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In a device-independent Bell test, the devices are considered to be black boxes and the dimension of the system
remains unspecified. The dichotomic observables involved in such a Bell test can be degenerate and one may
invoke a suitable measurement scheme to lift the degeneracy. However, the standard Bell test cannot account
for whether or up to what extent the degeneracy is lifted, as the effect of lifting the degeneracy can only be
reflected in the postmeasurement states, which the standard Bell tests do not certify. In this work, we demonstrate
the device-independent certification of degeneracy-breaking measurement based on the sequential Bell test by
multiple observers who perform degeneracy-breaking unsharp measurements characterized by positive-operator-
valued measures (POVMs)—the noisy variants of projectors. The optimal quantum violation of Clauser-Horne-
Shimony-Holt inequality by multiple sequential observers eventually enables us to certify up to what extent the
degeneracy has been lifted. In particular, our protocol certifies the upper bound on the number of POVMs used
for performing such measurements along with the entangled state and measurement observables. We use an
elegant sum-of-squares approach that powers such certification of degeneracy-breaking measurements.
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I. INTRODUCTION

In the standard [1] quantum theory, the measurement pro-
cess is interpreted as an entangling interaction between the
states of the measuring apparatus and the observed system
such that the latter is reduced to one of the eigenstates of
the corresponding measurement operator associated with the
measured observable, commonly known as the collapse of
the wave function. While for nondegenerate observables the
system indeed reduces to one of the eigenstate [2], for a degen-
erate observable, the eigenstate to which the system collapses
depends on the prepared state on which the measurement is
being performed [3,4]. Note, however, that for degenerate ob-
servables there is provision to develop a suitable measurement
scheme to lift the degeneracy so that the system can be made
to collapse to a unique set of eigenstates depending upon
the way the degeneracy is being lifted. To understand the
degeneracy-breaking measurement scheme, in the following
paragraph we briefly discuss the technical part of it.

Let an operator Â have r number of discrete eigenvalues
{ar} having degree of degeneracy {lr}. Let {Pi

r = |χ i
r〉〈χ i

r |},
where i = 1, 2, ..., lr is the set of rank-1 eigenprojectors of
Â satisfying

∑
i,r Pi

r = Id . Here Id is the identity matrix in the
dimension of the Hilbert space d = ∑

r[ lr], where [.] denotes
the cardinality. Given a prepared state ρ, if the measurement
process is degeneracy-preserving [3,4], then the reduced den-
sity matrix can be written as ρr = ∑

r PrρPr , where Pr =

*prabuddharoy.94@gmail.com
†akp@phy.iith.ac.in

∑lr
i=1 Pi

r = ∑lr
i=1 |χ i

r〉〈χ i
r | and |χ i

r〉 is the eigenstate corre-
sponding to the eigenvalue ar having degree of degeneracy lr .
In contrast, if the measurement procedure is fully degeneracy-
breaking, the reduced density matrix is ρ ′

r = ∑
r,i Pi

rρPi
r . The

degeneracy-breaking state reduction rule may be read as fine-
graining of the degeneracy-preserving projection rule. There
may be intermediate scenarios between fully degeneracy-
breaking and degeneracy-preserving measurements, which we
call partially degeneracy-breaking measurements.

It naturally follows from the preceding discussion that ρr

and ρ ′
r are inequivalent unless the observable is nondegener-

ate. For the measurement of the degenerate observable, ρr is
expected to be less mixed than ρ ′

r , i.e., a larger amount of
residual coherence remains in ρr . Crucially, given a density
matrix ρ, the expectation value of any arbitrary observable
〈Â〉 = Tr[Âρ] remains the same, irrespective of whether the
degeneracy-breaking or -preserving measurement is imple-
mented. The measurement statistics of Â only pertain to the
probabilities of the different outcomes (eigenvalues) and are
not concerned with the postmeasurement states. However, the
scenario becomes interesting if a sequential measurement of
another observable is performed posterior to Â. In such a
case, different postmeasurement states may provide different
statistics in sequential measurements.

The aim of this work is to certify the degeneracy-breaking
measurement through the quantum violation of Bell’s inequal-
ity. Bell’s inequalities provide an avenue to test the eccentric
nonclassical feature widely known as quantum nonlocality
in the device-independent (DI) way. In a DI Bell test, the
dimension of the system remains unspecified and the de-
vices are considered to be back-boxes, i.e., the inner working
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of the devices remains uncharacterized. Only the observed
output statistics are enough to certify nonlocality. Such DI
certification of quantum correlations has recently found a
plethora of applications in quantum information theory [5–9].
For the certification of degeneracy-breaking measurement, we
consider the Clauser-Horn-Shimony-Holt (CHSH) inequality
[10]—the simplest form of Bell’s inequality involving two
parties, two measurements per party, and two outcomes per
measurement (2-2-2) [5]. Such certification has not hitherto
been explored and hence we first explain the motivation of the
present work a bit more elaborately in the following section.

This paper is organized as follows. First, before we present
our main result, we briefly discuss the motivation (Sec. II) of
our work. In Sec. III, we recapitulate the essence of the CHSH
inequality by explicitly providing the DI self-testing based on
the optimal quantum violation by introducing an elegant sum-
of-squares (SOS) approach recently developed in Ref. [11].
Next, in Sec. IV, we revisit the sequential independent sharing
[12–16] of CHSH nonlocality in the DI way. In Sec. V, we
first provide a detailed analysis of the degeneracy-breaking
measurement scheme. Subsequently, by introducing different
g-positive-operator-valued measures (g-POVMs), we provide
the analytical treatment of quantum bound of the CHSH ex-
pressions between Alice-Bob2 in terms of the unsharpness
parameter in Secs. V A and V B and discuss the certification
argument in Sec. V C. Section VI is equipped with the way the
certification of g-POVMs has been done using the certified
unsharpness parameter of Bob1. Finally, we summarize our
results in Sec. VII and provide future directions.

II. MOTIVATION OF THE PRESENT WORK

It is known that the optimal quantum violation of the
CHSH inequality self-tests [17] the local observables of both
Alice and Bob as well as the state shared between these
two parties, viz., the observables for both parties are anti-
commuting and the state shared between them is maximally
entangled. Since in the Bell test the devices of both parties
remain uncharacterized and the dimension of the system re-
mains unspecified, the nonlocal correlation is self-tested in the
DI way [17–21].

It is essential to note here that the quantum optimal vi-
olation of the CHSH inequality remains the same even if
Alice and Bob share m copies of the two-qubit maximally
entangled state, as long as the local observables in dimen-
sion d = 2m are dichotomic. If the local dimension d > 2,
the observable is degenerate and there are many possible
ways of implementing the quantum measurement depending
on how the degeneracy is being lifted. To put it succinctly,
let us introduce the notion of g-projector measurements, and
for g = 2 the measurement is degeneracy-preserving. For
g > 2, the measurement is degeneracy-breaking, which can
be seen as a kind of fine-graining measurement, and g = d
corresponds to the fully degeneracy-breaking measurement.
For such a fully degeneracy-breaking measurement, the sys-
tem can reduce to one of the eigenstates corresponding to a
unique set of eigenfunctions fixed by the degeneracy-breaking
scheme. For instance, if d = 4 and g = 4, then the 4-projector
fine-graining measurement is fully degeneracy-breaking.
Similarly, in this case, 3- and 2-projector measurements

FIG. 1. A schematic diagram shows an example of degeneracy-
breaking measurement for g = 4. Bob1 poses a two-qubit dichotomic
observable B. In order to break the degeneracy, Bob1 introduces an-
other dichotomic observable B′ prior to B which follows [B, B′] = 0.
Given a state ρ, Bob1 first performs the measurement B′ and partially
breaks the degeneracy to one of the nonunique eigensubspaces. Sub-
sequently, Bob1 measures B on one of those reduced eigensubspaces.
Finally, the system collapses to one of the four eigenstates.

are partially degeneracy-breaking and degeneracy-preserving
measurements, respectively. To provide more clarity, let us
introduce a brief sketch of how degeneracy-breaking measure-
ments can be performed for a local two-qubit (d = 4) system
as depicted in Fig. 1. Let us assume an observable B = P+ −
P− = |φ1

+〉 〈φ1
+| + |φ2

+〉 〈φ2
+| − |φ1

−〉 〈φ1
−| − |φ2

−〉 〈φ2
−|, where

P+ = |φ1
+〉 〈φ1

+| + |φ2
+〉 〈φ2

+| and p− = |φ1
−〉 〈φ1

−| − |φ2
−〉 〈φ2

−|
are the rank-2 eigenprojectors having eigenvalues +1 and
−1, respectively. Here |φ1

+〉 〈φ1
+| and |φ2

+〉 〈φ2
+| are the two

eigenstates of B̂ having the same eigenvalue +1 and similarly
for the other two eigenstates. In order to break the degener-
acy, one needs to introduce another observable B′ which is
commuting to B and hence possesses common eigenstates.
Let us assume that B′ = |φ1

+〉 〈φ1
+| + |φ1

−〉 〈φ1
−| − |φ2

+〉 〈φ2
+| −

|φ2
−〉 〈φ2

−|. Here |φ1
+〉 and |φ1

−〉 are the eigenstates of B′ corre-
sponding to the eigenvalue +1 of B′, and |φ2

+〉 and |φ2
−〉 are

the eigenstates with eigenvalue −1. To lift the degeneracy,
one first performs the nonselective measurement of B′ on the
given state ρ and then applies B sequentially. The system then
collapses to one of the four eigenstates.

For our purpose, we will shortly introduce the POVMs,
which are a noisy variant of the projectors. Now, for d = 4
the POVMs corresponding to the projectors are {Ei

b}, with
i ∈ {1, 2} and b ∈ {−1,+1}. In the case of a fully degeneracy-
breaking measurement (g = 4), to obtain the postmeasure-
ment states the Kraus operators are constructed corresponding
to the POVMs {E1

+, E2
+, E1

−, E2
−}, whereas in the case of

a partially degeneracy-breaking measurement (g = 3), the
Kraus operators are constructed corresponding to the POVMs
{E12

+ ≡ E+ = (E1
+ + E2

+), E1
−, E2

−} or {E1
+, E2

+, E12
− ≡ E− =

(E1
− + E2

−)}. For a degeneracy-preserving measurement (g =
2), the Kraus operators are constructed corresponding to the
g-POVMs {E+ = (E1

+ + E2
+), E− = (E1

− + E2
−)}.

We note again that in a Bell experiment the degeneracy-
breaking and -preserving measurements cannot be distin-
guished from the measurement statistics and the quantum
optimal value is independent of the dimension d . It then
immediately follows that the standard Bell experiment cannot

022204-2



DEVICE-INDEPENDENT CERTIFICATION OF … PHYSICAL REVIEW A 107, 022204 (2023)

distinguish which measurement scheme (the value of g) is
implemented to obtain the statistics. Therefore, the optimal
quantum violation of a conventional Bell test certifies neither
the postmeasurement states nor the number of projectors (g)
used to realize the measurements. In this work, we show
that the sequential Bell test possesses the potential to certify
the postmeasurement states. We provide a DI certification
protocol that certifies the g-projector measurement through
the sequential quantum violation of the CHSH inequality. Al-
though a number of works have been reported [22–28] aiming
to distinguish (not to certify) degeneracy-preserving and fully
degeneracy-breaking measurement, it is fair to say that they
are quite far from the motivation of the present work.

We consider the sequential CHSH scenario comprised of a
single Alice and an arbitrary k number of independent sequen-
tial Bobs (Bobk). While our protocol works for dichotomic
observables in arbitrary dimension d > 2, for convenience we
consider that Alice and Bob1 share m copies of two-qubit
entangled states. If Bob1 performs projective measurement,
degeneracy-breaking or not, the entanglement will be com-
pletely destroyed; thereby, quantum violation of the CHSH
inequality between Alice and Bob2 cannot be achieved. To
ensure the CHSH violation between Alice and Bob2, Bob1

must have to perform the unsharp measurements, i.e., POVMs
[29]. Here we consider those POVMs which are the noisy
variants of sharp projective measurements. If Bob1 performs
POVMs, a residual entanglement may remain which can be
used by Alice and Bob2 to demonstrate the violation of CHSH
inequality, and the chain continues for Bobk . It is important to
note here that there will be a trade-off between the quantum
violations of the CHSH inequality between Alice and sequen-
tial Bobs depending upon the unsharpness of the measurement
instrument used by Bobk and the value of g. For example, one
may take the minimum value of the unsharpness parameter for
Bob1 so that the CHSH inequality is just violated. In such a
case, the entanglement state will be minimally disturbed and,
subsequently, there will be a high possibility of obtaining a
CHSH violation between Alice and Bob2. The process con-
tinues until the kth sequential Bob gets the quantum violation
of CHSH inequality.

Importantly, for g-POVM measurements, the disturbance
created by Bob1 is also dependent on the value of g. For
g = 2, the residual entanglement after Bob1’s measurement is
higher than g > 2. Hence, there is a scope to demonstrate the
sharing of quantum correlations to more observers if 2-POVM
measurements are performed. By observing the quantum vi-
olations of CHSH inequality by Alice and sequential Bobs,
we demonstrate DI certification of the number (g) of POVMs
used to implement the measurement. Therefore, our protocol
self-tests the state, observables, and the degeneracy-breaking
or -preserving measurement solely from the statistics.

III. OPTIMAL QUANTUM VIOLATION
OF THE CHSH INEQUALITY

The standard CHSH experiment involves two space-like
separated parties (say, Alice and Bob) who share systems
having a common past. Alice (Bob) performs local measure-
ments on her (his) subsystem upon receiving inputs x ∈ {1, 2}

(y ∈ {1, 2}), and returns outputs a ∈ {−1,+1} (b ∈
{−1,+1}). Representing Ax and By as respective observables
of Alice and Bob, the CHSH expression is given by

B = (A1 + A2)B1 + (A1 − A2)B2, (1)

where 〈AxBy〉 = ∑
a,b=±1 ab p(a, b|AxBy) and p(a, b|AxBy) is

the joint probability distribution. For any local realist the-
ory, the expectation value 〈B〉 of the CHSH expression B is
bounded by 〈B〉 � 2. In quantum theory, 〈B〉Q = Tr[B ρAB],
where ρAB is the joint quantum state of Alice and Bob. The
optimal quantum value of the CHSH expression has shown to
be 〈B〉opt

Q = 2
√

2 [30]. The optimal value is achieved when the
observables local to Alice and Bob are anticommuting and the
shared state ρAB is a maximally entangled state.

By using an elegant SOS approach, we explicitly show in
Appendix A that the optimal value 〈B〉opt

Q remains the same
even if Alice and Bob perform dichotomic measurements on a
shared state ρAB ∈ Hd

A ⊗ Hd
B , where d � 2 is arbitrary. Thus,

if the measurement is done on such a higher-dimensional
entangled state with d = 2m (m being an integer), an observer
(say, Bob) gets the provision to implement his measure-
ment in different ways, viz., degeneracy-preserving, partially
degeneracy-breaking, or fully degeneracy-breaking. One may
then ask whether the different degrees of degeneracy-breaking
measurements can be certified through the quantum violation
of CHSH inequality.

For example, if Bob’s local subsystem is two-qubit (d =
4), Bob can choose to measure the dichotomic observables as
By = P+|y − P−|y with y ∈ {1, 2} in the degeneracy-preserving

(g = 2) scheme, where P±|y = 1
2 (I ± By) are the rank-2 pro-

jectors or can implement a degeneracy-breaking (g = 4)
scheme by breaking each rank-2 projector into rank-1 pro-
jectors, i.e., P+|y = P1

+|y + P2
+|y; P−

y = P1
−|y + P2

−|y (explicitly

shown for 〈B2〉g=4
Q in Appendix D). One may also consider

three projector (g = 3) measurements. It is straightforward
to show that irrespective of the measurement scheme imple-
mented, the value of each correlation 〈AxBy〉 and, further,
the CHSH expression (Tr[ρABB]) between Alice and Bob1

remain the same. This argument holds good for any arbitrary
dimension and arbitrary g value. However, the postmeasure-
ment states for different g values can be different. This can be
captured through the sequential quantum violation of CHSH
inequality, which in turn enables us to certify the degree of
degeneracy-breaking measurement g.

IV. DI SHARING OF NONLOCALITY IN THE CHSH
SCENARIO FOR DEGENERACY-PRESERVING

MEASUREMENT

We start by noting that the sequential sharing of nonlocality
was first introduced in Ref. [12] to demonstrate that two
independent sequential observers on one side can share the
nonlocality given the shared entangled system is of minimum
dimension, i.e., maximally entangled two-qubit state. In a
recent work [15], by using a two-qubit entangled state it has
been shown that arbitrary independent Bobs can sequentially
share nonlocality by adjusting the trade-off between measure-
ment settings and unsharpness parameters.
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FIG. 2. Schematic diagram for our proposed variant of sequential Bell test consisting of one Alice and multiple independent Bobs (Bobk).
By “independent” we mean that Bob2 does not have any information about Bob1’s measurement and so on. Bob1 implements degeneracy-
preserving (breaking) measurement on his local subsystem by introducing noisy POVMs and sends the postmeasurement state to the next
sequential independent Bob.

Here, we also consider the sequential sharing of nonlocal-
ity but without assuming the dimension of the system, a key
element for DI certification. While the purpose of the work in
Ref. [15] was to demonstrate the sharing of nonlocality by an
arbitrary number of independent observers using a minimum
dimensional system, we demonstrate the sharing of nonlo-
cality in a DI way without assuming the dimension of the
system. Such a DI way of sharing nonlocality has not hitherto
been demonstrated. Note again that the aim of the present
work is to demonstrate the DI certification of degeneracy-
breaking measurement. For achieving our purpose, we invoke
the sequential quantum violation of Bell’s inequality as a
tool. This is because the certification of degeneracy-breaking
measurement necessitates the DI certification of the post-
measurement state. Thus, consideration of two independent
sequential Bobs meets our requirement. Hence, in this section,
we first demonstrate the sequential sharing of nonlocality in
the aforementioned scenario without assuming the dimension
of the shared system as well as the inner working of the mea-
surement devices of Alice and Bobs. In this section, we will
discuss certification of degeneracy-preserving measurement,
i.e., the g = 2 case.

The sequential Bell experiment comprises one Alice who
performs sharp measurement, and an arbitrary k number of in-
dependent Bobs (Bobk) who perform unsharp measurements
with respective unsharpness parameters λk sequentially, as
depicted in Fig. 2. After Bobk’s measurement, he relays his
subsystem to Bob(k+1). Note that since all Bobs are inde-
pendent of each other, each Bob has no information about
previous Bobs measurements nor about outcomes. Now, here
we use the quantum violation of CHSH inequality [10] for
the purpose of sequential sharing of nonlocality. In order to
obtain the reduced state, averaged over Bobk’s measurements
and outcomes, between Alice and Bob(k+1), let us first charac-
terize Bob’s measurement by Kraus operators {Kbk |yk }, where

∀k, bk = ±1,
∑

bk
K†

bk |yk
Kbk |yk = I, and Kbk |yk = √

Ebk |yk . Here

Ebk |yk = 1
2 (I + λkbkByk ) are the POVMs corresponding to ob-

servables Byk satisfying
∑

bk
Ebk |yk = I [29,31]. The Kraus

operators can be written as

K±|yk =
√

(1 ± λk )

2
P+|yk +

√
(1 ∓ λk )

2
P−|yk

≡ αkI ± βkByk , (2)

where P±|yk are the projectors corresponding to each of the
eigenvectors of Byk and

αk = 1

2

(√
(1 + λk )

2
+

√
(1 − λk )

2

)
,

βk = 1

2

(√
(1 + λk )

2
−

√
(1 − λk )

2

)
, (3)

satisfying α2
k + β2

k = 1/2. We take the same unsharpness
parameter λk for the two measurements of Bobk , as the un-
sharpness is the property of the device, irrespective of which
observable is being measured. Then, after the kth Bob’s mea-
surement, the average reduced state shared between Alice and
Bobk+1 is given by

ρAB(k+1) = 1

2

∑
bk∈{+,−}

2∑
yk=1

(
I ⊗ Kbk |yk

)
ρABk

(
I ⊗ Kbk |yk

)
. (4)

Now, we are in a position to demonstrate DI sequen-
tial sharing of nonlocality between Alice-Bobk . We denote
〈Bk

Q〉g=2 by the quantum value of the Bell expression between
Alice and Bobk . By using Eq. (2), the quantum value of the
CHSH expression 〈B1〉g=2

Q corresponding to Alice and Bob1
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is given by

〈B1〉g=2
Q = Tr[ρAB1B] = λ1〈B〉opt

Q , (5)

where ρAB1 ∈ Hd
A ⊗Hd

B1
is the bipartite state shared between

Alice and Bob1 and λ1 is the unsharpness parameter of Bob1’s
instrument. As mentioned earlier, 〈B1〉Q remains the same
irrespective of the way measurement is implemented by Bob1,
i.e., 〈B1〉g

Q ≡ 〈B1〉Q.
After the measurement of Bob1, the average state shared

between Alice and Bob2 is given by

ρAB2 = 1

2

∑
b1∈{+,−}

2∑
y1=1

(
I ⊗ Kb1|y1

)
ρAB1

(
I ⊗ Kb1|y1

)

= 2α2
2 ρAB1 + β2

2

2∑
y1=1

(
I ⊗ By1

)
ρAB1

(
I ⊗ By1

)
. (6)

By using Eq. (6), the quantum value of the CHSH expres-
sion for Alice and Bob2 is evaluated as (see Appendix B for
detailed derivation)

〈B2〉g=2
Q = max

ρAB1 ,{Ax},{By}
(Tr[ρAB2B])

= max
ρAB1 ,{Ax},{By}

(Tr[ρAB1 ((A1 + A2)B′
1

+ (A1 − A2)B′
2)]) (7)

Naturally, the maximum value can be obtained when Bob2

performs sharp measurement. The explicit forms of B′
1 and B′

2
are derived as

B′
1 = (

2α2
2 + β2

2

)
B1 + β2

2 B2B1B2

B′
2 = (

2α2
2 + β2

2

)
B2 + β2

2 B1B2B1. (8)

In Appendix C, we prove that the quantum values 〈B1〉g=2
Q

and 〈B2〉g=2
Q are simultaneously optimized when both Bob1’s

as well as Bob2’s observables are anticommuting. We also
prove that to obtain the maximum quantum value of 〈B2〉g=2

Q ,
the choices of observables of Bob2 have to be the same as
Bob1. Note that Eq. (7) has a similar form of CHSH expres-
sion as in Eq. (1). However, here (B′

1)2 �= I and (B′
2)2 �= I,

and hence they need to be properly normalized. Hence, in
order to obtain the maximum quantum value of Eq. (7), con-
sidering ω1 = ||(A1 + A2)|ψ〉AB||2, ω′

1 = ||B′
1|ψ〉AB||2, ω2 =

||(A1 − A2)|ψ〉AB||2 and ω′
2 = ||B′

2|ψ〉AB||2, and by using the
SOS approach [32] we derive (see Appendix B for detailed
derivation)

〈B2〉g=2
Q = max(ω1ω

′
1 + ω2ω

′
2). (9)

As we have already proved in Appendix A, to obtain the
optimal quantum value, Alice’s and Bob’s observables have to
be mutually anticommuting. Hence, for Bob’s (unnormalized)
observables B′

1 and B′
2 we require

{B′
1, B′

2} = 4α2
2

(
α2

2 + 2β2
2

){B1, B2} + β4
2 {B1, B2}3 = 0.

(10)

Since α2 > 0 and β2 � 0, Eq. (10) gives {B1, B2} = 0. In
other words, the observables of Bob2 have to be anticom-
muting to obtain the maximum quantum value of the Bell

expression 〈B2〉g=2
Q . This, in turn, provides

ω′
1 =

√(
2α2

2

)2 + (
2α2

2 + β2
1

)
β2

2 {B1, B2}2 = 2α2
2, (11)

and ω′
2 = ω′

1 = 2α2
2 . By using ω′

1, ω
′
2 from Eq. (11) we have

〈B2〉g=2
Q = 2α2

2 max(ω1 + ω2) = 2α2
2〈B〉opt

Q ,

where we used Eq. (A5). Using the value of α2, we have
〈B2〉g=2

Q in terms of unsharpness parameter as

〈B2〉g=2
Q = 1

2

(
1 +

√
1 − λ2

1

)〈B〉opt
Q (12)

Since the optimal quantum value of 〈B〉opt
Q is 2

√
2, the

lower bound of unsharpness parameter for Bob1 is required
for violating the CHSH inequality is calculated from Eq. (5)
as λ1 = 1/

√
2 ≈ 0.707. Now, in order to have a simultaneous

quantum violation of CHSH inequality for Bob1 as well as
Bob2, one requires 〈B1〉Q > 2 and 〈B2〉g=2

Q > 2. This demands
Bob1’s measurements to be a necessarily unsharp one. The
upper bound to λ1 is calculated by putting λ2 = 1 in Eq. (12)
when Bob2 just surpasses the classical bound and is given by
(λ1)max =

√
2(

√
2 − 1) ≈ 0.912. If the values of 〈B1〉Q and

〈B2〉g=2
Q are experimentally realized, one can fix the range

of unsharpness parameter of Bob1’s measurement instrument
to be λ1 ∈ [0.707, 0.912]. As the certification of degeneracy-
breaking measurements demands the quantum violation of
CHSH inequality by at least two observers, any value of λ1

within the above range enables the certification.
We note here that the semi-DI certification of postmea-

surement qubit states in the prepare-measure scenario was
studied in Refs. [33–35] and experimentally tested [36,37].
We considered DI self-testing of the postmeasurement state in
any arbitrary dimension in the entangled scenario.

V. CERTIFICATION OF DEGENERACY-BREAKING
MEASUREMENT

To certify the degree (g) of degeneracy-breaking, we in-
voke the sequential quantum violation of CHSH inequality
by multiple sequential observers. Now, in the sequential sce-
nario, Bob1 has the freedom to implement his measurement by
performing g-POVMs, the noisy variants of g-projectors. As
mentioned earlier in Sec. I, g = 2 corresponds to the standard
degeneracy-preserving measurement. For g>2, the measure-
ment is degeneracy-breaking and for g = d the measurement
is fully degeneracy-breaking. It is crucial to note here that if
Bob1 implements his measurement by considering the number
of POVMs g>2, the postmeasurement states are different than
that of the g = 2 case. Intuitively, for the g>2 case, the initial
state is expected to be more disturbed than the g = 2 case. It is
then obvious that the quantum value of the CHSH expression
for Alice and Bob2 will be smaller in g>2 than that in the case
of g = 2. The higher the value of g, the lower the quantum
violation of the CHSH inequality for Alice and Bob2.

To add more clarity, for example, let Alice and Bob1 share
a pair (i.e., m = 2) of two-qubit entangled state ρAB1 , and
hence the dimension of each of the local systems is four.
Note that the standard sequential sharing scenario as dis-
cussed in Sec. IV corresponds to the standard nonselective
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degeneracy-preserving measurement scheme (i.e., g = 2). In
this case, recalling Eq. (4), the average state between Alice
and Bob2 is written as

ρ
g=2
AB2

= 1

2

2∑
y1=1

∑
b1=±

(I ⊗ Pb1|y1 ) ρAB1 (I ⊗ Pb1|y1 ), (13)

where Pb1|y1 = ∑2
i=1 |φi

b1|y1
〉 〈φi

b1|y1
| and b1 = ±1 are the

eigenvalues of By1 . Bob1’s dichotomic observable can be
written as By1 = P+|y1 − P−|y1 , where the rank-2 projec-
tors are P+|y1 = |φ1

+|y1
〉 〈φ1

+|y1
| + |φ2

+|y1
〉 〈φ2

+|y1
| and P−|y1 =

|φ1
−|y1

〉 〈φ1
−|y1

| + |φ2
−|y1

〉 〈φ2
−|y1

|.
However, instead of implementing the degeneracy-

preserving measurement (g = 2), Bob1 can also invoke the
fully degeneracy-breaking measurement (g = 4) as we con-
sider the Bob1 system is two-qubit as an example. The reduced
state after Bob1’s measurement is given by

ρ
g=4
AB2

= 1

2

2∑
y1,i=1

∑
b1=±

(
I ⊗ Pi

b1|y1

)
ρAB1

(
I ⊗ Pi

b1|y1

)
(14)

where Pi
b1|y1

= |φi
b1|y1

〉 〈φi
b1|y1

| (with i = 1, 2) are the rank-1
orthogonal projectors satisfying

∑
i

∑
b1

Pi
b1|y1

= I.
If Bob1 performs the unsharp measurements, then for

degeneracy-preserving (or fully degeneracy-breaking) mea-
surements he uses suitable POVMs, which are the noisy
variants of projectors. Then the maximum number of POVMs

is limited to the local dimension of the system. Since the
degeneracy-breaking measurement is more disturbing than the
degeneracy-preserving one, the entanglement content of ρ

g>2
AB2

is expected to be less than ρ
g=2
AB2

.
We certify the degeneracy-breaking or -preserving mea-

surement for dichotomic observable of dimension d>2
through the sequential violation of the CHSH inequality. Intu-
itively, it is expected that the higher the value of g, the smaller
the quantum value of the CHSH expression between Alice
and Bob2. We show that this feature plays a crucial role in
certifying the lower bound of g from the optimal quantum
value of 〈B2〉g

Q.

A. Degeneracy-breaking measurement for g = 4 case

As already mentioned in Sec. V, in the sequential scenario,
Bob1 performs a nonselective unsharp measurement on his
local system by considering any value of g � 2 and relaying
the system to Bob2, who performs a sharp measurement.
The maximum value of g is the dimension d of Bob2’s lo-
cal system, i.e., gmax = d . Depending upon the value of g,
measurements can be fully or partially degeneracy-breaking
or degeneracy-preserving. For demonstration, let us assume
the dimensions of the local systems are d = 2m, where m is
arbitrary and unknown.

Let us explicitly consider the case of g = 4. In this case,
Bob1 performs his measurements by considering four POVMs
that can be constructed as

E1
+|y1

= 1
4

[
I + λ1

(
By1 + My1

)]
; E2

+|y1
= 1

4

[
I + λ1

(
By1 − My1

)]
E1

−|y1
= 1

4

[
I − λ1

(
By1 + Ny1

)]
; E2

−|y1
= 1

4

[
I − λ1

(
By1 − Ny1

)]
, (15)

with E+|y1 = E1
+|y1

+ E2
+|y1

, E−|y1 = E1
−|y1

+ E2
−|y1

, and
E+|y1 + E−|y1 = I. Note here that My1 and Ny1 are not unique,
as explained in Appendix D. However, such a nonuniqueness
will not play any role as far as the optimal quantum value of
the CHSH expression 〈B2〉g=4

Q is concerned. The 4-POVMs
given by Eq. (15) can be written in a general form as the
sum of mutually commuting observables for any arbitrary
dimensional system. One such generalized example for g = 4
is given in Appendix D.

If Bob1’s instruments are characterized by four Kraus
operators K j

b1|y1
=

√
E j

b1|y1
with j = 1, 2, then after Bob1’s

nonselective measurements the average reduced state shared
by Alice and Bob2 can be written as

ρ
g=4
AB2

= 1

2

2∑
y1=1

∑
b1∈±

2∑
j=1

(
I ⊗ K j

b1|y1

)
ρ

g=4
AB1

(
I ⊗ K j

b1|y1

)
.

(16)

The Kraus operators are constructed as K j
b1|y1

=
α4I + β4X j

b1|y1
, where X 1

+|y1
= By1 + My1 , X 2

+|y1
= By1 − My1 ,

X 1
−|y1

= −By1 − Ny1 , X 2
−|y1

= −By1 − Ny1 with
∑

b1, j X j
b1|y1

=

0, where the parameters α4 and β4 can be determined as

α4 = 1

4

(√
1 + 3λ1

4
+ 3

√
1 − λ1

4

)

β4 = 1

4

(√
1 + 3λ1

4
−

√
1 − λ1

4

)
. (17)

The detailed analysis of how the values of α4 and β4 are
written in terms of λ1 is crucial to this work, which is placed
in Appendix D. Using Kraus operators given by Eq. (16), the
explicit form of ρ

g=4
AB2

can be derived as

ρ
g=4
AB2

= 4α2
4 ρ

g=4
AB1

+ 2β2
4

[
2∑

y1=1

(
I ⊗ By1

)
ρ

g=4
AB1

(
I ⊗ By1

)

+
2∑

y1=1

2∑
j=1

(
I ⊗ B j

y1

)
ρ

g=4
AB1

(
I ⊗ B j

y1

)]
. (18)

Now, adopting the similar SOS approach as derived in
Sec. IV for the g = 2 case, we evaluate the quantum value
of the CHSH expression for Alice and Bob2 as

〈B2〉g=4
Q = Tr

[
ρ

g=4
AB2
B

] = 4
(
α2

4 + β2
4

) 〈B〉opt
Q . (19)
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Using the values of α4 and β4 from Eq. (17), we can write
〈B2〉g=4

Q in terms of only the unsharpness parameter as

〈B2〉g=4
Q = 1

4 [((3 − λ1) +
√

(1 + 3λ1)(1 − λ1))]〈B〉opt
Q

(20)

Thus, to obtain an advantage for Bob2, two sequential Bobs
requires 〈B1〉g=4

Q , 〈B2〉g=4
Q > 2. If Bob2 performs a sharp mea-

surement (i.e., λ2 = 1), then from Eq. (20) we get the upper
bound of (λ1)max ≈ 0.890.

Now, in order to compare the obtained CHSH value of
Alice and Bob2 corresponding to the g = 4 case with that
obtained in the g = 2 case, we recall the CHSH value for the
latter case from Eq. (12) in terms of the unsharpness parameter

〈B2〉g=2
Q = 1

2

(
1 +

√
1 − λ2

1

)〈B〉opt
Q . (21)

Interestingly, from Eqs. (20) and (21), although it is evi-
dent that both the expressions given by 〈B2〉g=4

Q and 〈B2〉g=2
Q

are optimized for the same state and observables, they are
quantitatively inequivalent for any values of the unsharp-
ness parameter within the allowed range. Such quantitative
inequivalence between the empirical statistics of Alice and
Bob2 brings out the profound realization that the nature of the
postmeasurement reduced state of Alice and Bob1 critically
depends on the choice of degeneracy-breaking scheme.

B. Degeneracy-breaking measurement for g = 3 case

Now, for completeness, we examine the case when Bob1

performs a degeneracy-breaking measurement by considering
3-POVMs. Intuitively, it follows that 〈B2〉g=2

Q > 〈B2〉g=3
Q >

〈B2〉g=4
Q .

Here we construct the POVMs in the g = 3 case
as {E12

+|y1
≡ E+|y1 = (E1

+|y1
+ E2

+|y1
), E1

−|y1
, E2

−|y1
} or {E1

+|y1
,

E2
+|y1

, E12
−|y1

≡ E−|y1 = (E1
−|y1

+ E2
−|y1

)}. Interestingly, the g =
3 case has only two symmetric permutations to implement
the measurements where E+|y1 or E−|y1 provides the conven-
tional POVMs corresponding to g = 2. The Kraus operators
for the first construction corresponding to the POVMs are
given as K12

+|y1
= (α2I + β2By1 ), K1

−|y1
= (α4I + β4X 1

−|y1
), and

K2
−|y1

= (α4I + β4X 2
−|y1

). The quantum value of the CHSH

expression for Alice and Bob1 〈B1〉g=3
Q = λ1〈B〉opt

Q remains
the same irrespective of the value of g.

The quantum value of the CHSH expression for Alice and
Bob2 is calculated as

〈B2〉g=3
Q = [

α2
2 + 2

(
α2

4 + β2
4

)]〈B〉opt
Q (22)

Details of the derivation are given in Appendix E. Writing
〈B2〉g=3

Q in terms λ1, we get

〈B2〉g=3
Q = 1

8

[
(5 − λ1) + 2

√
1 − λ2

1

+
√

(1 + 3λ1)(1 − λ1)
]〈B〉opt

Q . (23)

If Bob2 performs a sharp measurement (i.e., λ2 = 1), then
from Eq. (23) we get the upper bound of (λ1)max ≈ 0.865.
It is seen that 〈B2〉g=3

Q is also optimized for the same state,

observables for which 〈B2〉g=2
Q is optimized. This is due to the

FIG. 3. Optimal trade-off between the quantum value of the
CHSH inequality for Alice-Bob1 and Alice-Bob2 for different g-
POVMs is shown by the solid curves, with the shaded portion giving
the suboptimal range. The solid green line is for the classical bound
of the CHSH inequality for the same two observers.

fact that 〈B〉opt
Q is the same for both Eqs. (21) and (23) and

coefficients are only dependent on λ1.

C. g-POVM certification argument

We note that since 〈B2〉g=2
Q > 〈B2〉g=3

Q > 〈B2〉g=4
Q for any

nonzero values of λ1, we can always certify the number of
POVMs used by Bob1 only from the observed statistics. This
therefore enables the DI certification of degeneracy-breaking
measurements in the sequential CHSH scenario.

We start by noting again that 〈B1〉Q = λ1〈B〉opt
Q is indepen-

dent of the value of g. By using Eq. (21), we can write 〈B2〉g=2
Q

as a function of 〈B1〉Q, so that

〈B2〉g=2
Q = 1

2

(〈B〉opt
Q +

√(〈B〉opt
Q

)2 − (〈B1〉Q)2
)
. (24)

Since 〈B〉opt
Q = 2

√
2, then 〈B2〉g=2

Q is the function of 〈B1〉Q

only. Equation (24) represents the trade-off between the quan-
tum values of CHSH expression for Alice-Bob1 (〈B1〉Q) and
Alice-Bob2 (〈B2〉g=2

Q ), which is plotted in Fig. 3. The subopti-

mal quantum values 〈B1〉Q and 〈B2〉g=2
Q form an optimal pair

{〈B1〉Q, 〈B2〉g=2
Q } of sequential quantum violation of CHSH

inequality.
Similarly, using Eqs. (20) and (23), one finds that 〈B2〉g=4

Q

and 〈B2〉g=3
Q can also be written as a sole function of

〈B1〉Q. This is depicted in Fig. 3 for different values of
g � 5. The explicit calculation for g = 5 is placed in Ap-
pendix F. It is crucial to note that the trade-off curve for
each g is nonoverlapping. Importantly, every optimal pair
{〈B1〉Q, 〈B2〉g

Q} corresponding to different nonoverlapping
curves uniquely certifies each upper bound on g-POVMs that
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Bob1 may have implemented in a particular run of the experi-
ment.

Let us now discuss certification of g-POVMs by consid-
ering the trade-off relations corresponding to the optimal
pair {〈B1〉Q, 〈B2〉g

Q}. As an example, experimentally one gets
the quantum values of CHSH expressions for Alice-Bob2

as 〈B2〉g
Q = 2.12. This value can come from two different

g-POVMs measurements. But the experimentalist also gets
the quantum values of CHSH expressions for Alice-Bob1 as
〈B1〉Q = 2.37. Then, the pair {〈B1〉Q, 〈B2〉g

Q} ≈ {2.37, 2.12}
represents a unique point which is marked as a green dot in
Fig. 3 that lies on the curve for g = 3. This then ensures that
Bob1 must have used the value of g � 3.

Similarly, in another run of experiment one realizes the
optimal pair {〈B1〉Q, 〈B2〉g

Q} ≈ {2.43, 2.13}, which is marked
as a magenta dot between the curves for g = 2 and g = 3.
This simply ensures that Bob1 must not have performed a
degeneracy-breaking measurement (g>2) and he should have
performed a degeneracy-preserving g = 2 measurement, but
there is noise in the measurement. Hence, from the quantum
value of the optimal pair {〈B1〉Q, 〈B2〉g

Q}, the upper bound on
the number of g-POVMs used by Bob1 can be certified.

VI. CERTIFICATION OF g-POVMS USING CERTIFIED λ1

To add more regarding the g-POVMs certification we may
start with a certified unsharpness parameter, which can be
done by additional measurements. If the measurement is im-
plemented with instruments having an unsharpness parameter
greater than the critical value λ∗

1 = 1/
√

2, the optimal quan-
tum values of Bell expressions for g = 2, 3, and 4 satisfy
〈B2〉g=2

Q > 〈B2〉g=3
Q > 〈B2〉g=4

Q as depicted in Fig. 4(a), which
captures the quantitative analysis of the different degrees of
degeneracy-breaking measurements. This is explicitly dis-
cussed in the following section.

It is already clear that both the unsharpness as well as
the g-POVM of the implemented measurement result in the
loss of shared quantum correlation between Alice and Bob2.
However, for the case of g = 2, there is no additional loss
of correlation due to degeneracy-breaking. Then for g = 2,
the only viable parameter that puts a restriction on the si-
multaneous CHSH violation due to the loss of correlation is
the unsharpness parameter λ1 of Bob1’s measurement. Conse-
quently, the greater the value of the unsharpness parameter,
the less correlation remains in the relayed system. It then
directly follows that for g = 2 the CHSH value 〈B2〉g

Q of Bob2

is a monotonically decreasing function of λ1, as depicted by
the red curve in Fig. 4(a).

Now, to ensure a simultaneous violation of the CHSH
inequality by both observers, the residual correlation of the
system after Bob1’s measurement must be greater than a
certain threshold value. While the lower bound on the un-
sharpness parameter λ1 is fixed when Bob1 just starts getting
CHSH violation, the requirement of a simultaneous CHSH
violation for both observers fixes the upper bound of λ1. Thus,
in the scenario of a g-POVM measurement with g = 2, it is
possible to certify a range of unsharpness parameter only from
the input-output statistics. Such a range of the unsharpness
parameter can be evaluated from Eq. (21) as 0.707 < λ1 �
0.912. At this point, an obvious question may arise: What

FIG. 4. Graphs showing the dependence of 〈B2〉g
Q on the values

of g(λ1) of implemented measurement of Bob1 for particular values
of λ1(g). This captures the fact that the more Bob1 breaks the degen-
eracy of the measuring system, the less should be the critical value
of λ1 that provides the quantum advantage to both observers.

happens when one considers the scenario beyond the g = 2
case? Is it possible for both observers to get a simultaneous
quantum violation of CHSH inequality for the case of g>2? If
yes, what are the upper bounds on λ1 for different g (> 2)
values that constitute such sustainable quantum violations?
This is explicitly discussed in the following.

Let us first discuss the possibility of having simultaneous
quantum violations of CHSH inequalities by both observers
corresponding to different g-POVM (g>2) measurements for
an arbitrary dimensional quantum system. Obviously, as the
g value increases, the system is subjected to more disturbance
and vice versa. It is then evident that if more correlation is lost
due to a certain degeneracy-breaking interaction, one has to
implement more unsharp(less λ1) measurement to compensate
for that loss. Then, from a comparative point of view, it is clear
that although for a specific g value 〈B2〉g

Q remains a monoton-
ically decreasing function of λ1, for a greater value of g the
upper bound to the unsharpness parameter is less, as shown in
Fig. 4(a). The upper bounds to the unsharpness parameter λ1

for different g-POVM measurements are evaluated explicitly
in Appendix B. In particular, for the case of g = 3, g = 4,

022204-8



DEVICE-INDEPENDENT CERTIFICATION OF … PHYSICAL REVIEW A 107, 022204 (2023)

g = 5, and g = 6, the threshold values are λ1 = 0.890, λ1 =
0.865, λ1 = 0.777, and λ1 = 0.686, respectively. It then fol-
lows that for any g>5 measurement, the threshold value that
gives the quantum violation of the CHSH inequality to Bob2 is
insufficient for Bob1 to get any violation. Thus, for g>5, there
exist no values of λ1 for which both independent observers get
the simultaneous quantum violations of the CHSH inequality.
However, such simultaneous violation persists as long as the
implemented measurements of Bob1 correspond to g � 6. We
argue that such quantum violations of the CHSH inequality
by more than one sequential Bob can be used as a resource to
certify the g-POVMs of the implemented measurement.

In order exemplify the discussed facts, let us now con-
template the plot depicted in Fig. 4(b), which shows the
dependence of 〈B2〉g

Q on g for particular values of λ1. In
Fig. 4(b) it is explicitly shown that for the above-mentioned
threshold values λ1 = 0.865 and λ1 = 0.777, the points that
reside exactly on the dotted line for g = 4 and g = 5, respec-
tively, correspond to the CHSH value 〈B2〉g

Q = 2. It also shows
that for g = 6, even if the system is disturbed minimally (λ1 =
1/

√
2), the violation of the CHSH inequality is forbidden for

Bob2.

VII. SUMMARY AND DISCUSSIONS

The upshot of our work is the hitherto unexplored DI
certification of degeneracy-breaking measurement. To demon-
strate such certification, we have first revisited the CHSH
scenario. In particular, by using an elegant SOS approach
we explicitly obtained the optimal quantum value of the
CHSH inequality without specifying the dimension of the
Hilbert space. We argue that the optimal value (2

√
2) re-

mains the same even if the shared entangled state between
Alice and Bob1 is of dimension d = 2m (m being an integer).
This then facilitates the provision to implement Bob1’s mea-
surement in different ways—degeneracy-preserving, partial
degeneracy-breaking, or fully degeneracy-breaking. Although
the postmeasurement states for different degeneracy-breaking
are different, the quantum value of CHSH expression between
Alice and Bob1 remains the same even if Bob1 chooses to
measure the unsharp POVM (noisy version of the projective
measurement). Thus, it is not possible to certify different
modes of degeneracy-breaking solely based on the observed
statistics of Alice and Bob1. We note that the ploy to certify
such different modes of degeneracy-breaking is submerged
into the fact that the reduced state changes subject to the
implementation of degeneracy-breaking measurements.

On the other hand, while all the previous works concern-
ing sharing of nonlocality have assumed the dimension of
the system, here, without specifying the dimension, we have
demonstrated that at most two sequential Bobs can indepen-
dently share nonlocality with a space-like separated party
Alice. Inspired by these facts, we propose a variant of the
sequential sharing of nonlocality scenario where Bob1 imple-
ments a different degree (g) of degeneracy-breaking unsharp
measurement on his local subsystem. This then enables us
to employ the sequential scenario as a viable tool for the DI
certification of degeneracy-breaking measurements.

To certify the degeneracy-breaking measurement, we for-
malize the notion of g-POVMs. In that, different values of

g correspond to different degrees of degeneracy-breaking
measurement. We demonstrated that the sequential quantum
violations of CHSH inequality and their trade-off relation for
different values of g enable the certification of the number of
g used for performing the measurement by Bob1. This is due
to the fact the trade-off curves plotted in Fig. 3 for various
values of g are nonoverlapping, and hence from the statistics
of sequential Bell expressions, we can uniquely certify the
upper bound on g. We have analytically evaluated the quan-
tum values of CHSH expressions corresponding to different
g-POVMs. Interestingly, such evaluation brought out the fea-
ture that for g � 6 both sequential observers get simultaneous
CHSH violations.

Our work may pave the path for a number of future studies.
First, in this work, we confined ourselves to the simplest
2-2-2 Bell scenario, in which it is not possible to certify
the degeneracy-breaking measurement beyond g = 5. Thus,
one may expect whether it is possible to certify a greater
degree of the degeneracy-breaking measurement (g>6) by
going beyond the 2-2-2 scenario. For this purpose, to begin
with, one may proceed by going beyond the two-measurement
setting scenario and invoke the recently proposed [38] family
of Bell inequalities which was introduced as a dimension
witness [32]. Such a particular family of Bell inequalities has
a very unique power that shows increasing optimal quantum
value with an increase in the number of measurement set-
tings over that of the existing CHSH or the Gisin’s elegant
Bell inequality [39]. Moreover, by invoking higher outcome
Bell inequalities like the CGLMP inequality [40] for the
three-outcome scenario, one can also revisit the degeneracy-
breaking scheme.

Second, since degeneracy-breaking measurement can be
certified in the DI way, it will be interesting if one uses it as a
resource for DI information processing tasks such as the gen-
eration of more randomness in secure communication tasks or
in the generation of secure key for cryptographic applications.
Another direction may be explored going beyond the nonlocal
scenario. Since nonlocality is the strongest form of quantum
correlation, one can invoke the steering or entanglement sce-
nario in order to certify the degeneracy-breaking measurement
for more than g = 5. Those could be interesting avenues for
future research.
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APPENDIX A: SUM-OF-SQUARES APPROACH FOR
THE DERIVATION OF OPTIMAL QUANTUM VIOLATION

WITHOUT SPECIFYING THE DIMENSION
OF THE SYSTEM

Here we provide a derivation of the 〈B〉opt
Q without assum-

ing the Hilbert space dimension by introducing an elegant
sum-of-squares (SOS) [11] approach. One can argue that there
is a positive semidefinite operator η � 0 that can be expressed
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as

(η)Q = � − 〈B〉Q, (A1)

where � � 0. This can be proven by considering two suitable
positive operators, M1 and M2, which are polynomial func-
tions of Ax and By, so that

η = 1
2 (ω1M†

1 M1 + ω2M†
2 M2). (A2)

For our purpose, we suitably choose M1 and M2 as

M1|ψ〉AB = A1 + A2

ω1
|ψ〉AB − B1|ψ〉AB

M2|ψ〉AB = A1 − A2

ω1
|ψ〉AB − B2|ψ〉AB, (A3)

where ω1 = ||(A1 + A2)|ψ〉AB||2 and ω2 = ||(A1 −
A2)|ψ〉AB||2 for a quantum state |ψ〉AB. Here ||.||2 is the
Frobenius norm of a vector, || O ||2 =

√
Tr[O†Oρ]. Plugging

Eq. (B5) into Eq. (B4) and using that A†
xAx = B†

yBy = I, we
obtain

〈B〉Q = (ω1 + ω2) − (η)Q. (A4)

It then follows that the optimal value of 〈B〉Q can be ob-
tained when (η)Q = 0, therefore,

〈B〉opt
Q = max (ω1 + ω2)

= max(
√

2 + 〈{A1, A2}〉 +
√

2 − 〈{A1, A2}〉). (A5)

Thus, the maximization requires {A1, A2} = 0, implying
that Alice’s observables have to be anticommuting. In turn,
the optimization condition provides

Tr[(A1 + A2) |ψ〉AB 〈ψ |] = Tr[(A1 − A2) |ψ〉AB 〈ψ |], (A6)

which gives ω1 = ω2 = √
2, and consequently the optimal

value 〈B〉opt
Q = 2

√
2.

The explicit conditions for the optimization are

M1|ψ〉AB = 0 ⇒ B1 = A1 + A2√
2

and M2|ψ〉AB = 0 ⇒ B2 = A1 − A2√
2

. (A7)

The above Eq. (A7) follows that {B1, B2} = 0, i.e., Bob’s
observables are also anticommuting. Moreover, for the state
ρAB = |ψAB〉 〈ψAB| ∈ Hd

A ⊗Hd
B , the optimal violation is ob-

tained when Tr[(B1 ⊗ B1) ρAB] = Tr[(B2 ⊗ B2) ρAB] = 1. It
can be shown that this is possible only if |ψ〉AB is a maxi-
mally entangled state. Thus, the optimal quantum value 〈B〉opt

Q
uniquely certifies the state and observables.

Note that here we have derived the quantum optimal value
of the CHSH expression without specifying the dimension of
the system.

APPENDIX B: DETAIL DERIVATION
OF EQS. (8) AND (9) IN THE MAIN TEXT

The quantum value of the CHSH expression for Alice and
Bob2 in the second line of Eq. (7) in the main text is derived
as follows. From the first line of Eq. (7), we have 〈B2〉g=2

Q =
maxρAB1 ,{Ax},{By}(Tr[ρAB2B]). By putting the ρAB2 and B from
Eqs. (6) and (1), respectively, we get

〈B2〉g=2
Q = max

ρAB1 ,{Ax},{By}
(
Tr

[(
2α2

2ρAB1 + β2
2

(
B1ρAB1 B1 + B2ρAB1 B2

))
[(A1 + A2)B1 + (A1 − A2)B2]

])
[from Eqs. (2) and (3)]

= max
ρAB1 ,{Ax},{By}

(
Tr

[(
2α2

2[(A1 + A2)B1 + (A1 − A2)B2] + β2
2 [(A1 + A2)(B1 + B2B1B2) + (A1 − A2)(B2 + B1B2B1)]

)
ρAB1

])
= max

ρAB1 ,{Ax},{By}
(
Tr

[(
(A1 + A2)

[
2α2

2B1 + β2
2 (B1 + B2B1B2)

] + (A1 − A2)
[
2α2

2B2 + β2
2 (B1B2B1 + B2)

])
ρAB1

])
= max

ρAB1 ,{Ax},{By}
(
Tr

[(
(A1 + A2)

[(
2α2

2 + β2
2

)
B1 + β2

2 B2B1B2
] + (A1 − A2)

[(
2α2

2 + β2
2

)
B2 + β2

2 B1B2B1
])

ρAB1

])
= max

ρAB1 ,{Ax},{By}
(Tr[ρAB1 ((A1 + A2)B′

1 + (A1 − A2)B′
2)]), (B1)

where

B′
1 = (

2α2
2 + β2

2

)
B1 + β2

2 B2B1B2

B′
2 = (

2α2
2 + β2

2

)
B2 + β2

2 B1B2B1, (B2)

which is Eq. (8) in the main text. It is interesting to note
that Eq. (7) has a similar form of CHSH expression with
the exception that B′

1 and B′
2 are unnormalized. To derive the

maximum quantum value of 〈B2〉g=2
Q we do not assume the

Hilbert space dimension. An elegant SOS approach similar to
the one provided in Appendix A enables such a derivation as
given below.

For this we assume a positive semidefinite operator η′ � 0
that can be expressed as

(η′)Q = � − 〈B2〉g=2
Q . (B3)

Clearly, when (η′)Q = 0, we get the maximum value of
〈B2〉g=2

Q . This can be proven by considering two suitable posi-
tive operators, M1 and M2, which are polynomial functions of
Ax and By, so that

η′ = 1
2 (ω1ω

′
1M†

1 M1 + ω2ω
′
2M†

2 M2), (B4)
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where ωi, ω
′
i ∀i ∈ {1, 2} are positive numbers. For our pur-

pose, we suitably choose M1 and M2 as

M1|ψ〉AB = A1 + A2

ω1
|ψ〉AB − B′

1

ω′
1

|ψ〉AB (B5)

M2|ψ〉AB = A1 − A2

ω2
|ψ〉AB − B′

2

ω′
2

|ψ〉AB,

where ω1 = ||(A1 + A2)|ψ〉AB||2, ω′
1 = ||B′

1|ψ〉AB||2, ω2 =
||(A1 − A2)|ψ〉AB||2, and ω′

2 = ||B′
2|ψ〉AB||2. Here ||.||2 is the

Frobenius norm of a vector, || O|ψ〉 ||2 =
√

Tr[O†Oρ]. Plug-
ging Eq. (B5) into Eq. (B4) and using that A†

xAx = B†
yBy = I,

we obtain

(η)Q =
[

ω′
1

2ω1
(A1 + A2)2 + ω′

2

2ω2
(A1 − A2)2 + ω1

2ω′
1

(B′
1)2

+ ω2

2ω′
2

(B′
2)2

]
− 〈B2〉g=2

Q . (B6)

Further simplification straightforwardly provides

〈B2〉g=2
Q = (ω1ω

′
1 + ω2ω

′
2) − (η′)Q. (B7)

It then follows that the optimal value of 〈B2〉g=2
Q can be

obtained when (η′)Q = 0, therefore

〈B2〉g=2
Q = max(ω1ω

′
1 + ω2ω

′
2), (B8)

which is expressed in Eq. (9) in the main text.

APPENDIX C: PROOF TO SHOW Bob1 AND Bob2 SELF-TEST SAME SET OF OBSERVABLES

The standard sequential scenario comprises one Alice who performs sharp measurement and two independent Bobs (Bob1

and Bob2) who perform unsharp measurements with respective unsharpness parameters λk ∀k ∈ {1, 2} sequentially. Let Bob1

perform measurement of B1 and B2 on his local subsystems upon receiving input y1 ∈ {1, 2} on the entangled state ρAB1 . After
Bob1’s measurement, he relays his subsystem to Bob2. Upon receiving input y2 ∈ {1, 2}, Bob2 performs measurements of the
observables B3 and B4 on the state ρAB1 with unsharpness parameter λ2, producing outputs B2 ∈ {0, 1}. The CHSH expression
between Alice and Bob2 is given by

B2 = (A1 + A2)B3 + (A1 − A2)B4. (C1)

After the measurement of Bob1, the reduced state averaged over Bob1’s measurements and outcomes using Eqs. (2) and (3)
from the main text is given by

ρAB2 = 1

2

∑
b1∈{+,−}

2∑
y1=1

(
I ⊗ Kb1|y1

)
ρAB1

(
I ⊗ Kb1|y1

) = 1

2

[
4α2

2 ρAB1 + 2β2
2

2∑
y1=1

(
I ⊗ By1

)
ρAB1

(
I ⊗ By1

)]
. (C2)

Now, putting ρAB2 from Eq. (6) in the main text, the above CHSH expression is reduced to the following:

〈B2〉g=2
Q = Tr[ρAB2B2] = Tr

[
ρAB1 ((A1 + A2)B̄ + (A1 − A2) ¯̄B)

]
, (C3)

where

B̄ = 2α2
2B3 + β2

2 (B1B3B1 + B2B3B2)

¯̄B = 2α2
2B4 + β2

2 (B1B4B1 + B2B4B2), (C4)

with α2 = 1
2 [

√
(1+λ1 )

2 +
√

(1−λ1 )
2 ] and β2 = 1

2 [
√

(1+λ1 )
2 −

√
(1−λ1 )

2 ]. Also, α2
2 = 1

4 (1 + a) and β2
2 = 1

4 (1 − a), where a =√
1 − λ2 � 0.
Using the values of α2

2 and β2
2 , we can rewrite B̄ and ¯̄B as

B̄ = 1 + a

2
B3 + 1 − a

4
(B1B3B1 + B2B3B2); ¯̄B = 1 + a

2
B4 + 1 − a

4
(B1B4B1 + B2B4B2). (C5)

The optimal quantum value of 〈B2〉g=2
Q requires Bob’s observables to be mutually anticommuting, as proved in the manuscript.

Hence, for Bob’s (unnormalized) observables, we require

{B̄, ¯̄B} = 0

⇒ (1 + a)2

4
{B3, B4} + (1 − a2)

8
{B3, (B1B4B1 + B2B4B2)} + (1 − a2)

8
{B4, (B1B3B1 + B2B3B2)}

+ (1 − a)2

16
{(B1B3B1 + B2B3B2), (B1B4B1 + B2B4B2)} = 0 (C6)
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Now, rearranging the above Eq. (C6) in terms of different degrees of the coefficient a, we will obtain three terms, each of
which independently requires to be zero following the anticommutativity relation. Thus, we obtain the following three conditions
as

4{B3, B4} + 2{B3, (B1B4B1 + B2B4B2)} + 2{B4, (B1B3B1 + B2B3B2)}
+ {(B1B3B1 + B2B3B2), (B1B4B1 + B2B4B2)} = 0, (C7)

4{B3, B4} = {(B1B3B1 + B2B3B2), (B1B4B1 + B2B4B2)} (C8)

4{B3, B4} − 2{B3, (B1B4B1 + B2B4B2)} − 2{B4, (B1B3B1 + B2B3B2)}
+{(B1B3B1 + B2B3B2), (B1B4B1 + B2B4B2)} = 0,

⇒ 4{B3, B4} = {B3, (B1B4B1 + B2B4B2)} + {B4, (B1B3B1 + B2B3B2)} [from Eq. (C8)]. (C9)

Putting Eqs. (C8) and (C9) into Eq. (C7) and rearranging, again we get the following conditions:

{B3, B4} = 0

{B3, (B1B4B1 + B2B4B2)} + {B4, (B1B3B1 + B2B3B2)} = 0

{(B1B3B1 + B2B3B2), (B1B4B1 + B2B4B2)} = 0. (C10)

It is then straightforward to show that such an anticommuting relation implies B1 = B3 and B2 = B4, and in turn {B1, B2} = 0.
Hence, for optimal sequential quantum violations the set of observables for Bob1 and Bob2 is the same.

APPENDIX D: EVALUATION OF QUANTUM VALUE OF THE CHSH EXPRESSION 〈B2〉g=4
Q FOR ALICE AND Bob2

The g-POVMs for a set of By1 are constructed as follows:

E1
+|y1

= 1
4 [I + λ1(By1 + My1 )]; E2

+|y1
= 1

4 [I + λ1(By1 − My1 )]

E1
−|y1

= 1
4 [I − λ1(By1 + Ny1 )]; E2

−|y1
= 1

4 [I − λ1(By1 − Ny1 )], (D1)

where My1 = B1
y1

+ B2
y1

and Ny1 = B1
y1

− B2
y1

. Here,
∑

bk , j E j
bk |y1

= ∑
bk , j (K

j
bk |y1

)†K j
bk |y1

= I and
√

Ebk |y1
j = K j

bk |y1
. Assuming

λ1 = 1, the g-POVMs in Eq. (D1) provide the projectors for g = 4. To satisfy the orthogonality criteria, Bobs observables
have to satisfy the conditions given as [

By1 , B1
y1

] = 0,
[
B1

y1
, B2

y1

] = 0. (D2)

1. Construction of the Kraus operators

To construct the Kraus operators, first using the property
∑4

i=1 Pi = I, from Eq. (D1) we construct the elements of POVMs,
where Pi are the projectors corresponding to each of the eigenvectors from the set that constitutes the common eigenbasis of By1 .
Then we can write

E1
+|y1

= 1
4

[
I + λ1

(
By1 + My1

)] = 1
4 [I + λ1(4P1 − I)], where P1 = 1

4

[
I + (

By1 + B1
y1

+ B2
y1

)]
= 1

4

[
(1 − λ1)I + 4λ1P1

] = 1
4 [(1 − λ1)(I − P1) + (1 + 3λ1)P1]. (D3)

The corresponding Kraus operator can be written as

K1
+|y1

=
√

1 − λ1

4
I +

(√
1 + 3λ1

4
−

√
1 − λ1

4

)
P1

=
√

1 − λ1

4
I + 1

4

(√
1 + 3λ1

4
−

√
1 − λ1

4

)(
I + By1 + My1

)

= 1

4

(√
1 + 3λ1

4
+ 3

√
1 − λ1

4

)
I + 1

4

(√
1 + 3λ1

4
−

√
1 − λ1

4

)(
By1 + My1

)
= α4I + β4X 1

+|y1
, (D4)

where α4 = 1
4 [

√
1+3λ1

4 + 3
√

1−λ1
4 ], β4 = 1

4 [
√

1+3λ1
4 −

√
1−λ1

4 ], and X 1
+|y1

= (By1 + My1 ). Similarly, other Kraus operators can

also be constructed. Thus, the general Kraus operators can be represented in a simpler form as K j
bk |y1

= α4I + β4X j
bk |y1

, with
j ∈ {1, 2}.
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2. Derivation of the quantum value of 〈B2〉g=4
Q for Alice and Bob2

The shared state between Alice and Bob2 after the unsharp measurement of Bob1 will be

ρ
g=4
AB2

= 1

2

2∑
j=1

2∑
y1=1

∑
b1=±

(
I ⊗ K j

b1|y1

)
ρ

g=4
AB1

(
I ⊗ K j

b1|y1

)

= 1

2

[
K1

+|1ρ
g=4
AB1

K1
+|1 + K2

+|1ρ
g=4
AB1

K2
+|1 + K1

−|1ρ
g=4
AB1

K1
−|1 + K2

−|1ρ
g=4
AB1

K2
−|1 + K1

+|2ρ
g=4
AB1

K1
+|2 + K2

+|2ρ
g=4
AB1

K2
+|2

+ K1
−|2ρ

g=4
AB1

K1
−|2 + K2

−|2ρ
g=4
AB1

K2
−|2

]
= 4α2

4 (I ⊗ I)ρg=4
AB1

(I ⊗ I) + 2β2
4

[(
(I ⊗ B1)ρg=4

AB1
(I ⊗ B1) + (I ⊗ B2)ρg=4

AB1
(I ⊗ B2)

)
+ ((

I ⊗ B1
1

)
ρ

g=4
AB1

(
I ⊗ B1

1

) + (
I ⊗ B1

2

)
ρ

g=4
AB1

(
I ⊗ B1

2

)) + ((
I ⊗ B2

1

)
ρ

g=4
AB1

(
I ⊗ B2

1

) + (
I ⊗ B2

2

)
ρ

g=4
AB1

(
I ⊗ B2

2

))]
(D5)

= 4α2
4 ρ

g=4
AB1

+ 2β2
4

⎡
⎣ 2∑

y1=1

(
I ⊗ By1

)
ρ

g=4
AB1

(
I ⊗ By1

) +
2∑

y1=1

2∑
j=1

(
I ⊗ B j

y1

)
ρ

g=4
AB1

(
I ⊗ B j

y1

)⎤⎦, (D6)

where By1 , B1
y1

, and B2
y1

are mutually commuting observables.
The expectation value of the CHSH expression between Alice and Bob2 for degeneracy-breaking measurement is given by

〈B2〉g=4
Q = Tr

[
ρ

g=4
AB2
B

] = 4
(
α2

4 + β2
4

)〈B〉opt
Q , (D7)

where, following a similar SOS approach as derived in Appendix B, it is straightforward to show that B1 and B2 have to be
mutually anticommuting and {B1, B1

1, B2
1} ({B2, B1

2, B2
2}) have to be mutually commuting to obtain the maximum quantum value

of 〈B2〉g=4
Q .

3. Generalized example for g = 4 case

Horodecki et al. [41] have provided the construction of the general representation of a two-qubit state (mixed or pure) in terms
of Pauli matrices. For our case we are considering a particular observable, By1 = σz ⊗ σz, which can be decomposed as By1 =
|00〉 〈00| + |00〉 〈11| + |11〉 〈00| + |11〉 〈11|. The eigenstates for By1 are the four Bell states given as {|ψ+〉 , |ψ−〉 , |φ+〉 , |φ−〉}.
This choice of basis for By1 is not unique and can be written in infinitely many ways. Let us choose a general basis for By1 as
|γ1〉 = ξ |00〉 +

√
1 − ξ 2 |11〉, |γ2〉 =

√
1 − ξ 2 |00〉 − ξ |11〉, |γ3〉 = ξ |01〉 +

√
1 − ξ 2 |10〉, and |γ4〉 =

√
1 − ξ 2 |01〉 − ξ |10〉.

In this case, for g = 4 the generalized g-POVMs for By1 where y1 = 1, 2 is evaluated as

E1
+|y1

= 1
8

[
I + λ

(
By1 + (2ξ 2 − 1)B1

y1
+ (2ξ 2 − 1)B2

y1
+ 2ξ

√
1 − ξ 2B3

y1
− 2ξ

√
1 − ξ 2B4

y1

)]
E2

+|y1
= 1

8

[
I + λ

(
By1 + (1 − 2ξ 2)B1

y1
+ (1 − 2ξ 2)B2

y1
− 2ξ

√
1 − ξ 2B3

y1
+ 2ξ

√
1 − ξ 2B4

y1

)]
E1

−|y1
= 1

8

[
I − λ

(
By1 − (1 − 2ξ 2)B1

y1
− (2ξ 2 − 1)B2

y1
− 2ξ

√
1 − ξ 2B3

y1
− 2ξ

√
1 − ξ 2B4

y1

)]
E2

−|y1
= 1

8

[
I − λ

(
By1 − (2ξ 2 − 1)B1

y1
− (1 − 2ξ 2)B2

y1
+ 2ξ

√
1 − ξ 2B3

y1
+ 2ξ

√
1 − ξ 2B4

y1

)]
, (D8)

where 0 < ξ < 1.
Given any value of ξ , the quantum value of the CHSH expression between Alice and Bob2, 〈B2〉g=4

Q , remains intact, i.e.,

〈B2〉g=4
Q values for g-POVM measurements are independent of ξ .

APPENDIX E: DETAILED CALCULATION FOR SEQUENTIAL QUANTUM VALUE
OF THE CHSH EXPRESSION 〈B2〉g=3

Q FOR ALICE AND Bob2

In the case of g = 3 POVM measurement, we can construct a rank-2 POVM by adding two rank-1 POVMs as E12
+|y1

=
E1

+|y1
+ E2

+|y1
= 1

2 (I + λ1By1 ). The Kraus operator corresponding to the POVMs is given as K12
+|y1

= (α2I + β2By1 ). The other
two rank-1 POVMs are defined as K1

−|y1
= (α4I + β4X 1

−|y1
) and K2

−|y1
= (α4I + β4X 2

−|y1
).

Therefore, the shared state between Alice and Bob2 after the unsharp measurement of Bob1 using the above three POVMs
will be

ρ
g=3
AB2

= 1

2

2∑
y1=1

[(
I ⊗ K12

+|y1

)
ρ

g=3
AB1

(
I ⊗ K12

+|y1

) + (
I ⊗ K1

−|y1

)
ρ

g=3
AB1

(
I ⊗ K1

−|y1

) + (
I ⊗ K2

−|y1

)
ρ

g=3
AB1

(
I ⊗ K2

−|y1

)]

= 1

2

[
(α2I ⊗ I + β2I ⊗ B1)ρg=3

AB1
(α2I ⊗ I + β2I ⊗ B1) + (

α4I ⊗ I + β4I ⊗ X 1
−|1

)
ρ

g=3
AB1

(
α4I ⊗ I + β4I ⊗ X 1

−|1
)
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+ (
α4I ⊗ I + β4I ⊗ X 2

−|1
)
ρ

g=3
AB1

(
α4I ⊗ I + β4I ⊗ X 2

−|1
) + (α2I ⊗ I + β2I ⊗ B2)ρg=3

AB1
(α2I ⊗ I + β2I ⊗ B2) (E1)

+ (
α4I ⊗ I + β4I ⊗ X 1

−|2
)
ρ

g=3
AB1

(
α4I ⊗ I + β4I ⊗ X 1

−|2
) + (

α4I ⊗ I + β4I ⊗ X 2
−|2

)
ρ

g=3
AB1

(
α4I ⊗ I + β4I ⊗ X 2

−|2
)]

. (E2)

The quantum value of the CHSH expression between Alice and Bob2 for g = 3-POVM measurement is calculated as

〈B2〉g=3
Q = Tr

[
ρ

g=3
AB2
B

] = [
α2

2 + 2
(
α2

4 + β2
4

)]〈B〉opt
Q (E3)

APPENDIX F: DETAILED CALCULATION FOR SEQUENTIAL QUANTUM VALUE OF THE CHSH EXPRESSION
FOR HIGHER DEGREE OF DEGENERACY-BREAKING MEASUREMENT

Bob1 can further extend the possibility of degeneracy-breaking measurement in dimension d = 2m, where m is arbitrary
considering a higher number of g-POVMs. Let us take the g = 8 case as an example, where the g-POVMs are explicitly defined
as

E1
+|y1

= 1
8

[
I + λ

(
By1 + M1

y1
+ M2

y1
+ M3

y1

)]
; E2

+|y1
= 1

8

[
I + λ

(
By1 + M1

y1
− M2

y1
− M3

y1

)]
,

E3
+|y1

= 1
8

[
I + λ

(
By1 − M1

y1
− M2

y1
+ M3

y1

)]
; E4

+|y = 1
8

[
I + λ

(
By1 − M1

y1
+ M2

y1
− M3

y1

)]
,

E1
−|y1

= 1
8

[
I − λ

(
By1 − N1

y1
− N2

y1
− N3

y1

)]
; E2

−|y1
= 1

8

[
I − λ

(
By1 − N1

y1
+ N2

y1
+ N3

y1

)]
,

E3
−|y1

= 1
8

[
I − λ

(
By1 + N1

y1
− N3

y1
+ N3

y1

)]
; E4

−|y1
= 1

8

[
I − λ

(
By1 + N1

y1
+ N3

y1
− N3

y1

)]
, (F1)

with
∑4

j=1 E j
bk |y1

= I and Mi
y1

(Ni
y1

) having i ∈ {1, 2, 3} are explicitly written as M1
y1

= (B1
y1

+ B2
y1

), M2
y1

= (B3
y1

+ B4
y1

), M3
y1

=
(B5

y1
+ B6

y1
), N1

y1
= (B1

y1
− B2

y1
), N2

y1
= (B3

y1
− B4

y1
), and N3

y1
= (B5

y1
− B6

y1
). Mi

y1
and Ni

y1
are not unique but will not affect the final

results.
The shared reduced state between Alice and Bob2 after the nonselective measurement of Bob1 can be written as

ρ
g=8
AB2

= 1

2

2∑
y1=1

4∑
j=1

∑
b1∈±

(
I ⊗ K j

b1|y1

)
ρ

g=8
AB1

(
I ⊗ K j

b1|y1

)

= 8α2
8ρ

g=8
AB1

+ 4β2
8

2∑
y1=1

[
(I ⊗ By1 )ρg=8

AB1
(I ⊗ By1 ) +

3∑
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((
I ⊗ Mi

y1

)
ρ

g=8
AB1

(
I ⊗ Mi

y1

) + (
I ⊗ Ni

y1

)
ρ

g=8
AB1

(
I ⊗ Ni

y1

))]
, (F2)

where K j
b1|y1

=
√

E j
b1|y1

are Kraus operators which can be written into a simpler form as K j
bk |y1

= α8I + β8X j
bk |y1

having

α8 = 1

8

[√
1 + 7λ

8
+ 7

√
1 − λ

8

]
; β8 = 1

8

[√
1 + 7λ

8
−

√
1 − λ

8

]
. (F3)

Replacing K j
bk |y1

= (α8I ⊗ I + β8I ⊗ X j
bk |y1

) in Eq. (F2), we get

ρ
g=8
AB2

= 8α2
8 (I ⊗ I)ρg=8

AB1
(I ⊗ I) + 4β2

8
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. (F4)

The quantum value of the CHSH expression Alice and Bob2 is derived as

〈B2〉g=8
Q = Tr

[
ρ

g=8
AB2
B

] = 8
(
α2

8 + β2
8

)〈B〉opt
Q . (F5)

In terms of the unsharpness parameter we have

〈B2〉g=8
Q = 1

8

[(
(13 − 9λ1)

2
+ 3

2

√
(1 + 7λ1)(1 − λ1)

)]
〈B〉opt

Q . (F6)

Provided the critical value of unsharpness parameter λ∗
1 = 1/

√
2, the CHSH expression will not be violated for Alice and

Bob2 and nonlocality cannot be shared up to two Bobs. Let us now consider that the measurement is implemented using 7-
POVMs. In that case, the relevant POVMs for g = 7 can be constructed as {E12

+|y1
, E3

+|y1
, E4

+|y1
, E1

−|y1
, E2

−|y1
, E3

−|y1
, E4

−|y1
}, where
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E12
+|y1

≡ E+|y1 = E1
+|y1

+ E2
+|y1

. There will be many permutations through which one can implement 7-POVM measurements.
However, the results will remain unchanged. The quantum value of the CHSH expression between Alice and Bob2 is calculated as

〈B2〉g=7
Q = [

α2
4 + 6

(
α2

8 + β2
8

)]〈B〉opt
Q

= 1
64 [(49 − 33λ1) + 9

√
(1 + 7λ1)(1 − λ1) + 6

√
(1 + 3λ1)(1 − λ1)]〈B〉opt

Q . (F7)

Similarly, the quantum value of the CHSH expression between Alice and Bob2 for g = 6 POVMs {E12
+|y1

, E34
+|y1

, E1
−|y1

, E2
−|y1

,
E3

−|y1
, E4

−|y1
}, where E12

+|y1
= (E1

+|y1
+ E2

+|y1
), E34

+|y1
= (E3

+|y1
+ E4

+|y1
), can be computed as

〈B2〉g=6
Q = [

2α2
4 + 4

(
α2

8 + β2
8

)]〈B〉opt
Q

= 1

16

[(
23 − 15λ1

2

)
+ 3

2

√
(1 + 7λ1)(1 − λ1) + 3

√
(1 + 3λ1)(1 − λ1)

]
〈B〉opt

Q , (F8)

where the upper bound of λ1 is calculated as (λ1)max ≈ 0.686 when Bob2 performs sharp measurement.
Similarly, for the g = 5 case we get {E1234

+|y1
, E1

−|y1
, E2

−|y1
, E3

−|y1
, E4

−|y1
}, or vice versa, where E1234

+|y1
≡ E+|y1 = (E1

+|y1
+ E2

+|y1
+

E3
+|y1

+ E4
+|y1

) is a rank-4 POVM, which is the same as in the case of g = 2, and the rest four are rank-1 POVMs. The quantum
value of the CHSH expression between Alice and Bob2 can be calculated as

〈B2〉g=5
Q = [

α2
2 + 4

(
α2

8 + β2
8

)]〈B〉opt
Q

= 1

16

[(
13 − 9λ1

2

)
+ 4

(
1 +

√
1 − λ2

1

) +
√

(1 + 7λ1)(1 − λ1)

]
〈B〉opt

Q , (F9)

where the upper bound of λ1 is calculated as (λ1)max ≈ 0.777 when Bob2 performs sharp measurement.
It can be easily shown that given a value of λ1, we have 〈B2〉g=5

Q > 〈B2〉g=6
Q > 〈B2〉g=7

Q > 〈B2〉g=8
Q . This simply means that the

more POVMs used by Bob1 for his measurement, the more information is extracted from the system, which eventually leads to
less quantum violation of the Bell inequality for Alice and Bob2, as expected.

This scheme can further be generalized for any arbitrary g-POVM when gmax = d , where d is also arbitrary. The quantum
value of the CHSH expression is derived as

〈B2〉g=gmax
Q = Tr

[
ρ

g
AB2
B

] = (g − d )α2
d/2 + (2g − d )

(
α2

d + β2
d

)〈B〉Q for g > d/2, (F10)

= (g − d )α2
d/4 + (2g − d/2)

(
α2

d/2 + β2
d/2

)〈B〉Q for g � d/2, (F11)

where

αd = 1

d

[√
1 + (d − 1)λ1

d
+ (d − 1)

√
1 − λ1

d

]
βd = 1

d

[√
1 + (d − 1)λ1

d
−

√
1 − λ1

d

]
. (F12)
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