hard to tackle, so in the latter
case, our result is based partly on a heuristic computation.

We can add to step 3 a modification introduced in Ref. [49].
In this case, when finding a point �Pk+1, we keep not only
�Pk but also the previous m points �Pk−1, �Pk−2, . . . , �Pk−m and
find a convex combination of all of these to minimize the
distance to �P(η). This optimization can be done efficiently
for not too large m by solving a linear least squares problem.
In our actual computations, we set the value m in the range
m = 20, . . . , 100.

In addition, we can build a symmetrization procedure
in step 3. Here, we exploit the fact that the distribution
P(ab|xy) in formula (23) is invariant under the simultaneous
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permutation of Alice and Bob devices. Hence, in the case of
n = 2 we can simultaneously swap Alice’s and Bob’s devices
without changing the distribution P(ab|xy). For n copies we
have n! such permutations between the devices. We impose
this symmetry on the Bell functional C as well. Namely, for
n = 2 let us have Ca,b,x,y = C̃a,b,x,y for all a, b, x, y, where
we define

Ca,b,x,y ≡ Ca1,a2,b1,b2,x1,x2,y1,y2

C̃a,b,x,y ≡ Ca2,a1,b2,b1,x2,x1,y2,y1 . (A1)

Then, from the vector �P(k′ )
D in step 3 of the above algorithm

we form the symmetrized vector

P(k′ )
D + P̃(k′ )

D

2
, (A2)

where the components of P̃(k′ )
D are given by

P̃(k′ )
D (a, b|x, y) ≡ P(k′ )

D (a2, a1, b2, b1|x2, x1, y2, y1). (A3)

Notice that in step 2, the symmetrized vector (A2) gives the
same overlap with [ �P(η) − �Pk] as �P(k′ )

D does. On the other
hand, at the end of the procedure, we obtain a Bell matrix
C with the required symmetry C = C̃. For n > 2, the sym-
metrization is similar to the above procedure. In the general
case of n copies, there are n! different possible permutations
of the devices, all of which have to be taken into account in
the symmetrization task.
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