
PHYSICAL REVIEW A 107, 022201 (2023)

Interplay of nonlocality and incompatibility breaking qubit channels
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Incompatibility and nonlocality are not only of foundational interest but also act as important resources for
quantum information theory. In the Clauser-Horne-Shimony-Holt (CHSH) scenario, the incompatibility of a
pair of observables is known to be equivalent to Bell nonlocality. Here, we investigate these notions in the
context of qubit channels. The Bell-CHSH inequality has a greater perspective—compared to any genuine
tripartite nonlocality scenario—while determining the interplay between nonlocality breaking qubit channels
and incompatibility breaking qubit channels. In the Bell-CHSH scenario, we prove that if the conjugate of a
channel is incompatibility breaking, then the channel is itself nonlocality breaking and vice versa. However, this
equivalence is not straightforwardly generalized to multipartite systems, due to the absence of an equivalence
relation between incompatibility and nonlocality in the multipartite scenario. We investigate this relation in
the tripartite scenario by considering some well-known states like Greenberger-Horne-Zeilinger and W states
and using the notion of Mermin and Svetlichny nonlocality. By subjecting the parties in question to unital
qubit channels, we identify the range of state and channel parameters for which incompatibility coexists with
nonlocality. Further, we identify the set of unital qubit channels that is Mermin or Svetlichny nonlocality breaking
irrespective of the input state.

DOI: 10.1103/PhysRevA.107.022201

I. INTRODUCTION

Nonlocality is one of the most profound notions in quan-
tum mechanics [1] and is often discussed in conjunction
with incompatibility of observables. Recent developments in
quantum information theory have found nonlocality a use-
ful phenomenon underpinning many advantages afforded by
various quantum information processing tasks [2]. Nonlocal-
ity can also be considered as a potential quantum resource
for information processing, such as in developing quantum
protocols to reduce the amount of communication needed in
certain computational tasks [2] and providing secure quan-
tum communications [3,4]. Incompatibility, like nonlocality,
is not merely of theoretical interest but of practical utility;
for example, in order to explore the advantage of entangle-
ment shared by two parties in a cryptography task, each party
needs to carry out measurements that are incompatible, in
the sense that these cannot be carried out simultaneously by
a single measurement device. Incompatibility should not be
confused with noncommutativity or the related concept of the
uncertainty principle. The notion of incompatibility is best
understood in terms of joint measurability [5]. A collection
of quantum measurements is jointly measurable, if it can be
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simulated by a single common quantum measurement device.
If such a single common device cannot be constructed by a
given set of quantum measurements, it then enables the set
to be used as a quantum resource. This was first noted in
[6] in the context of Clauser-Horne-Shimony-Holt (CHSH)
inequalities and later in the Einstein-Podolsky-Rosen steer-
ing, which is more explicit, when incompatibility appears as
a quantum resource. Incompatibility is necessary and suffi-
cient for the violation of the steering inequalities [7,8]. The
relation between incompatibility and contextuality has also
been studied in [9,10]. Further, a set of observables that
is pairwise incompatible, but not triplewise, can violate the
Liang-Spekkens-Wiseman noncontextuality inequality [11].
Recently, the connection between steerability and measure-
ment incompatibility was studied in [12] in the context of
the so-called steerability equivalent observables. Thus, both
nonlocality and incompatibility can be considered as quantum
resources whose understanding is of utmost importance in
view of emerging quantum technologies.

The interplay of nonlocality and incompatibility has been a
subject matter of various studies. It is well known that any in-
compatible local measurements, performed by the constituent
parties of a system, lead to the violation of Bell inequality
provided they share a pure entangled state [1,2]. Absence
of either of them (i.e., entanglement or incompatibility) will
not allow the system to exhibit nonlocality. It is important to
mention here that the notion of quantum nonlocality without
entanglement has been proposed in [13] which is different
from Bell nonlocality [1] and amounts to the inability of
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discriminating a set of product states by local operations and
classical communication, while mutual orthogonality of the
states assures their perfect global discrimination.

Further, for any pair of dichotomic incompatible observ-
ables, there always exists an entangled state which enables
the violation of a Bell inequality [6]. The relationship of
incompatibility and nonlocality is sensitive to the dimension
of the system; for example, increasing the dimension beyond
2, the incompatible observables do not necessarily lead to the
violation of Bell-type inequalities, implying that the measure-
ment incompatibility cannot guarantee nonlocality in general
[14,15]. Here, we probe the interplay between incompatibility
and nonlocality in the tripartite case by using the well-known
Mermin and Svetlichny inequalities [16]. The Svetlichny in-
equality, unlike the Mermin inequality, is a genuine measure
of nonlocality that assumes nonlocal correlations between two
parties which are locally related to a third party and is known
to provide a suitable measure to detect tripartite nonlocality
for W and Greenberger-Horne-Zeilinger (GHZ) classes of
states [17]. We refer the interested reader to [2,18] for various
facets of the multipartite nonlocality.

The extent to which a system can exhibit nonlocal cor-
relations is also sensitive to its interaction with the ambient
environment. Such interaction is usually accompanied with
a depletion of various quantum features like coherence, en-
tanglement, and nonlocality. The reduced dynamics of the
system in such cases is given by completely positive and
trace preserving maps, also known as quantum channels
(QCs). On the other hand, the action of conjugate channels
on projective measurements turns them into unsharp positive
operator-valued measures (POVMs) which may be biased, in
general. In light of the above discussion, a study of the open
system effects on the interplay of nonlocality and incompat-
ibility naturally leads to the notions of nonlocality breaking
(NB) and incompatibility breaking quantum channels [5,19].
A nonlocality breaking channel (NBC) can be defined as a
channel which when applied to a system (or part of it) leads to
a state which is local [19], while the incompatibility breaking
channel (IBC) is the one that turns incompatible observables
into compatible ones [20,21]. An IBC that renders any set of
n incompatible observables compatible would be denoted by
n-IBC. The notion of the NBC has been introduced in a similar
spirit of well-studied entanglement breaking channels [22].
Every entanglement breaking channel is nonlocality break-
ing but the converse is not true. As an example, the qubit
depolarizing channel E(ρ) := p(ρ) + (1 − p)I/2 is CHSH
nonlocality breaking for all 1

3 � p � 1
2 , but not entanglement

breaking [19]. Hence, based on this classification, nonlocality
and entanglement emerge as different resources.

The equivalence of the steerability breaking channels and
the incompatibility breaking channels was reported in [23]
and CHSH nonlocality breaking channels were shown to
be a strict subset of the steerability breaking channels [24].
The connection between Bell nonlocality and incompatibility
of two observable is well understood; however, the ques-
tion of the equivalence between NBC [19] and IBC [21] is
rarely discussed. This motivates us to explore the relation
between CHSH nonlocality breaking channels (CHSH-NBC)
and 2-IBC, such that the action of one may be replaced by
the other. The tripartite nonlocality has a much richer and

complex structure and less is known about its synergy with
incompatibility as compared to its bipartite counterpart. Mer-
min inequality assumes local-realistic correlations among all
the three qubits; hence a violation would be a signature of
the tripartite nonlocality shared among the qubits. However,
biseparable states were shown to also violate the Mermin
inequality [3,25]. This motivated Svetlichny to introduce the
notion of genuine tripartite nonlocality [16] and provide a set
of inequalities sufficient to witness it. We make use of these
notions of absolute and genuine nonlocality to figure out the
ranges of state and channels parameters in which NBC and
2-IBC coexist.

The paper is organized as follows. In Sec. II, we revisit
some basic notions and definitions used in this paper. Sec-
tion III is devoted to results and their discussion where we
prove an equivalence between NBCs and 2-IBCs in the CHSH
scenario. This is followed by an analysis of these notions in
the tripartite scenario, where we identify the state and channel
parameters in which NBCs and 2-IBCs coexist. A conclusion
is given in Sec. IV.

II. PRELIMINARIES

In this section, we discuss the notion of incompatibility in
the context of observables and quantum channels and look at
specific cases of bipartite and tripartite scenarios.

A. Incompatibility

1. Incompatibility of observables

A finite collection of observables A1, . . . , An associated
with the respective outcome spaces �A1 , . . . , �An , is said
to be compatible (or jointly measurable) if there exists a
joint observable G, defined over the product outcome space
�A1 × · · · × �An , such that for all X1 ⊂ �A1 , . . . , Xn ⊂ �An ,
the following marginal relations hold [26]:

∑
ai,i=1,...,n;i �=k

G(a1, . . . , an) = Ak (ak ) (1)

where ak is the outcome associated to observable Ak and the
summation is carried out over all outcomes ai except for i = k.
The notion of the incompatibility of observables can be illus-
trated by a simple example of Pauli matrices σx and σz which
are noncommuting and cannot be measured jointly. However,
consider the unsharp observables Sx(±) = 1

2 (I ± 1√
2
σx ) and

Sz(±) = 1
2 (I ± 1√

2
σz ), with I being the 2 × 2 identity ma-

trix. The joint observable G(i, j) = 1
4 (I + i√

2
σx + j√

2
σz ) with

i, j = ±1 jointly determines the probabilities of generalized
measurements Sx and Sz, since the latter can be obtained as
marginals Sx(±) = ∑

j G(±, j) and Sz(±) = ∑
i G(i,±).

2. Incompatibility breaking quantum channel

A QC, in the Schrödinger picture, is a completely positive
trace preserving map E : L(HA) → L(HB), where L(H i ) is
the set of bounded linear operators on Hilbert space H i

(i = A, B). One may write the operator sum
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representation [27]

ρ ′ = E(ρ) =
n∑

j=1

KjρK†
j (2)

where Ki are known as Kraus operators satisfying the com-
pleteness relation

∑
j K†

j Kj = I. The QCs which map the
identity operator to itself, i.e., E(I) = I, are known as unital
QCs. A quantum channel E in the Schrödinger picture acting
on quantum state ρ can be thought of as conjugate channel E∗
acting on observable A through the following duality relation:

Tr[E(ρ)A] = Tr[ρ E∗(A)]. (3)

Definition 1. A quantum channel E is said to be incompatibil-
ity breaking if the outputs E∗(A1), . . . ,E∗(An) are compatible
for any choice of input observables A1, . . . , An (n � 2).

If a channel E breaks the incompatibility of every class of
n observables, it is said to be n-IBC. For example, a channel
would be 2-IBC if it breaks the incompatibility of a pair of
observables. As an example, the white-noise mixing channel
Wη is described as

ρ ′ =Wη[ρ] = ηρ + (1 − η)
I
d

. (4)

Here, η is the channel parameter and d is the di-
mension of the underlying Hilbert space. This channel is
n-incompatibility breaking for all 0 � η � n+d

n(d+1) . With d =
2,Wη is 2-IBC and 3-IBC for η � 0.66 and 0.55, respectively
[21].

3. Incompatibility of generalized spin observables

Consider a spin observable A = â · �σ with projectors
P±(�a) = 1

2 (I ± A), with |�a| = 1. In presence of a noise chan-
nel E, these projectors are mapped to the noise induced POVM
P±(�α), by the transformation

A
E∗−→ A(x,η) = xI + ηâ · �σ . (5)

Here, x and η characterize the bias and sharpness such that
unbiased projective measurements correspond to x = 0 and
η = 1. Two biased and unsharp observables A(x,η) and B(y,ξ )

are jointly measurable if [28,29]

[1 − S(x, η)2 − S(y, ξ )2]

(
1 − η2

S(x, η)2
− ξ 2

S(y, ξ )2

)

� (�η · �ξ − xy), (6)

where �η = ηâ and �ξ = ξ b̂ are the unsharpness parameters,
with

S(p, q) = 1
2 [

√
(1 + p)2 − q2 +

√
(1 − p)2 − q2]. (7)

For unbiased observables A(0,η) and B(0,ξ ), the necessary
and sufficient condition for compatibility simplifies to the
following:

|�η + �ξ | + |�η − �ξ | � 2. (8)

When both the observables are subjected to identical noise
channels, i.e., ξ = η and �η and �ξ are perpendicular, then the
pairwise joint measurability condition Eq. (8) becomes

η � 1√
2
. (9)

This provides the condition for the incompatibility break-
ing of two observables and the corresponding (unital) channel
is called an incompatibility breaking channel (2-IBC).

B. Nonlocality

1. Bipartite nonlocality: CHSH inequality

Consider the scenario of two spatially separated qubits with
observables Âi = ∑3

k=1 âik · σ̂k and B̂ j = ∑3
l=1 b̂ jl · σ̂l acting

on each qubit, respectively, where âik and b̂ jl are unit vectors
in R3; i, j = 1, 2; and the σ̂i’s are spin projection operators.
The Bell operator associated with the CHSH inequality has
the form

B̂ = Â1 ⊗ (B̂1 + B̂2) + Â2 ⊗ (B̂1 − B̂2). (10)

Then the Bell-CHSH inequality for any state ρ is

Tr[ρ B̂(Â1, Â2, B̂1, B̂2)] � 2 (11)

where the observables on Alice’s and Bob’s sides are pairwise
compatible. The violation of the above inequality (11) is suf-
ficient to justify the nonlocality of the quantum state. Since
incompatible observables acting on entangled particles enable
nonlocality, thus incompatibility is necessary for violation of
(11).

The essence of Eq. (3) is that the effect of noise as decoher-
ence of the nonlocal resource ρ can be interpreted as distortion
of Alice’s local measurement resource (incompatibility). This
fact was exploited by Pal and Ghosh [19] to introduce the
notion of CHSH-NBC defined below.

Definition 2. Any qubit channel E : E(H i ) → E(H i) is
said to be NBC if, applying it to one side of (arbitrary) bipar-
tite state ρAB, it produces a state ρ ′

AB = (I ⊗ E)(ρAB) which
satisfies the Bell-CHSH inequality (11).

This means that for any value of POVMs {πA
a|x} and {πB

b|y}
on subsystems A and B, respectively, there exist conditional
distributions P(a|x, λ) and P(b|y, λ) and shared variable λ,
such that

Tr
[(

πA
a|x ⊗ πB

b|y
)
σ AB

] =
∫

dλ p(λ) P(a|x, λ) P(b|y, λ).

(12)

The violation of the Bell inequalities in the measure-
ment statistics P(ab|xy, λ) = Tr[(πA

a|x ⊗ πB
b|y)σ AB] indicates

that σ AB is not a local state. A unital channel is particularly
important as it breaks the nonlocality for any state when it
does so for maximally entangled states [19].

2. Tripartite nonlocality: Svetlichny inequality

In a tripartite Bell scenario, with Alice, Bob, and Charlie
performing measurements A, B, and C having outcome a, b,
and c, respectively, if the joint correlations can be written as

P(abc|ABC) =
∑

l

cl Pl (a|A)Pl (b|B)Pl (c|C) (13)

with 0 � cl � 1 and
∑

l cl = 1, then they are local [2,30].
Svetlichny [16] proposed the hybrid local nonlocal form of
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probability correlations:

P(abc|ABC) =
∑

l

clPl (ab|AB)Pl (c|C)

+
∑

m

cl Pm(ac|AC)Pm(b|B)

+
∑

n

cl Pn(bc|C)Pn(a|A), (14)

with 0 � cl , cm, cn � 1 and
∑

l cl + ∑
m cm + ∑

n cn = 1.
The quantum version involves triplets of particles subjected
to independent dichotomic measurements with operators
Â1 and Â2 for Alice, B̂1 and B̂2 for Bob, and Ĉ1 and Ĉ2 for
Charlie, with each measurement resulting in outcome ±1. One
defines the Mermin operator [30] as

M̂ =Â1 ⊗ B̂1 ⊗ Ĉ2 + Â1 ⊗ B̂2 ⊗ Ĉ1 + Â2 ⊗ B̂1 ⊗ Ĉ1

− Â2 ⊗ B̂2 ⊗ Ĉ2. (15)

Similarly, the Svetlichny operator is defined as [16,31]

Ŝ = Â1 ⊗ [(B̂1 + B̂2) ⊗ Ĉ1 + (B̂1 − B̂2) ⊗ Ĉ2]

+ Â2 ⊗ [(B̂1 − B̂2) ⊗ Ĉ1 − (B̂1 + B̂2) ⊗ Ĉ2]. (16)

The respective average values of these operators are classi-
cally upper bounded in the form of the Mermin and Svetlichny
inequalities written as

|〈M̂〉| � 2, |〈Ŝ〉| � 4. (17)

The maximum quantum bounds are known to be 2
√

2 and
4
√

2 for |〈M̂〉| and |〈Ŝ〉|, respectively, and can be attained
by, for example, the GHZ state [32]. Several approaches
have been adopted to find the maximum quantum value of
the Svetlichny operator [33,34]. Recently, [35,36] have an-
alytically found the tight upper bound of the Mermin and
Svetlichny operator as given below.

Definition 3. For any three-qubit quantum state ρ, the
maximum quantum value of the Mermin and the Svetlichny
operator is bounded as [35,36]

max |〈M̂〉ρ | � 2
√

2λ1, max |〈Ŝ〉ρ | � 4λ1, (18)

where 〈M̂〉ρ = Tr[M̂ρ], 〈Ŝ〉ρ = Tr[Ŝρ], and λ1 is the max-
imum singular value of the matrix M = (Mj,ik ), with M =
(Mi jk = Tr[ρ(σi ⊗ σ j ⊗ σk )], i, j, k = 1, 2, 3.

We refer the reader to [35,36] for the class of states that sat-
urate the above inequalities. We make use of above-mentioned
bounds to study the nonlocality breaking property of (unital)
channels acting on one (or more) party (parties) in the tripar-
tite scenario.

III. RESULTS AND DISCUSSION

In what follows, we will make use of the fact that ev-
ery qubit channel E can be represented in the Pauli basis
{σ0, σ1, σ2, σ3}, where σ0 = I, by a unique 4 × 4 matrix
ME = [1, 0; t, T] [37,38]. Here T = diag.[η1, η2, η3] is a real
diagonal matrix and 0 = (0 0 0) and t = (t1 t2 t2)T are row
and column vectors, respectively. For E to be unital, i.e.,
E(I) = I, we must have t = (0 0 0)T . The conjugate map E† is

characterized by M†
E = [1, tT ; 0T , T], such that the action on

a state ρ = 1
2 (I + w · σ) is given by

ME : I → I + t · σ, σ j → η jσ j, (19)

M†
E : I → I, σ j → t jI + η jσ j . (20)

A. Equivalence of CHSH nonlocality breaking
and incompatibility breaking channels

Our first result establishes an equivalence of the CHSH
nonlocality breaking channel acting on one party, with its dual
being an incompatibility breaking channel—in the context of
2-IBCs. The result can be summarized by the following two
theorems.

Theorem 1. If the conjugate of a qubit channel E is 2-IBC,
then the channel itself is CHSH-NBC.

Proof. Consider the Bell-CHSH inequality given in (11),
such that [A1, A2] �= 0 and [B1, B2] �= 0, i.e., the operators
A1 and A2 and B1 and B2 are incompatible in conjunction. Let
E† be the conjugate channel that is 2-IBC. Then the action
of this channel on Alice’s side makes A1 and A2 compatible,
i.e., [A1, A2] = 0. Therefore, the Bell-CHSH inequality is not
violated [6], and we have

Tr{ρB(E†[A1],E†[A2], B1, B2)} � 2. (21)

Alternatively,

Tr(ρE†[A1] ⊗ B1) + Tr(ρE†[A2] ⊗ B1) + Tr(ρE†[A1] ⊗ B2)

− Tr(ρE†[A2] ⊗ B2) � 2. (22)

This can be viewed in the Schrödinger picture as

Tr{(E⊗ I)[ρ]A1 ⊗ B1} + Tr{(E⊗ I)[ρ]A2 ⊗ B1}
+ Tr{(E⊗ I)[ρ]A1 ⊗ B2} − Tr{(E⊗ I)[ρ]A2 ⊗ B2} � 2,

(23)

which tells us that the CHSH inequality is satisfied even
when operators A1 and A2 and B1 and B2 are incompatible in
conjunction. Therefore, the action of E (to be precise of E⊗ I)
on state ρ is solely responsible for nonviolation of the CHSH
inequality. We conclude that E is CHSH-NBC. �

Theorem 2. If a qubit channel E is CHSH-NBC, then its
conjugate is 2-IBC.

Proof. Here we start with incompatible operators as-
sociated with the respective subsystems [A1, A2] �= 0 and
[B1, B2] �= 0 and assume that the channel E acting on Alice’s
side does not allow for the violation of the CHSH inequality,
that is,

Tr{(E⊗ I)[ρ]B(A1, A2, B1, B2)} � 2. (24)

In other words, from the measurement point of view, in the
Heisenberg picture, we have

Tr(ρE†[A1] ⊗ B1) + Tr(ρE†[A1] ⊗ B2) + Tr(ρE†[A2] ⊗ B1)

− Tr(ρE†[A2] ⊗ B2) � 2. (25)

The above inequality holds for arbitrary state ρ, which can
even be an entangled state. Thus the nonviolation of the CHSH
inequality is coming from the action of E† on the operators A1

and A2, making them compatible, [E†[A1],E†[A2]] = 0. We
conclude that (E† ⊗ I) is incompatibility breaking. �

022201-4



INTERPLAY OF NONLOCALITY AND INCOMPATIBILITY … PHYSICAL REVIEW A 107, 022201 (2023)

In order to verify the above results, let us consider the
CHSH inequality (11), such that the local observables are
subject to some biased noise characterized by (xa, ηa) and
(xb, ηb). As a result, the observables are modified as Ak =
Ixa + ηaâk · �σk , Bk = Ixb + ηbb̂k · �σk , and k = 1, 2. Averaging
with respect to the singlet state, the CHSH inequality is satis-
fied if

2xaxb + ηaηb| cos θ11 + cos θ12 + cos θ21 − cos θ22| � 2.

(26)

The modulus term has a maximum value of 2
√

2 for
θab = θa′b = θab′ = θ and θa′b′ = 3θ with θ = π/4. The above
inequality becomes [39]

ηaηb � 1 − xaxb√
2

. (27)

It follows that if the noise is unbiased on either side, i.e.,
xa = 0 or xb = 0, the incompatibility breaking condition is
reduced to

ηaηb � 1√
2
. (28)

Further, if this unbiased noise is acting only on side (for
example, on A) of the bipartite system, then ηb = 1, and we
have

ηa � 1√
2
. (29)

Having seen the impact of noise on the violation of the
CHSH inequality, we now look at the incompatibility breaking
condition for observables A1 and A2 subjected to the same
noise. As a result we have A(xa,ηa )

1 and A(xa,ηa )
2 as biased and

unsharp observables. Using inequality (6), the incompatibility
condition for these observables reads

ηa � 1 − x2
a√

2
. (30)

This coincides with the NB condition (29) only if xa = 0.
Since the action of the nonunital channel on a projector results

in a biased observable [38], one finds that the conditions for
nonlocality breaking and incompatibility breaking agree as
long as the dynamics is unital.

B. Nonlocality and incompatibility breaking channels
in the tripartite scenario

In the tripartite scenario, the aforesaid relation between
nonlocality and incompatibility does not hold in general. In
this section, we therefore first obtain the NB condition for
some well-known tripartite states and then identify the range
of channel parameter where NB agrees with the 2-IBC con-
dition. Let us first introduce the definition of the absolute and
genuine tripartite NBC.

Definition 4. For any three-qubit state ρABC , a given qubit
channel E is said to be absolute or genuine nonlocality break-
ing if, acting on any qubit, it gives a state (for example)
ρ ′

ABC = (E⊗ I ⊗ I )(ρABC ), which satisfies Mermin inequality
〈M̂〉ρ ′

ABC
� 2 or Svetlichny inequality 〈Ŝ〉ρ ′

ABC
� 4.

In terms of the largest singular value in Definition 3,
the Mermin nonlocality breaking condition (M-NBC) and
Svetlichny nonlocality breaking condition (S-NBC) are, re-
spectively, given as

ηM � 1√
2λmax

, ηS � 1

λmax
. (31)

We now consider some well-known tripartite quantum
states in which one party is subjected to a noisy evolution,
and use Definition 3 to obtain the conditions on the noise pa-
rameter for breaking the Mermin and Svetlichny nonlocality.

Example 1. Our first example is the generalized GHZ state
[40,41]:

|ψGHZ〉 = α|000〉 + β|111〉. (32)

The entanglement in this state is completely de-
stroyed when any of the three qubits is traced out, i.e.,
Trk[|ψGHZ〉〈ψGHZ|] = I/2, with k = A, B,C. Let us assume
a unital noise channel E acting on one qubit (for example,
the first one) according to Eq. (19). This can be achieved by
expressing |ψGHZ〉 in the Pauli basis and invoking σi → ησi

(i = x, y, z, 0 � η � 1) at the first qubit:

(E⊗ I ⊗ I)[|ψGHZ〉〈ψGHZ|] = 1
8 [I ⊗ I ⊗ I + I ⊗ σ3 ⊗ σ3 + η(σ3 ⊗ I ⊗ σ3) + (α2 − β2)(ησ3 ⊗ I ⊗ I + I ⊗ σ3 ⊗ I

+ I ⊗ I ⊗ σ3 + ησ3 ⊗ σ3 ⊗ σ3) + 2αβη(σ1 ⊗ σ1 ⊗ σ1

− σ1 ⊗ σ2 ⊗ σ2 − σ2 ⊗ σ1 ⊗ σ2 − σ2 ⊗ σ2 ⊗ σ1)]. (33)

The matrix Mj,ik in Definition 3 turns out to be

Mj,ik =

⎛
⎜⎜⎝

2ηαβ 0 0 0 −2ηαβ 0 0 0 0

0 −2ηαβ 0 −2ηαβ 0 0 0 0 0

0 0 0 0 0 0 0 0 η(α2 − β2)

⎞
⎟⎟⎠. (34)

This has singular values 2
√

2ηαβ, 2
√

2ηαβ, and η|α2 − β2|. Thus the condition for the channel to be Mermin and Svetlichny
NB is given by

ηM � 1

4αβ
, ηS � 1

2
√

2αβ
. (35)
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Example 2. Next, we consider the well-known generalized W state given by

|ψ〉 = α|100〉 + β|010〉 + γ |001〉, (36)

with α, β, and γ real and α2 + β2 + γ 2 = 1. This state is special in the sense that if one qubit is lost, the state of the remaining
two qubits is still entangled, unlike the GHZ state. The matrix Mj,ik in Definition 3 corresponding to unital noise acting on the
first qubit of the state is given by

Mj,ik =

⎛
⎜⎜⎝

0 0 ηω 0 0 0 ηω 0 0

0 0 0 0 0 ηω 0 ηω 0

ηω′ 0 0 0 ηω′ 0 0 0 η(2αγ − β2)

⎞
⎟⎟⎠,

with ω = αβ + βγ , ω′ = (α2 + γ 2). The largest singular value turns out to be λ = η
√

1 + 8β2γ 2. Now β2 + γ 2 = 1 − α2 = k
(for example), so that β2γ 2 = β2(k − β2). This quantity attains the maximum k2/4 at β2 = k/2, leading to λmax = η

√
1 + 2k2.

The Mermin and Svetlichny nonlocality breaking conditions then read

ηM � 1√
2
√

1 + 2k2
, ηS � 1√

1 + 2k2
. (37)

The singular values attain a maximum at k = 2/3, i.e., α = β = γ = 1/
√

3. Under this condition and for ηS approximately
in the range 0.707–0.727, the channel is S-NBC but not 2-IBC. Note that in the bipartite case, a unital channel is CHSH-NBC
for all η � 1/

√
2 [19]. Thus in the range η ≈ 0.707–0.727, it is S-NBC but not CHSH-NBC.

Example 3. We next consider the three-qubit partially entangled set of maximal slice (MS) states [42,43]

|ψMS〉 = 1√
2

[|000〉 + |11(α|0〉 + β|1〉)], (38)

where α and β are real with α2 + β2 = 1. The matrix Mj,ik corresponding to Eq. (38) after the action of unital noise on the first
qubit is given by

Mj,ik =

⎛
⎜⎜⎝

ηβ 0 ηα 0 −ηβ 0 0 0 0

0 −ηβ 0 −ηβ 0 −ηα 0 0 0

0 0 0 0 0 0 ηαβ 0 η( 1+α2−β2

2 )

⎞
⎟⎟⎠

with three singular values λ1 = η
√

1
4 (α2 − β2 + 1)2 + (αβ )2

and two equal singular values λ2 = λ3 = η
√

(α2 + 2β2), re-
spectively, leading to the condition for Mermin and Svetlichny
nonlocality breaking as

ηM � 1√
2(α2 + 2β2)

, ηS � 1√
(α2 + 2β2)

. (39)

Example 4. Consider the quantum state [44]

σGHZ = p|GHZ〉〈GHZ| + (1 − p)I2 ⊗ Ĩ. (40)

Here, |GHZ〉〈= (|000〉 + |111〉)/
√

2, Ĩ = diag(1, 0, 0, 1)
is the diagonal matrix, and 0 � p � 1. In fact, Ĩ =
|�+〉〈�+| + |�−〉〈�−|, where �± are Bell states, is a sep-
arable state, and it tells us that σGHZ has with probability p
the GHZ state and with probability (1 − p) the first qubit is
left in the mixed state and the second and third qubit are in
separable state Ĩ . The corresponding Mj,ik matrix with a unital
noise acting on one qubit is given by

Mj,ik =

⎛
⎜⎜⎝

pη 0 0 0 −pη 0 0 0 0

0 −pη 0 −pη 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎠,

with singular values λ1 = λ2 = √
2ηp. Thus the condition for

the channel to be Mermin and Svetlichny NBC becomes

ηM � 1

2p
, ηS � 1√

2p
. (41)

The conditions for Mermin and Svetlichny nonlocality
breaking channels given by Eqs. (35), (36), (39), and (41)
obtained by the application of a unital quantum channel to
one party of a tripartite system are depicted in Fig. 1. All
the points below the solid (black) and dashed (red) curve
correspond to the nonlocality breaking channel, while the
points below the horizontal dashed line, η = 1/

√
2, pertain

to pairwise incompatibility breaking. In all the four examples,
Figs. 1(a)–1(b), the minimum value of ηS for which Svetlichny
inequality is violated is 1/

√
2, suggesting that genuine nonlo-

cal correlations cannot be established if at least one pair of
observable is compatible. The converse is not true, since there
exist regions [above the horizontal dashed line and below the
solid (black) curve] of Svetlichny nonlocality breaking even
when the channel is not 2-IBC. Thus, these examples illustrate
that corresponding to 2-IBC the conjugate channels are defi-
nitely S-NB; however, the conjugate of S-NB channels may not
necessarily be a 2-IBC. However, in the context of Mermin
nonlocality, even the first statement does not hold, that is,
existence of a 2-IBC does not necessarily guarantee a con-
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FIG. 1. The region below the dashed (red) and solid (black)
curve in (a), (b), (c), and (d) corresponds to M-NBC and S-NBC
given by Eqs. (35), (37), (39), and (41), respectively, plotted against
the (dimensionless) state coefficients. The pairwise incompatibility
breaking condition (9) pertains to all points below the horizontal
dashed line.

FIG. 2. The range of channel parameter η ∈ ( 1√
2
, 3√

17
) in which

it is S-NBC (for the W state) but not CHSH-NBC.

jugate channel that is M-NB. Also, the minimum ηM (that is
maximum noise) for which a channel is M-NB is always less
by a factor of 1/

√
2 than the minimum noise below which that

channel is S-NB. It is worth pointing here to Fig. 1(c), which
illustrates that if a (unital) channel breaks the Svetlichny
nonlocality for the GHZ state (which in fact violates the
SI maximally) then it also does so for the mixture (40) for
1/

√
2 < p < 1. This is unlike the bipartite scenario where

a unital channel that breaks the CHSH nonlocality for the
maximally entangled states is guaranteed to do so for all other
states [19]. Summarizing, it is clear from the above examples
that the existence of M-NBC or S-NBC does not guarantee the
existence of a conjugate 2-IBC, unlike the CHSH scenario.
In particular, with the (unital) noise acting on one party of
the W state, |ψ〉 = (|100〉 + |010〉 + |001〉)/√3, there exists
a range of the channel parameter η ∈ (1/

√
2, 3/

√
17), where

the channel is S-NBC but not CHSH NBC as depicted in
Fig. 2. Thus the Bell-CHSH inequality seems to be more
suitable for a study of the incompatibility of observables than
the multipartite Bell-type inequalities.

Note that instead of one party, if two or all the three parties
are subjected to noise, the conditions (35), (37), (39), and (41)
become

ηM �
(

1√
2λmax

)1/n

, ηS �
(

1

λmax

)1/n

, (42)

where n corresponds to the number of qubits subjected
to noise. Since 1/λmax < (1/λmax)1/2 < (1/λmax)1/3 (with
λmax > 1), the solid (black) and dashed (red) curves in
Figs. 1(a)–1(d) are shifted up, thereby decreasing the region
of nonlocality with increase in n.

General three-qubit state subjected to general unital noise

The (unital) noise acting on a single party considered in
the above analysis involving the tripartite system assumes
identical effects on σx, σy, and σz corresponding to that party,
in the sense that σk → ησk for all k = x, y, z. A more general
transformation would take the particular party’s σk → ηkσk ,

with
√

η2
x + η2

y + η2
z = η, and 0 � η � 1, such that

�

(
I + �r · �σ

2

)
= I + (T�r) · �σ

2
, (43)

where T = diag[ηx, ηy, ηz] is a real diagonal matrix. The map
� is completely positive for [45]

|ηx ± ηy| � |1 ± ηz|, (44)
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which is a set of four inequalities and defines a tetrahedron
in ηx-ηy-ηz space. Under such a transformation, the singular
values for the GHZ in (32) and W state in (36) are, respec-
tively, given by

(2
√

2αβηx, 2
√

2αβηy, |α2 − β2|ηz ),

(2α
√

β2 + γ 2ηx, 2α
√

β2 + γ 2ηy,
√

1 + 8β2γ 2ηz ) (45)

with the three singular values depending linearly on the re-
spective noise parameters. Depending on which singular value
is the largest, one can draw similar conclusions about non-
locality and incompatibility breaking properties of the noise
channel as in the case with uniform noise action. However, for
a general three-qubit input state, the dependence of the singu-
lar values on noise parameters turns out to be complicated,
leading to different conclusions regarding the nonlocality
breaking property of such a channel. Let us consider the gen-
eral situation where one would like to make a statement about
the limiting noise beyond which no Mermin or Svetlichny
nonlocal correlation can be established irrespective of the
state chosen. In this direction, we make use of the canonical
five term decomposition of the three-qubit state [46]:

|ψ〉 = λ0 |000〉 + λ1eiφ |100〉 + λ2 |101〉 + λ3 |110〉
+ λ4 |111〉 , (46)

with λi and φ real parameters and
∑

i |λi|2 = 1 and 0 < φ <

π . In the Pauli basis, one may denote the density matrix corre-
sponding to |ψ〉 as |ψ〉〈ψ |[σi ⊗ σ j ⊗ σk] with Pauli matrices
σi i = x, y, z. If a unital noise acts on one party (for example,
the first) of such a state, we would have

|ψ〉〈ψ |[σi ⊗ σ j ⊗ σk] → |ψ〉〈ψ |[ηiσi ⊗ σ j ⊗ σk]. (47)

We can now check the nonlocality breaking properties of
such a general noise channel using Definition 3 based on
singular values of matrix M. For the above state, the sin-
gular values calculated according to Definition 3 are plotted
in Fig. 3 with respect to η =

√
η2

x + η2
y + η2

z . The simula-
tion makes use of a sample of 5 × 106 randomly generated
states and the corresponding noise parameters ηi subjected

to 0 �
√

η2
x + η2

y + η2
z � 1 and also satisfying the completely

positive condition (44). According to the condition (18), the
Mermin and Svetlichny nonlocal correlations are established
only if the largest singular value is greater than 1√

2
(for Mer-

min) and 1 (for Svetlichny). In Fig. 3 the three singular values
λ1, λ2, and λ3 are depicted with respect to parameter η. One
finds that below a minimum ηM and ηS , the singular values do
not exceed 1√

2
and 1, respectively. These values turn out to be

(ηM, ηS ) = (0.090, 0.128) for λ1, (ηM, ηS ) = (0.182, 0.259)
for λ2, and (ηM, ηS ) = (0.300, 0.409) for λ3, and one may
conclude that no Mermin (Svetlichny) nonlocal correlations
are supported by the unital noise channel if the noise parame-
ter is below 0.090 (0.128), irrespective of the input state.

IV. CONCLUSION

This paper is devoted to a study of the interplay between
nonlocality breaking and incompatibility breaking power
of noisy quantum qubit channels. The action of quantum

FIG. 3. Singular values corresponding to a sample of 5 × 106

randomly generated states of the form (47) plotted with respect to

the dimensionless parameter η =
√

η2
x + η2

y + η2
z . In terms of these

singular values, the conditions for establishing the Mermin and
Svetlichny nonlocal correlations are given in Definition 3 which
demands that the largest singular value be greater than 1/

√
2 and 1,

respectively. The corresponding bounds on the unsharpness parame-
ters ηM and ηS trivially follow and are summarized in the text.

channels on projective measurements transforms them into
noisy POVMs, characterized in particular by unsharpness
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parameters. As a consequence, noise tends to increase the
compatibility of observers that are otherwise incompatible. In
fact, pairwise incompatibility breaking is assured if the chan-
nel parameter is less than or equal to 1/

√
2. To be specific, we

consider bipartite and tripartite scenarios, with CHSH nonlo-
cality in the former and Mermin and Svetlichny nonlocality
in the latter case. The degree of incompatibility breaking
directly depends on the unsharpness parameters. Here, we
showed that in the Bell-CHSH scenario, if the conjugate of
a channel is incompatibility breaking then the channel is
itself nonlocality breaking and the converse is also true. In
the tripartite scenario, however, such an equivalence between
nonlocality breaking and incompatibility breaking does not
exist. We then consider various examples of three-qubit states
and identify the state parameters for which the equivalence
of nonlocality breaking corroborates with the pairwise in-
compatibility. In particular, it is illustrated that the conjugate
of incompatibility breaking channels is nonlocality breaking;
however, the nonlocality breaking channels do not guarantee
the existence of conjugate channels that are incompatibility
breaking. This may be viewed as a useful feature of the
Bell-CHSH inequality when it comes to the study of incom-
patibility of observables. Further, from randomly generated
three-qubit states subjected to general unital channels, we
conclude that no Mermin (Svetlichny) nonlocal correlations

are supported for ηM < 0.090 (ηS < 0.128), ηM/S being the
channel unsharpness parameter.

The channel activation of nonlocality in the CHSH sce-
nario has been studied in [47]. A future extension of this paper
could be the study of activation of Mermin and Svetlichny
nonlocality under more general noise models and with the
general three-qubit input state. This also invites a detailed
analysis on the hierarchy of nonlocality breaking, steerability
breaking, and entanglement breaking quantum channels in the
tripartite scenario.
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