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Gauge-invariant theory of truncated quantum light-matter interactions in arbitrary media
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The loss of gauge invariance in models of light-matter interaction which arises from material and photonic
space truncation can pose significant challenges to conventional quantum optical models when matter and light
strongly hybridize. In structured photonic environments, necessary in practice to achieve strong light-matter
coupling, a rigorous model of field quantization within the medium is also needed. Here we use the framework of
macroscopic QED by quantizing the fields in an arbitrary material system, with a spatially dependent dispersive
and absorptive dielectric, starting from a fundamental light-matter action. We truncate the material and mode
degrees of freedom while respecting the gauge principle by imposing a partial gauge-fixing constraint during
canonical quantization, which admits a large number of gauges including the Coulomb and multipolar gauges
commonly used in quantum optics. We also consider gauge conditions with explicit time dependence, enabling
us to unambiguously introduce additional phenomenologically time-dependent light-matter interactions in any
gauge. Our results allow one to derive rigorous nonrelativistic models of ultrastrong light-matter interactions
in structured photonic environments with no gauge ambiguity. Results for two-level systems and the dipole
approximation are discussed, as well as how to go beyond the dipole approximation for effective single-particle
models. By comparing with the limiting case of an inhomogeneous dielectric, where dispersion and absorption
can be neglected and the fields can be expanded in terms of the generalized transverse eigenfunctions of the
dielectric, we show how lossy systems can introduce an additional gauge ambiguity, which we resolve and
predict to have fundamental implications for open quantum system models. Finally, we show how observables
in mode-truncated systems can be calculated without ambiguity by using a simple gauge-invariant model of
photodetection.
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I. INTRODUCTION

In nanophotonics, one often would like to describe the in-
teraction of a small number of emitters, treated as microscopic
degrees of freedom, interfacing via the electromagnetic field
with a macroscopic medium, wherein the different degrees of
freedom are not tracked explicitly. In classical electromag-
netism, this is accomplished by the macroscopic Maxwell’s
equations, where the medium is, assuming a linear response
of the medium to applied fields, ascribed a dielectric function,
which in general can be frequency-dependent (allowing for
dispersion) and complex (allowing for energy losses via ab-
sorption). In fact, the requirement of the constituent medium
response to the applied field to follow a causal relationship
implies, via the Kramers-Kronig relations, that in general a
frequency-dependent dielectric function is complex, and vice
versa.

In quantum mechanics, the direct quantization of the
macroscopic Maxwell’s equations is complicated by the fact
that under an imaginary permittivity, the operators describ-
ing the electromagnetic field would in general decay to zero
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amplitude, in violation of the fundamental commutation rela-
tions [1]. One particularly successful method to quantize the
electromagnetic field in a dispersive and absorbing medium is
the macroscopic quantum electrodynamics (QED) approach
[1–8], where the field is expanded in terms of the photonic
Green’s function of the medium (obtained from the impulse
response of the electric field to a localized dipole source)
and a bosonic polariton field. As the Green’s function can
be obtained by purely classical calculations—including ana-
lytic solutions for simple geometries and general numerical
techniques (e.g., finite-difference time-domain simulations)
for general cases—this powerful approach provides a quan-
tum mechanical framework for studying the dynamics of
light-matter systems in practical nanophotonic settings. The
Green’s function quantization can be regarded as a gener-
alization of the usual normal mode expansion from lossless
systems. Moreover, the Green’s functions can also be obtained
through mode expansion techniques, even for complex ge-
ometries and in the presence of photon loss [9,10].

The macroscopic QED formalism can be justified on
purely phenomenological grounds, by virtue of its simultane-
ous fulfillment of the macroscopic Maxwell’s equations and
Lorentz equations of motion, the fundamental quantization
commutation relations of the electromagnetic field, and the
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dissipation-fluctuation theorem [4]. Microscopic derivations
can also be performed, wherein a material medium “reser-
voir” field is coupled via the fundamental minimal coupling
prescription of QED to the vacuum electromagnetic fields,
and a process of “Fano diagonalization” is used to diagonalize
the total Hamiltonian (medium plus electromagnetic field) in
terms of bosonic polariton operators which can then couple
to microscopic material particles [3,11]. In this latter mi-
crosopic derivation, the coupling can be written as a quantized
Hamiltonian interaction, or more generally quantization can
be performed at the level of an initial Lagrangian [7] by iden-
tifying canonical variables and quantizing in accordance with
Dirac’s prescription for quantization with constraints [12].
These results are also in accordance with the phenomenologi-
cal quantization approach.

Macroscopic QED, already having proved a powerful
theoretical tool for modeling light-matter interactions in a
medium (e.g., spontaneous emission in arbitrary environments
[13–15], dipole-dipole interactions [16,17], Casimir-Polder
forces [18], and surface-enhanced Raman spectroscopy [19]),
is an excellent candidate for improving models and provid-
ing fundamental analysis of light-matter interactions in the
so-called ultrastrong coupling (USC) regime [20,21]. In the
USC regime, the parameters which characterize the coupling
between the material and field degrees of freedom become
substantial compared to the bare resonances of the subsys-
tems, which strongly hybridizes the field and matter degrees
of freedom, and common frameworks for understanding the
dynamics of the interaction break down. These changes can
be dynamical, as a consequence of having to forgo the widely
used rotating-wave approximation, but recently it has come to
be more widely understood that the fundamental Hamiltonian
used to describe the coupling between the subsystems itself
can become questionable in any situation where the field or
material degrees of freedom are expressed in a truncated ba-
sis. In particular, the gauge invariance of the theory is broken
when the minimal coupling Hamiltonian is expressed in terms
of variables which are truncated to a finite energy basis for the
material degrees of freedom, or the number of modes (and
presumably Fock number states) for the field [22–24]. No-
tably, the loss of gauge invariance remains highly significant
in interaction regimes where the truncation process retains all
energy levels near-resonant with the ultrastrong interaction,
where a truncated model should, in principle, be accurate and
independent of choice of gauge.

The breakdown of gauge-invariance in material systems
[23,25–29] can be understood by noting that a truncation in
an energy basis [e.g., to the widely used two-level system
(TLS) model] implies a truncation in a position basis (which is
continuous without truncation). As a U(1) gauge theory, QED
promotes the global symmetry of the Schrödinger equation’s
invariance under a total change in the phase of the state vector
to a local symmetry. The presence of this new symmetry
induces a minimal coupling to a gauge boson field. In the case
of nonrelativistic QED, a transformation of a wave function of
a particle with charge q, through

ψ (x) → exp [iq�(x)/h̄]ψ (x) (1)

can be compensated by a corresponding gauge transformation
of the potential fields, A → A + ∇� and φ → φ − �̇. All

physical results must be invariant under local U(1) transfor-
mations.

Critically, if the model is to be implemented in a truncated
basis, the truncation must be carried out in a way which is
consistent with the gauge transformation in Eq. (1); that is, a
gauge transformation of the field must be able to be compen-
sated with an appropriate dimensional unitary transformation
of the state vector. In a different context, these insights form
the basis of lattice gauge theory, introduced by Wilson [30]
to study quantum chromodynamics on a lattice, where the
continuous representation of position is truncated to a finite
basis in a manner which respects the gauge symmetry of the
theory. Recent work has shown that gauge invariance can be
restored in truncated material systems [27,29,31], by using a
generalized minimal coupling replacement in the form of a
unitary transformation, which correctly constrains the light-
matter interaction within the truncated subspace.

Equivalent insights can be used to show that truncation of
photonic degrees of freedom (e.g., the number of photonic
modes) also yields gauge-dependent predictions [22,24], and
that gauge invariance can be restored by a similar unitary
transformation. It has also been noted in different contexts,
such as high-order harmonic generation [32] and tight-binding
models [33], that truncation in the Coulomb gauge (and its
analogs) allows for converging results with less modes, while
the multipolar gauge (and its analogs) allows for less mate-
rial states. In the context of media with loss, discrete mode
expansions of the electromagnetic fields can take the form
of, e.g., quasimodes of various types [34–36] or quasinormal
modes (QNMs) [10,37,38]—where for the latter, a fully quan-
tized theory has been developed recently [39] and applied to
plasmonic single-photon sources [40] and coupled resonators
[41], including gain-loss systems [42,43], and appears to be
an excellent candidate for modeling ultrastrong cavity-QED
interactions in realistic photonic media.

In this work, we take the view that any rigorous picture
of open system quantum optics that involves a few discrete
modes [44] manifests in some degree of mode truncation,
and thus understanding gauge invariance in these models is
essential.

In the quantization of systems with matter (that is, degrees
of freedom beyond the “passive” material medium consid-
ered in the macroscopic QED approach) an additional gauge
symmetry beyond that of the field potentials arises due to the
polarization field of the matter component. In this manner, for
light-matter interactions it is therefore necessary to formulate
a theoretical framework which allows for gauge transforma-
tions consistent with this greater class of symmetry under
material truncation. Previous work has shown these methods
to maintain gauge invariance on the basis of semiclassical
arguments [25,27,31], which is generally sufficient, as after
quantization, the gauge is invariably at least partially fixed by
the requirement of constraints to quantize the electromagnetic
field (and the same approach can be justified without reference
to gauge transformations by instead appealing to the notion of
constraining interactions within the correctly truncated sub-
space [29]). However, this approach does not shed insight
into what exactly the realizable gauges are and what a gauge
transformation consists of in the truncated space. The usual
approach is to quantize in the Coulomb gauge and construct
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the multipolar gauge by means of the unitary Power-Zienau-
Woolley (PZW) transformation [45,46]; however, because a
unitary transformation from a fixed gauge cannot implement
a generic gauge transformation [47], this has raised questions
[48] (and the resolutions to these questions [49–51]) about
the validity of such a procedure recently. To be consistent
with macroscopic QED, any approach must start from a La-
grangian which respects this gauge symmetry of both the
electromagnetic and material polarization fields, and contains
the material reservoir fields which describe the medium.

In this paper we accomplish this task by quantizing the
electromagnetic fields in the presence of both a material
medium reservoir field (the “passive” component) and free
charged particles (the “active” component), the latter of which
can interact with the electromagnetic fields with arbitrary
strength, allowing one to study USC effects. Using a c-number
quantization function method by Woolley [47], we quan-
tize in a way which does not require choosing a specific
gauge, allowing us to derive manifestly gauge-invariant mod-
els which incorporate a broad class of gauges, including the
most commonly used gauges in quantum optics: the Coulomb
and multipolar (dipole, when using a dipole approximation)
gauges. We show explicitly the validity of previous theoretical
works on restoring gauge invariance, and shed light on the
nonrelativistic limit of their application.

Our results provide a rigorous and gauge-invariant frame-
work for describing light-matter interactions in the USC
regime from a first-principles approach, for arbitrary media,
and one that can still take advantage of a reduced description
of the medium in terms of a linear susceptibility function. We
stress that from a theoretical perspective, our results need not
be implemented in the context of a macroscopically quantized
medium, and indeed the formalism also applies for free space
quantization, but the presence of a medium (generally one
that supports resonant modes) is necessary to reach the USC
regime in practice in optical systems.

Our work also lays the necessary groundwork for the future
development of first-principles models of loss from cavity-
QED systems in the USC regime. This is timely and highly
desired, as it as been shown recently that the nearly univer-
sally used phenomenological model of dissipation (standard
input-output theory [52]) is insufficient in the USC regime
[53]. We expect our work to be useful and applicable to, in
addition to quantized QNMs, studies based on, for example,
pseudomodes [54,55] or simulations involving matrix product
states [56,57].

In addition to laying out the fundamental theory of gauge-
invariant interactions in quantum light-matter systems in a
quantized and arbitrary medium, our work also contributes
three additional main findings:

(i) Any open quantum systems approach to photon loss
(e.g., a master equation) in a system interacting ultrastrongly
with matter, from a rigorous theoretical perspective, should
be derived in the Coulomb gauge, as it is the unique gauge
in which the reservoir can be described by a subspace un-
entangled with the light-matter system. However, a reduced
notion of a gauge transformation can be defined only with
respect to a truncated field (e.g., a cavity mode in cavity-
QED models), which has allowed for previous developments
of gauge-invariant models [53,58] (in these cases, assuming

phenomenological models of system-reservoir coupling). This
necessarily requires a mode-truncated description of the re-
duced gauge transformation, and thus we propose that there
exists a potential intrinsic gauge ambiguity due to mode trun-
cation in rigorous open quantum system models of photon
loss, for which the techniques described in this work to retain
gauge invariance are important.

(ii) Contrasting previous claims [60], we show that it is
possible to introduce unambiguous phenomenological time-
dependent light-matter interactions in any gauge, provided
the time dependence of the gauge condition is consistently
accounted for in the quantization.

(iii) By considering an explicit model of photodetection
in a truncated mode system, we resolve a gauge ambiguity
regarding observables and provide justification for the recent
approach that has been used in previous works, for simple
model systems of cavity-QED [53,58,59,61]. By identifying
the correctly mode-truncated electric field operator, we also
refute recent claims [62] that the modal expansion operators
of the transverse electric field are not the correct operators
to couple to external reservoir modes in the case of open
quantum systems.

The rest of our paper is organized as follows. In Sec. II
we present the fundamental action from which we derive
Maxwell’s equations and the Lorentz force law in a dispersive
and absorbing dielectric, where we treat the medium degrees
of freedom explicitly as a frequency and spatially dependent
reservoir with an oscillator field.

In Sec. III we show how this general system can be quan-
tized using Dirac’s method of canonical quantization with
constraints, using Woolley’s [47] quantization function ap-
proach. Following previous works [7,11], we then perform a
Fano diagonalization to express part of the quantum Hamilto-
nian for this (arbitrary-gauge) system as a bosonic polariton
harmonic oscillator field, which removes any explicit refer-
ence to the medium oscillator degrees of freedom, and express
the electromagnetic fields in terms of the photonic Green’s
function of the medium and the polariton operators.

In Sec. IV we show how gauge invariance manifests in the
quantum theory with the quantization function approach, and
show how material and mode truncation can be introduced in a
manner that respects the gauge principle. We contrast the form
of discrete mode expansion that can be done in a lossy system
with the more commonly employed normal mode expansion
(namely, using lossless eigenmodes), which is generally only
strictly possible in lossless and dispersionless media. Figure 1
shows a schematic conceptual representation of our approach.

In Sec. V we generalize the quantization function approach
to quantizing in an arbitrary gauge by allowing the gauge
condition to have explicit time dependence. This permits for
a broader set of gauge transformations to be considered than
have previously appeared in the literature. We then use this
formalism to show how phenomenological time-dependent
interactions in ultrastrong transverse light-matter interactions
can be introduced unambiguously in any gauge.

In Sec. VI we apply our results to some common ap-
proximations in quantum optics, specifically the dipole and
material TLS approximations, and show how to go beyond
the dipole approximation for the case of an effective single-
particle model.
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electromagnetic fields passive material medium

“Fano diagonalization”

active material particles

photonic truncation material truncation

FIG. 1. Schematic representation of the gauge-invariant ap-
proach to light-matter interactions within a linear medium (see text
for definition of mathematical symbols). The electromagnetic fields
interact weakly with a passive material reservoir representing the dis-
persive and absorbing dielectric medium, allowing for the fields to be
expressed as a linear functional of fundamental polariton operators
b̂(x, ω), b̂†(x, ω) (we have suppressed the ω functional dependence
in the dielectric function, Green’s function, and annihilation operator
in the schematic for brevity). Light-matter interactions are introduced
by a minimal coupling scheme of free “active” material particles with
the (vacuum) electromagnetic fields. Gauge invariance under active
material truncation is retained by expressing the Hamiltonian in
terms of the unitary operators Û (r̂α ), where r̂α are the directly trun-
cated position operators of the active material component. Similarly,
gauge invariance is retained under photonic truncation by express-
ing the Hamiltonian in terms of V̂ (Â), where Â is the truncated
vector potential. The approach is manifestly gauge invariant as the
longitudinal component of the vector potential Â‖ and transverse
component of the polarization P̂⊥ are determined by the arbitrary
transverse quantization function K⊥(x, x′).

In Sec. VII we identify and resolve a potential gauge
ambiguity regarding observables of the electromagnetic field,
by introducing an explicit simple model of photodetection
in a truncated mode system. Using our formalism, we show
that for mode truncation to be correctly performed, it must
be done with respect to the vector potential, and that the
correctly mode-truncated form of the electric field operator
subsequently takes a modified form.

Finally, in Sec. VIII we conclude. In addition, we include
four Appendixes. Appendixes A and B give extra details on
the fundamental light-matter interaction action and canoni-
cal quantization procedure in the presence of constraints. In
Appendix C we show in more detail how a discrete mode
expansion can be generally constructed from the continu-
ous polariton operators and connect to the important case of
quantized QNMs. We consider in Appendix D the case of
an inhomogeneous but nondispersive and lossless dielectric,
with a real dielectric permittivity that is independent of fre-
quency ε(x). In this important special case (justifiable in a
limited frequency regime), the field variables can be expressed
in terms of the so-called generalized transverse eigenfunc-
tions of the system, which are normal modes of Maxwell’s
equations in the dielectric medium with closed or periodic

boundary conditions, by choosing the generalized Coulomb
gauge, which satisfies ∇ · [ε(x)A(x)] = 0, or the generalized
multipolar gauge. We quantize the electromagnetic field in
this medium using Dirac’s constrained quantization technique
for the generalized Coulomb gauge condition, which allows
us to recover previously known results (e.g., Refs. [63–65]),
now using a systematic method. We then discuss how gauge-
invariant truncated models can be obtained, similarly to the
procedure in the main text.

II. ELECTROMAGNETIC FIELDS, ARBITRARY
DIELECTRIC PASSIVE MEDIUM, AND ACTIVE

MATERIAL PARTICLES

We take our model to consist of the electromagnetic field,
a passive medium reservoir field Xω(x, t ) (corresponding to
“bound” charges), as well as active free particles, indexed by
α, with charge qα , mass mα , and position coordinate rα (t ).
For simplicity we assume no net charge, such that

∑
α qα = 0.

We would like to ultimately model the interaction of the free
charges with the electromagnetic field using a macroscopic
approach, where the field can be expressed in a quantized
form, using the photonic Green’s function of the medium,
which is determined by its dielectric function ε(x, ω). In gen-
eral, the dielectric constant is a complex-valued function that
depends on space and frequency with real and imaginary parts
εR(x, ω) and εI (x, ω), respectively. It may also be anisotropic,
but we will consider this function as a scalar.

We consider the action S = S[Aμ; rα; Xω]. This action is
a functional of the electromagnetic potential fields Aμ(x) =
(φ(x, t )/c, A(x, t )), the medium field excitations Xω(x, t ),
and the material particle coordinates rα (t ), as well as the time
derivatives of each of these respective quantities. The medium
is described by a dielectric function with real and imagi-
nary parts εR(x, ω) and εI (x, ω), describing dispersion and
absorption of the medium, respectively, and which satisfy the
Kramers-Kronig relations. We assume nonmagnetic media,
such that μ(x, ω) ≈ 1, although the theory can be generalized
to also incorporate a general complex magnetic susceptibility
[7]. Note that here and throughout, ω refers to a continuous
modal index, and not the argument of a Fourier transform
of time. The full action is given in Appendix A, as well as
the equations of motion it generates. These are the Ampère
and Lorentz Eqs. (A5b) and (A5c), as well as an equation of
motion for the passive medium reservoir oscillator field (A5d)
and Gauss’s law (A5a), which acts as a constraint.

III. QUANTIZATION

In order to perform canonical quantization and promote
field coordinates to operators on a Hilbert space, we first
move to a Hamiltonian picture. To do so, we choose the
Lagrangian L, which satisfies S = ∫

dtL, to take the form
of the time integrands of the action in Eqs. (A2a)–(A2d). A
total time derivative can be added to the Lagrangian without
changing the resulting equations of motion, which is related
to gauge symmetry of the theory, discussed in Sec. III A. We
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then identify the conjugate momenta to the field and particle
coordinates:

�φ = δL
δφ̇

= 0, (2a)

�A = δL
δȦ

= −ε0E −
∫ ∞

0
dωα(x, ω)Xω, (2b)

pα = ∂L
∂rα

= mα ṙα + qαA(rα ), (2c)

�Xω
= δL

δẊω

= Ẋω, (2d)

and α(x, ω) is defined in Eq. (A3).
The vanishing of �φ is indicative of the fact that the equa-

tions of motion have redundant degrees of freedom; while the
four-potential contains four degrees of freedom, only three
dynamical equations of motion are given by Eq. (A5b). In the
process of canonical quantization, the usual approach of pro-
moting Poisson brackets to commutators of operators requires
a one-to-one correspondence for dynamical equations of mo-
tion and unconstrained degrees of freedom. Instead, here we
have a constrained system, where the longitudinal component
of �A is constrained by Gauss’s law [Eq. (A5a)], and the
canonical momentum �φ is constrained to vanish. These con-
straints restrict the phase space manifold in which the system
is to be quantized, and describe a so-called “singular” system,
where the Hessian of the Lagrangian does not have full rank
[12,66,67].

In addition to the two constraints described above, which
we can write as

χ0 = �φ = 0, (3a)

χ1 = ∇ · �A + ρA = 0, (3b)

where ρA is the active particle charge density given by
Eq. (A4a), a third constraint on the four-potential is required to
ensure that one dynamical equation of motion exists for each
of the unconstrained quantization variables. The reason for
this is that typically in constrained systems, one can quantize
by using Dirac’s prescription, which modifies the Poisson
brackets as to include the effect of the constraints in a manner
that implies there exist unconstrained variables which can
be quantized in accordance with the usual Poisson bracket
prescription [12]. The difficulty here is that we find that
the Poisson brackets of the above constraints vanish, which
precludes one from directly applying this procedure. This
is ultimately because Eq. (3b) cannot be solved to uniquely
eliminate one of the field degrees of freedom (e.g., φ) by
expressing it in terms of the others, which is a consequence of
the gauge freedom of the theory [that is, Eq. (3b) allows one
only to solve for the longitudinal part of �A] [12]. To remedy
this, we will apply another constraint, which we will choose
to manifestly preserve the gauge symmetry of the Lagrangian,
allowing us to quantize in a (mostly) arbitrary gauge.

A. Gauge symmetry

Note that under a general gauge transformation:

A(x, t ) → A(x, t ) + ∇�(x, t ), (4a)

φ(x, t ) → φ(x, t ) − �̇(x, t ), (4b)

the Lagrangian is not invariant, while the Eqs. of motion (A5)
are. However, if we add the additional term

L → L − d

dt

∫
d3xA(x, t ) · P(x, t ), (5)

where the auxiliary polarization field P satisfies ∇ · P(x, t ) =
−ρA(x, t ) (which fixes its longitudinal part, but leaves the
transverse part arbitrary), then the Lagrangian becomes in-
variant. Note here we have used the relation ∇ · JA + ρ̇A =
0, where JA is the active particle current density given by
Eq. (A4b). Also note that the action involves only the vector
potential in the free particle part, whereas the medium is cou-
pled to the (manifestly gauge-invariant) electric field. More
fundamentally, this is a consequence of the fact the medium
part of the action is chosen to give the macroscopic Maxwell’s
equations, in the form of a dielectric function.

Since we know how to quantize in the Coulomb gauge
(where the vector potential is transverse), it would be useful
to have a representation of the vector potential in terms of
its transverse part A⊥, which is gauge-invariant. To do this,
we use a method devised by Woolley, in which the longitu-
dinal component of the vector potential is determined by a
c-number function projected onto the transverse vector po-
tential [47,51]. We call this method the quantization function
approach.

Note that we can write, following Helmholtz’s theorem, the
vector potential as A = A⊥ + A‖, where

A‖(x, t ) = ∇x
∫

d3x′K‖(x, x′) · A(x′, t ), (6)

and K‖(x′, x) is the Green’s function for the divergence oper-
ator

K‖(x, x′) = −∇x 1

4π |x − x′| , (7)

which satisfies ∇x · K‖(x, x′) = δ(x − x′), and we have let the
‖ (⊥) subscript denote the longitudinal (transverse) part of a
function with respect to its first spatial argument. Equation (6)
is verified easily by noting that the gradient of K‖ gives the
longitudinal Dirac delta function

∇xK‖(x, x′) = δ‖(x − x′) =
∫

d3k

(2π )3
k̂k̂eik·(x−x′ ). (8)

Next, by imposing the constraint

χ2 =
∫

d3x′A(x′, t ) · K(x′, x) = 0, (9)

and noting that K‖(x, x′) is antisymmetric with respect to
exchange of its arguments, it follows that one can write

A(x, t ) = A⊥(x, t ) + ∇x
∫

d3x′A⊥(x′, t ) · K⊥(x′, x), (10)

such that the longitudinal part of the vector potential becomes
A‖(x, t ) = ∇�(x), with the gauge function

�(x) =
∫

d3x′A⊥(x′, t ) · K⊥(x′, x). (11)

The transverse part of the quantization function K⊥:
(R3,R3) → R3 is nearly completely arbitrary [47] and
uniquely fixes the gauge with respect to the fields. Choosing
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χ2 to take the form in Eq. (9) allows one to write the en-
tire vector potential in terms of its gauge-invariant transverse
component, and a function which remains a c-number after
quantization. All that remains is to specify the transverse part
of the polarization, to describe a unique Lagrangian as per
the prescription in Eq. (5). Noting that since we can write the
longitudinal part as

P‖(x, t ) = −
∫

d3x′K‖(x, x′)ρA(x′, t ), (12)

we see that the additional term in the Lagrangian becomes
(suppressing the time index)

− d

dt

∫
d3x

{
A⊥(x)·

[
P⊥(x)+

∫
d3x′K⊥(x, x′)ρA(x′)

]}
.

(13)
A convenient definition for the polarization is thus

P(x, t ) = −
∫

d3x K(x, x′)ρA(x′, t ), (14)

such that the total time derivative vanishes, as∫
d3xA(x, t ) · P(x, t ) = 0, (15)

and the polarization no longer appears at all in the Lagrangian;
this allows one to quantize entirely on the basis of the gauge
symmetry associated with the electromagnetic field (albeit in
a subspace with the reduced gauge symmetry associated with
the quantization constraint). Note that with this definition, a
gauge transformation consists of the simultaneous change of
the gauge function K(x, x′) → K′(x, x′), with an associated
change in the vector potential and transverse polarization
A‖ → A′

‖, P⊥ → P′
⊥ as determined by Eqs. (10) and (14). In

Sec. V we extend this scheme to allow for time-dependent
gauge conditions, by letting K⊥ be an explicit function of
time, such that a gauge transformation also changes φ. The
quantization function approach can also be used for quantiza-
tion of systems with no explicit medium reservoir degrees of
freedom, when dissipation and dispersion can be neglected in
the dielectric function ε, as we show in Appendix D.

Two important choices of gauge in the theory of light-
matter interactions are the Coulomb and multipolar gauges;
for the Coulomb gauge

KC
⊥(x, x′) = 0, (16)

and for the multipolar gauge,

Kmp
⊥ (x, x′) = −(x′ − rA) ·

∫ 1

0
dsδ⊥[x − rA − s(x′ − rA)],

(17)

where rA is an arbitrary c-number position, and δ⊥ = Iδ − δ‖

is the transverse delta function (using dyadic notation with
Ii j = δi j). This form is particularly useful for computing mul-
tipolar expansions for charge distributions localized around a
position rA (e.g., a molecular center) and is closely related
to the PZW transformation from the Coulomb to multipolar
gauges, as discussed more in Sec. IV B.

B. Canonical quantization with constraints

Having specified the gauge of the theory by means of the
quantization function K(x, x′) (in particular, its transverse
component), we can now apply Dirac’s constrained quan-
tization procedure using the constraints χ0 = χ1 = χ2 = 0.
The details of this procedure are given in Appendix B. After
quantization, we find that the theory can be expressed in terms
of transverse canonical field variables Â⊥ and �̂, where

�̂ = �̂A − P̂, (18)

as well as r̂α , p̂α , X̂ω, and �̂Xω
. These canonical coordinates

satisfy the usual canonical commutation relations:

[Â⊥(x), �̂(x′)] = ih̄δ⊥(x − x′), (19a)

[r̂α, p̂α′ ] = ih̄Iδαα′ , (19b)

[X̂ω(x), �̂ω′ (x′)] = ih̄Iδ(x − x′)δ(ω − ω′), (19c)

with all other commutators vanishing.

C. Fano diagonalization and Green’s function expansion

As a result of the canonical commutation relations in
Eqs. (19a)–(19c), the fields Â⊥ and X̂ω as well as their con-
jugates �̂ and �̂Xω

can be expressed as a sum over bosonic
creation and annihilation operators. Furthermore, the total
Hamiltonian can be decomposed into a component which
consists of only these operators, ĤF, as well as a component
which involves the polarization operators associated with the
r̂α operators and their conjugates ĤP:

ĤF = 1

2ε0

∫
d3x

[
�̂ +

∫
dωα(x, ω)X̂ω

]2

+ 1

2μ0
(∇ × Â⊥)2 + ĤXω

(20)

with

ĤXω
= 1

2

∫
d3x

∫ ∞

0
dω
(
�̂2

ω + ω2X̂2
ω

)
(21)

and

ĤP =
∑

α

[p̂α − qαÂ(r̂α )]2

2mα

−
∫

d3xP̂(x) · Ê(x)

− 1

2ε0

∫
d3xP̂2(x), (22)

where Eq. (2b) was used to express the electric field operator
in the quantization variables as

Ê(x) = − 1

ε0

[
�̂(x) + P̂(x) +

∫ ∞

0
dωα(x, ω)X̂ω(x)

]
. (23)

The total Hamiltonian is then Ĥ = ĤF + ĤP.
The term ĤF is quadratic in the quantization variables over

bosonic fields, and as such, one should be able to, by a process
of Fano diagonalization, express it in the form

ĤF =
∫

d3x
∫ ∞

0
dωh̄ωb̂†(x, ω) · b̂(x, ω), (24)
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where b̂(x, ω) are bosonic excitation operators which com-
bine medium harmonic oscillator fields X̂ω and electromag-
netic degrees of freedom, and satisfy

[b̂(x, ω), b̂†(x′, ω′)] = Iδ(x − x′)δ(ω − ω′), (25a)

[b̂(x, ω), b̂(x′, ω′)] = 0, (25b)

[b̂†(x, ω), b̂†(x′, ω′)] = 0. (25c)

For the Coulomb gauge, this is done precisely in the deriva-
tion by, e.g., Philbin [7]. Here we note that the results of
this derivation can be applied directly with the substitution
(Â, �̂A) → (Â⊥, �̂). The important result is that the fields
can be expressed as

ÊF(x) = i
∫

d3x′
∫ ∞

0
dω

1

ε0ω
G(x, x′, ω) · ĴN(x′, ω) + H.c.,

(26a)

Â⊥(x) =
∫

d3x′
∫ ∞

0
dω

1

ε0ω2
G⊥(x, x′, ω) · ĴN(x′, ω) + H.c.,

(26b)

where

ĴN(x, ω) =
√

h̄ω

2
α(x, ω)b̂(x, ω), (27)

and ÊF is the part of the total electric field operator Ê =
ÊF − P̂/ε0 which can be expressed in terms of the bosonic
operators that diagonalize ĤF. In accordance with our assump-
tion of nonmagnetic media, the photonic Green’s function
G(x, x′, ω) is a tensor (or dyad) which satisfies the Helmholtz
equation for a dipole source:[

∇x × ∇x × −ω2

c2
ε(x, ω)

]
G(x, x′, ω) = ω2

c2
Iδ(x − x′),

(28)

together with the corresponding retarded boundary condi-
tions. For example, for open dielectrics (i.e., cavity resonators
surrounded by a homogeneous medium with index of refrac-
tion nB), one can use the Silver-Müller radiation condition:

x
|x| × ∇x × G(x, x′, ω) → inB

ω

c
G(x, x′, ω), (29)

which holds as |x| → ∞. Here we let the notation
G⊥(x, x′, ω) refer to the transverse part of G(x, x′, ω) with
respect to the left-hand side of the dyad, and spatial argument
x.

IV. GAUGE INVARIANCE AND HILBERT
SPACE TRUNCATION

In this section we first show in Sec. IV A how gauge in-
variance manifests in the quantized theory, and how gauge
transformations can be implemented as unitary transforma-
tions within the general gauge function quantization method.
We then discuss how material and mode truncation can po-
tentially break this gauge invariance, and how this can be
avoided, in Secs. IV B and IV C. Our main contribution in
this section is the arbitrary-gauge Hamiltonian under material

and mode truncation ˆ̃H, given by Eq. (69), from which we

resolve gauge ambiguities and derive simplified models in
later sections.

A. Gauge invariance in the quantum theory

Prior to quantization, gauge invariance manifests as the
invariance of the Lagrangian under gauge transformations of
the four-potential. After quantization using the arbitrary gauge
approach [in terms of the quantization function K(x, x′)],
however, the hallmark of gauge invariance is the invariance
of the Schrödinger equation under a local phase change of the
state vector simultaneous with a gauge transformation of the
potentials. Such a process can be implemented as a unitary
transformation which transforms the system from one fixed
gauge to another [51].

As mentioned in the previous section, a gauge transfor-
mation consists of the change K(x, x′) → K′(x, x′) and the
associated change in the longitudinal component of the vector
potential and the transverse component of the polarization.
Thus, for the theory to be gauge invariant, this change should
be compensated by a local phase change in the state vector,
implemented as a unitary operator.

Specifically, for the quantization scheme developed here
and the set of gauge transformations allowed therein, this
phase variation can be expressed as a unitary transformation
|ψ〉 → Ŵ |ψ〉, with an accompanying change of the Hamilto-
nian Ŵ ĤŴ †, in order to preserve the form of the Schrödinger
equation evolution. To be concrete, consider two gauges in-
dexed by g and g′, with quantization functions Kg(x, x′) and
Kg′

(x, x′), respectively. Then a gauge transformation from
gauge representation g to g′ can be found as

Ŵg′g = exp

{
i

h̄

∑
α

qα[�̂g′ (r̂α ) − �̂g(r̂α )]

}

= exp

{
i

h̄

∫
d3x[�̂g′ (x) − �̂g(x)]ρ̂A(x)

}

= exp

{
− i

h̄

∫
d3x[P̂g′

⊥(x) − P̂g
⊥(x)]·Â⊥(x)

}
, (30)

and �̂g(x) is the quantized version of the gauge function ex-
pressed in Eq. (11) for a gauge indexed by g. The state vector
transforms as |ψg′ 〉 = Ŵg′g |ψg〉. To determine the transforma-
tion effect on the variables constituting the Hamiltonian, it is
useful to note the following relations (suppressing frequency
indices):

[Â⊥,i(x), Â⊥, j (x′)]

= h̄

2ε2
0

∫
d3r
∫ ∞

0
dω

α2(r)

ω3
G⊥

ik (x, r)G⊥∗
k j (r, x′) − H.c.

= h̄

πε0

∫ ∞

0

dω

ω2
Im[G⊥

i j (x, x′)] − H.c.

= 0, (31)

where we have used the Green’s function relations [4]

Gi j (x, x′, ω) = Gji(x′, x, ω) (32)
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and∫
d3rεI (r, ω)G(x, r, ω) · G(r, x′, ω) = Im[G(x, x′, ω)].

(33)
Equations (31) and (10) together imply that [Âi(x), Â j (x′)] =
0 as well.

Of particular use is the transformation of the canonical
momenta:

Ŵg′g[�̂(x) + P̂g(x)]Ŵ †
g′g = �̂(x) + P̂g′

(x), (34)

Ŵg′g[p̂α − qαÂg(r̂α )]Ŵ †
g′g = p̂α − qαÂg′

(r̂α ). (35)

To show the effect of this transformation on the Hamiltonian,
it is useful to write the arbitrary gauge Hamiltonian Ĥg in the
form

Ĥg =
∫

d3x

[
ε0

2
[Êg(x)]2 + 1

2μ0
B̂2(x)

]

+ ĤXω
+
∑

α

[p̂α − qαÂg(r̂α )]2

2mα

, (36)

where

Êg(x) = − 1

ε0

[
�̂(x) + P̂g(x) +

∫ ∞

0
dωα(x, ω)X̂ω(x)

]
. (37)

The unitary transformation has no effect on B̂ [as a result
of Eq. (31)] or the reservoir operators X̂ω, �̂Xω

, and clearly
Ŵg′gÊg(x)Ŵ †

g′g = Êg′
(x), as a consequence of Eq. (34). Us-

ing this fact and Eq. (35), it is easy to see that the unitary
transform has the effect of performing the gauge transform,
and thus we confirm the quantum theory is indeed gauge
invariant.

B. Material truncation

The issue with truncation is that the transformation given
by Eq. (35) necessarily requires the full infinite dimensional
operator algebra to be implemented, and thus any method
of truncating the operator Ŵg′g (which must be truncated to
operate on the reduced dimensionality state vector) will fail to
give the necessary gauge transformation [22,23,25,26,28,68].
This results in a theory which does not respect the gauge
principle and gives ambiguous results, especially in the USC
regime. This can also be seen as the truncation creating a
nonlocal potential which can be expressed as a function of
truncated momentum operators, to which the minimal cou-
pling replacement that ensures gauge invariance has not been
applied [25,27,69] or inconsistent constraining of interactions
to a specific subspace [29].

To circumvent this, we can instead write the Hamiltonian,
prior to truncation, in terms of unitary operators which im-
plement the minimal coupling replacement on a Hamiltonian
which, in the absence of transverse coupling to the elec-
tric field (e.g., the eigenstates of a molecular system), has
a discrete set of energy levels which are near-resonant with
relevant medium-assisted interactions with the electric field.
The truncation can then be applied directly to the position op-
erators, which ensures the gauge transformation is consistent
with the reduced Hilbert space dimensionality and preserves

gauge invariance [27,29,70]. This procedure is also consistent
with a lattice gauge theory perspective, where the local phase
transformation acts on the state vector only at discrete “lat-
tice” points in space equal in number to the number of states
left after truncation [31], as well as the Peierls substitution for
introducing electromagnetic interactions within tight-binding
models [70].

To identify the “bare” matter Hamiltonian, containing only
the interparticle Coulomb interactions between the constituent
particles, note that in the absence of coupling with the trans-
verse field, the material Hamiltonian becomes

Ĥ0 =
∑

α

p̂2
α

2mα

+
∑
α,α′

V̂Coul(r̂α, r̂α′ ), (38)

where

∑
α,α′

V̂Coul(r̂α, r̂α′ ) =
∫

d3x
P̂2

‖ (x)

2ε0

= 1

2

∑
α,α′

qαqα′

4πε0|r̂α − r̂α′ | , (39)

and we are assuming that the medium-assisted longitu-
dinal field is sufficiently weak that it suffices to use
the unscreened Coulomb potential to calculate the unper-
turbed material eigenstates—alternatively, we can simply
phenomenologically use the eigenstates which are corrected
by the medium-assisted longitudinal field as the basis Ĥ0 (see
Appendix D and Ref. [65] for an analogous discussion in the
case of a nondispersive and nonabsorbing medium).

In this manner, we can write the entire arbitrary-gauge
Hamiltonian as (for a gauge indexed by “g”),

Ĥg = ĤF + Ĥ0 + Ĥg
int, (40)

where

Ĥg
int = −

∑
α

qα

mα

p̂α · Âg(r̂α ) +
∑

α

q2
α

2mα

[Âg(r̂α )]2

−
∫

d3xP̂(x) · Êg
F(x) + 1

2ε0

∫
d3x[P̂g

⊥(x)]2. (41)

Next, we introduce the unitary operator

Ûg = exp

[
i

h̄

∫
d3xÂg(x) · ẐA(x)

]
, (42)

where

ẐA(x) =
∑

α

qα r̂α

∫ 1

0
dsδ(x − sr̂α ) (43)

is an operator chosen to implement, approximately, the
minimal coupling transformation p̂α → p̂α − qαÂg(r̂α ), as
appears in the ĤP part of the full Hamiltonian Ĥg [Eq. (20)].
In actuality, the full transformation of the particle momenta
under Ûg is

Ûgp̂αÛ †
g = p̂α − qαÂg(r̂α ) − qα r̂α ×

∫ 1

0
ds sB̂(sr̂α ). (44)
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Note that we also have Ûg = Ŵg,mp; this transformation takes
an operator from the multipolar gauge to gauge g. We give
this operator as it appears in this context its own symbol
Ûg to emphasize its role in restoring gauge invariance under
material truncation, described in the following.

Using the transformation of Eq. (44), we can write the full
Hamiltonian as

Ĥg = ĤF + ÛgĤ0Û
†
g −

∫
d3xP̂(x) · Êg

F(x)

+ 1

2ε0

∫
d3x[P̂g

⊥(x)]2+Ĥg
mag, (45)

where

Ĥg
mag =

∑
α

qα

2mα

∫ 1

0
dss

{
p̂α · r̂α × B̂(sr̂α )

+ r̂α × B̂(sr̂α ) · p̂α − 2qαÂg(r̂α ) · r̂α × B̂(sr̂α )

− qα

∫ 1

0
ds′s′[r̂α × B̂(sr̂α )] · [r̂α × B̂(s′r̂α )]

}
. (46)

The magnetic terms were analyzed in detail in Ref. [18] (in
that case, as they appear in the multipolar gauge), with the
conclusion that, for atomic systems, the scaling of these terms
relative to the electric dipole interaction is proportional to
∼(Zeffα0)2, where Zeff is the effective (screened) charge of the
nucleus, and α0 is the fine-structure constant. For nonrelativis-
tic systems, Zeffα0 � 1, and so going forward we will neglect
the influence of Ĥg

mag. We note that this is an inherent approx-
imation of the theory (although one that is very well founded
in most circumstances), which has to our knowledge has not
been acknowledged to date in the literature on restoring gauge
invariance in truncated material systems.

The Hamiltonian of Eq. (45), after neglecting the magnetic
terms, is gauge-invariant under material truncation provided
we truncate the position operators r̂α ≡ P̂r̂αP̂, where

P̂ =
N∑

i=1

|φi〉 〈φi| (47)

is a projector operator onto a finite set of N eigenstates of Ĥ0,
such that in the truncated space, we have

P̂Ĥ0P̂ = Ĥ0 =
N∑

i=1

h̄ωi |φi〉 〈φi| , (48)

where |φi〉 denotes the ith eigenstate of Ĥ0 with energy h̄ωi.
We use throughout this work calligraphic characters to denote
operators which act on the truncated space. We stress that, ex-
cept for Ĥ0, the (correctly) truncated operators are those that
are expressed in terms of the projected position operators r̂α ,
and not those with the projector operator P̂ directly applied,
which generally will violate gauge invariance.

We then take P̂g → P̂g
, where

P̂g = −
∑

α

qαKg(x, r̂α ) (49)

and Ûg → Ûg:

Ûg = exp

[
i

h̄

∫
d3xÂg(x) · ẐA(x)

]

= exp

[
i

h̄

∑
α

qα r̂α ·
∫ 1

0
dsÂg(sr̂α )

]
, (50)

where ẐA is ẐA expressed in terms of the truncated position
operators r̂α . Thus, the truncated material basis arbitrary-
gauge Hamiltonian Ĥg can be written as

Ĥg = ĤF + ÛgĤ0Û†
g

−
∫

d3xP̂g
(x) · Êg

F(x) + 1

2ε0

∫
d3x[P̂g

⊥(x)]2. (51)

In the Coulomb gauge, KC
⊥ = P̂C

⊥ = ÂC
‖ = 0, and the

Hamiltonian, ĤC, can be expressed as

ĤC = ĤF + ÛCĤ0Û†
C −

∫
d3xP̂‖(x) · [ÊF(x)]‖. (52)

In the multipolar gauge, Kmp is given by Eq. (17), which
implies (again taking rA = 0)

P̂mp
⊥ (x) =

∑
α

qα r̂α ·
∫ 1

0
dsδ⊥(x − sr̂α ) (53)

and

Âmp(x) = −
∫ 1

0
dsx × B̂(sx). (54)

In the multipolar gauge, x · Âmp(x) = 0, and from this it is
easy to show that Ûmp = 1. Applying this result, we thus find

Ĥmp = ĤF + Ĥ0 −
∑

α

qα r̂α ·
∫ 1

0
dsÊmp

F (sr̂α )

+
∑
α,α′

qαqα′

2ε0

∫ 1

0
ds
∫ 1

0
ds′r̂α · δ⊥(s′r̂α′ − sr̂α ) · r̂α′ .

(55)

As in the untruncated theory, we can implement a gauge
change from one fixed gauge to another by means of a unitary
transformation:

Ŵg′gĤgŴg′g, (56)

where Ŵg′g, defined from Eq. (30), is expressed in terms of
the truncated position operators r̂α:

Ŵg′g = exp

[
− i

h̄

∫
d3x[P̂g′

⊥(x) − P̂g
⊥(x)]·Â⊥(x)

]
. (57)

It is straightforward to verify that the transformation in
Eq. (56) is equivalent to replacing Âg and P̂g

in the arbitrary-

gauge Hamiltonian Ĥ in Eq. (51) with Âg′
and P̂g′

(or
equivalently, replacing Kg with Kg′

), respectively; thus we see
that gauge invariance is preserved under material truncation in
the fully quantized theory.

It is worth noting that ẐA is precisely the multipolar polar-
ization P̂mp(x), and as such, Ûg = Ŵg,mp, as previously noted.
Moreover, if it is evaluated in the Coulomb gauge, then ÛC
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is the unitary operator which implements the well-known
PZW transformation [45,46,50]. The PZW transformation
Û †

CĤCÛC = Ĥmp removes the transformation that generates
minimal coupling from Ĥ0, which allows one to truncate the
energy levels of the bare system without needing to rely on
the infinite dimensional operator algebra required to trans-
form the p̂α operators. This is why naive truncation (in the
sense of Ĥ → P̂Ĥ P̂) in the multipolar gauge gives much
more accurate results than the Coulomb gauge [23] and is
in fact generally assumed to not break gauge invariance [53].
It is worth noting that this argument relies on the neglect of
the magnetic terms, however, and should be understood as a
nonrelativistic approximation. As discussed in the following
section, naive truncation in the multipolar gauge also fails in
general when anything less than a complete set of modes is
used to expand the electromagnetic fields, which is often the
case in, for example, cavity QED.

C. Mode truncation

In addition to material truncation, we can also consider
truncation of the transverse electrodynamic degrees of free-
dom: for example, a mode truncation, where the “modes” are
typically solutions to Maxwell’s equations subject to a certain
boundary condition (e.g., fixed, periodic, or open). To do so,
note that the arbitrary gauge Hamiltonian from Eq. (51) can
also be written as

Ĥg = V̂gĤFV̂ †
g + ÛgĤ0Û†

g −
∫

d3x[ÊF(x)]‖ · P̂‖(x), (58)

where

V̂g = exp

[
− i

h̄

∫
d3xP̂g

(x) · Â⊥(x)

]
. (59)

Note that V̂g = Ŵg,C; this transformation takes an operator
from its Coulomb gauge representation to a generic one.

Similar to the analysis in the case of material truncation,
one can show that the transformation induced by V̂g relies
on the operator relationship [Â⊥(x), �̂(x′)] = ih̄δ⊥(x − x′),
which requires a complete set of transverse modes to ex-
pand the photonic operators in. As such, if the number of
modes included in the system Hamiltonian is to be truncated
naively, a gauge transformation in the reduced space can no
longer be implemented as a unitary evolution, violating gauge
invariance. Equivalently, this can be seen as not properly
introducing coupling between the truncated subspaces of the
system consistently [24]. Truncation of the Fock space photon
number also breaks gauge invariance in this manner, although
we focus on the case of mode truncation in this work.

To be explicit, consider a mode projection operator P̂M that
satisfies

P̂MÂ⊥(x)P̂M = Â⊥(x). (60)

The Hamiltonian which retains gauge invariance under mode
truncation is then simply Eq. (58), but with V̂g → V̂g, and V̂g

is V̂g evaluated in terms of Â⊥ instead of Â⊥.

To give a concrete example, let us consider a modal expan-
sion for the transverse vector potential:

Â⊥(x) =
∑

μ

√
h̄

2ε0χμμ

fμ(x)âμ + H.c., (61)

where we denote the mode expansion over a finite sum of
“relevant” modes with transverse mode profiles fμ(x) and
annihilation (creation) operators âμ (â†

μ). We can then define
the projection operator as

P̂M =
⊗

μ

∞∑
nμ=0

|nμ〉 〈nμ| . (62)

Subsequently, the bosonic Hamiltonian is

ĤF =
∫

d3x
∫ ∞

0
dωωP̂Mb̂†(x, ω)P̂M · P̂Mb̂(x, ω)P̂M

=
∑
μν

h̄χμν â†
μâν . (63)

In Appendix C we give more details on the construction
of these discrete modes from the continuum, and their rela-
tionship to the Hermitian matrix χμν . It is important to note
that the mode functions fμ are not the usual normal mode
solutions to the Helmholtz equation, but rather nonorthogonal
transverse modal expansion functions which satisfy, if the
truncation is not applied,∑

μν

χμν√
χμμχνν

fμ(x)f∗
ν (x′) = δ⊥(x − x′), (64)

as shown in Appendix C.
Note that while throughout we refer to these as “modes,”

they are, more generally, a truncation of the spatial and
frequency-dependent degrees of freedom of the electromag-
netic fields and passive medium reservoir fields. Specifically,
the truncation process involves a projection of a spatial
and frequency-dependent orthonormal basis onto the polari-
ton operators b̂(x, ω), b̂†(x, ω), and need not necessarily
satisfy the Helmholtz equation with appropriate boundary
conditions—although for truncation to be a useful approxima-
tion technique, this is presumed to be the case. A consequence
of this is that ĤF is not diagonal with respect to the finite
mode basis (an effect known from, e.g., quantized QNMs
[39,41] and quasimodes [34], as well as supermodes in quan-
tum nonlinear optics [71]). This is why, in contrast to the
case of material truncation, we define the mode truncation
with respect to the field expansion itself, and not the field
Hamiltonian; in the case of a nondispersive and nonabsorbing
medium, it is possible to truncate with respect to the true
normal modes of the medium, and both approaches are then
equivalent. In Appendix D we discuss this case in more detail.

As an important example, in Appendix C we show how
the discrete modes can be chosen to correspond over a re-
stricted region of space to QNMs—although for this case
the completeness relation (64) does not apply directly, as the
expansion is valid only over a spatial region where the QNMs
form a well-behaved basis for the transverse Green’s function.
Also note that even in a dielectric medium with permittivity
that is real and independent of frequency, it is often useful to
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multi-level matter + 
photonic continuum

two-level matter +
few photonic modescomplex scattering

structure

mode function

material and photon
truncation

emitter

Green's function

FIG. 2. Visualization of the photon and material truncation. An exemplary system consisting of a dielectric rod and a pointlike emitter
can generally be described quantum mechanically by a multilevel electronic system interacting with a continuum of photon modes (left),
which reflect hybridized states of the electromagnetic fields and the passive dielectric material. The electromagnetic field depends on a three-
dimensional integration over the photon Green’s function. The proper truncation of the material and photon degrees of freedom allows for a
description of the quantum system with few energy levels (right), while still preserving gauge invariance. The electromagnetic field is obtained
from the optical mode functions.

use mode expansions which are not the exact “true modes” of
the entire system. For example, quasimodes [34], which use
an artificial permittivity to obtain mode functions which repre-
sent an idealized version of the system of interest, and QNMs,
where the open-boundary conditions lead to non-Hermitian
eigenvalues even without dispersion or absorption.

Applying the correctly truncated unitary transform to the
bosonic Hamiltonian, V̂gâμV̂†

g = âμ − iξ̂ g
μ, we obtain

V̂gĤFV̂†
g = ĤF +

⎛
⎝i
∑
μν

h̄χ∗
μν âμξ̂ g†

ν + H.c.

⎞
⎠

+
∑
μν

h̄χμνξ̂
g†
μ ξ̂ g

ν , (65)

where

ξ̂ g
μ =

∑
α

qα√
2ε0h̄χμμ

∫
d3xKg

⊥(x, r̂α ) · f∗
μ(x). (66)

The second term in Eq. (65) gives the transverse coupling
between photonic and material subspaces, and can also be
written as⎛
⎝i
∑
μν

h̄χ∗
μν âμξ̂ g†

ν + H.c.

⎞
⎠ = −

∫
d3x[ÊF(x)]⊥ · P̂g

⊥(x),

(67)
where [ÊF]⊥ is the part of the correctly mode-truncated trans-
verse electric field operator that can be expressed in terms of

the bosonic operators:

[ÊF(x)]⊥ = i
∑

μ

√
h̄χμμ

2ε0
f ′
μ(x)âμ + H.c., (68)

and f ′
μ = ∑

ν

χ∗
μν√

χμμχνν
fν . The quantum system after material

and photon truncation is visualized in Fig. 2.
In a general gauge, the full correctly truncated transverse

electric field operator can be found from Êg
⊥ = V̂g[ÊF]⊥V̂†

g .
One can show that this is the correctly truncated form of the
transverse electric field operator by enforcing Êg

⊥ = − ∂
∂t Â⊥,

and applying the Heisenberg equation of motion. Of course,
we could also define a mode expansion initially with respect to
the transverse electric field, however, this would violate gauge
invariance under mode truncation and not properly constrain
interactions to the few-mode subspace.

The fact that the correctly truncated transverse electric field
operator is expanded in terms of mode profiles f ′

μ(x) which
are a linear combination of the mode profiles (in the truncated
basis) for the vector potential fμ(x) is a fundamental feature
of dissipation, and stands in contrast to the case of a nor-
mal mode expansion, presented in Appendix D. Nonetheless,
under an assumption of well-separated discrete modes (e.g.,
high Q-factor resonators), the different modal expansions can
be related to each other, allowing the transverse electric field
to be expanded in the usual form, which we discuss in Ap-
pendix C.

The most general arbitrary-gauge Hamiltonian is then

ˆ̃Hg = ˆ̃VgĤF
ˆ̃V†

g + ˆ̃UgĤ0
ˆ̃U†

g −
∫

d3x[ÊF(x)]‖ · P̂‖(x), (69)
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where we use a tilde to denote explicitly quantities with
both photonic space truncation as well as material truncation.
Equation (69) is, as expected, consistent with previous work
on restoring gauge invariance under material and mode trun-
cation [24,27,29]. Note that no loss of gauge invariance occurs
if the longitudinal part of the medium-assisted electric field
[ÊF(x)]‖ is truncated (i.e., the part that belongs to the photonic
subspace). If the transverse mode expansion is complete, in
that it satisfies Eq. (64), the untruncated result is recovered.
Note also that we can write the first two terms on the right-

hand side of Eq. (69) as ˆ̃Wg,CĤF
ˆ̃W†

g,C + ˆ̃Wg,mpĤ0
ˆ̃W†

g,mp,
which clearly indicates the special role that the Coulomb and
multipolar gauges play in the the theory of gauge invariance
in truncated optical systems.

These expressions can be simplified in the Coulomb and
multipolar gauges by noting that for the Coulomb gauge, we
have V̂C = 1, and in the multipolar gauge,∫

d3xKmp
⊥ (x, r̂α ) · fμ(x) = −r̂α ·

∫ 1

0
dsfμ(sr̂α ). (70)

A gauge transformation in the truncated photonic space is,
similar to Eq. (57),

ˆ̃Wg′g = exp

[
− i

h̄

∫
d3x[P̂g′

⊥(x) − P̂g
⊥(x)]·Â⊥(x)

]
, (71)

which again can be shown to be equivalent to a replacement of
the truncated vector potential and transverse polarization. Of
course, all the results in this section can easily be generalized
to consider the case of no material truncation by taking r̂α →
r̂α .

The difference between Eq. (69), the correctly mode-
truncated arbitrary-gauge Hamiltonian, and a naively trun-
cated Hamiltonian P̂MĤgP̂M is twofold: First, the second term
in Eq. (65), the interaction term between photonic and ma-
terial subspaces, is expressed only in terms of the correctly
truncated electric field if the Hamiltonian is properly (not
directly) truncated, by instead truncating directly the vector
potential as the fundamental field coordinate.

Second, the final term in Eq. (65) differs from the final
term in Eq. (51) in that it contains explicit reference to the
electromagnetic field via the mode functions fμ [24]. In the
case where truncation is applied after calculating the unitary
transformation induced by V̂ , the transverse delta function
in the commutator (19a) (which requires a complete set of
transverse modes) is used to remove any reference to the
field modes. The additional integration present in the properly

truncated case resolves issues with the P̂2
⊥ term when using

the multipolar gauge, where P̂mp
⊥ is expressed in terms of a

Dirac delta functions, which can cause problems due to the
presence of a product of distributions [46].

It is instructive to compare our modal expansion and trun-
cation in a fundamentally lossy and dispersive system, with
the more commonly employed case in quantum optics of a
normal mode expansion. To focus on the case of light-matter
interactions in a medium, we can consider an inhomoge-
neous dielectric with a real and independent of frequency
permittivity ε(x). In this case, the Helmholtz equation can
be used to calculate the true normal modes of this system

as the eigenfunctions of ∇ × ∇ × hμ − ω2
μ

c2 ε(x)hμ = 0, with

appropriate closed or periodic boundary conditions. The
modal eigenfunctions here are hμ(x) with eigenvalue ωμ, and
they are generalized transverse in that they satisfy ∇ · (εhμ) =
0. In this case, an approximate (macroscopically averaged)
Lagrangian can be used with no reference to the medium
oscillator fields. In Appendix D we quantize this system using
Dirac’s constrained quantization procedure for the impor-
tant case of the generalized Coulomb gauge, which satisfies
∇ · (εA) = 0, and the generalized multipolar gauge which we
obtain by PZW transformation. The main result is that the
generalized multipolar Hamiltonian Ĥgmp can be written as

Ĥgmp = Ĥ0 +
∑

μ

h̄ωμâ†
μâμ

−
∫

d3xÊF(x) · ẐA(x)+
∑

μ

[
∫

d3xẐA(x) · hμ(x)]2

2ε0
,

(72)

where the part of the electric field operator which can be
expressed in terms of bosonic normal mode operators is

ÊF(x) = i
∑

μ

√
h̄ωμ

2ε0
hμ(x)âμ + H.c., and for each mode with

profile hμ, we can associate creation and annihilation opera-
tors which satisfy [âμ, â†

ν] = δμν . It is important to note that
the full electric field operator also contains contributions from
the material system operators, which must be considered when
calculating physical observables; for details, see Appendix D.

One important difference between the generalized multi-
polar Hamiltonian (72) for a system supporting normal modes
and the multipolar Hamiltonian (69), which can be formulated
also for systems with lossy and nondiagonal mode expansions,
is that the interaction term between photonic and material
subspaces takes a form which includes only direct mode-
polarization couplings in the former case, where loss can be
neglected. As a result, a naive truncation of the generalized
multipolar Hamiltonian (by applying P̂M operators directly to
Ĥmp) differs from the correct result only in the polarization-
squared term, which does not couple to the photonic subspace.
In many cases (e.g., a fermionic TLS; see Sec. VI B), this term
is irrelevant, or otherwise neglected. The ambiguity associated
with mode truncation thus does not always play a significant
role in light-matter interactions, at least with respect to the
Hamiltonian. Note, however, that the generalized transverse
eigenmodes are found with respect to the entire dielectric
system and thus are generally delocalized and not appropriate
for a discrete resonant mode truncation, despite this procedure
being common in the literature (i.e., taking a “single-mode”
limit).

In contrast, when considering a truncation of lossy modes,
due to the cross-mode nature of the coupling terms in the sec-
ond term of Eq. (65), truncation in the multipolar gauge will
invariably break gauge invariance in a way which can have
nonnegligible consequences. Our work generalizes previous
results by Ref. [24] on restoring gauge invariance in truncated
normal mode systems to consider these more general lossy
mode expansions. One important example of this can be seen
by considering open quantum systems.

To be concrete, consider the case of a cavity resonator that
has discrete mode operators which couple to external fields
and thus exhibits photon loss with some decay rate. Since
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there is only one set of complete-space electromagnetic fields
(i.e., of the universe), we propose that a rigorous model for
the dynamics of the cavity field, where the other “reservoir”
degrees of freedom are traced out (e.g., in the form of a master
equation, using the well-known input-output formalism [52]),
requires the use of the Coulomb gauge. This is because, in a
generic gauge, the “reservoir” field which photons decay into
is described by an entangled state of bosonic and fermionic
subspaces, which prevents the use of standard open quan-
tum system techniques to trace out the reservoir subsystem.
However, the Coulomb gauge is unique in that it is the only
gauge that satisfies V̂ = 1. Thus, the unitary transformation
which transforms the field Hamiltonian ĤF, and mixes up
field and material degrees of freedom, becomes trivial in this
gauge. The Coulomb gauge is thus the unique gauge (within
the gauges realizable in the quantization function method)
wherein the reservoir degrees of freedom are constrained
entirely within a bosonic subspace, which is necessary to
perform a Born-Markov approximation and derive a master
equation.

It should of course be noted that one can perform, for
example, a PZW-like transformation by using only the cavity
mode degrees of freedom, to get something resembling the
multipolar gauge for a truncated mode system. This is equiva-
lent to defining a new class of gauge transformations which act
only on the reduced system degrees of freedom. In this case,
the reduced cavity system is by definition a mode-truncated
system. Thus, the potential gauge ambiguity related to mode
truncation, and the techniques described in this work to restore
gauge invariance under mode truncation, are intrinsic to open
quantum systems. The Hamiltonian in Eq. (69) (or an analo-
gous construction) is generally required as a starting point to
derive the correct model of open quantum system dynamics
involving lossy cavities, if the system-reservoir coupling is to
be derived rigorously (e.g., as in quantized QNM theory [41]).

Recently, it has been argued [62] that is is incorrect to
assume that to model an open quantum system (e.g., a lossy
cavity), the system operator that should couple to external
“reservoir” modes is the transverse electric field operator, and
implied that previous work by some of us [53] is incorrect as
a result of this. This argument relies on the fact that, when
matter degrees of freedom (e.g., “atoms” in the cavity) are
localized far from the boundary of the resonator system, they
should not play a role in the dissipation process of the cavity.
Indeed, this is the case, and this feature is generally observed
in rigorous models of loss from quantized cavity systems (e.g.,
[39,44,72,73]). It is a straightforward consequence of this that
the electric field operator (or specifically, its modal excitation
and de-excitation operators) is in fact the correct operator to
use in describing coupling to a reservoir system, as it consists
of only optical degrees of freedom. Other works rigorously
treating dissipation in open cavities (albeit neglecting dis-
persion and absorption) have come to the same conclusion
[44,73].

Where the potential confusion arises in Ref. [62], is that,
when a complete set of modes is involved (no truncation), the
arbitrary-gauge expression for the untruncated electric field
operator is equivalent to that of its component which consists
of only bosonic operators, for positions far away from the
matter degrees of freedom (i.e., the cavity boundary). This led

the authors to suggest that the electric field evaluated away
from the material degrees of freedom should be used to couple
to the external reservoir, and that this field should be expanded
using only boson operators. In a correctly mode-truncated
picture, however, the electric field operator becomes Êg

⊥ =
V̂g[ÊF]⊥V̂†

g , which cannot exclusively be described by bosonic
degrees of freedom away from the material particle locations
unless a complete set of modes is used to describe the cavity
field. Using a single mode necessarily collapses the spatial
degrees of freedom of the description of the electric field to
a single coordinate, and thus the field at the boundary of the
cavity and at the location of the material degrees of freedom
are described by the same modal expansion operators. This
was already pointed out in [59] (especially see Appendix A
of same paper). Thus, by considering the correctly truncated
form of the field operator, the intuition behind the argument of
Ref. [62] does not hold, and consequently the gauge-invariant
observables reported in [53] are correct within the assump-
tions of the model considered.

V. TIME-DEPENDENT GAUGE TRANSFORMATIONS

In this section we generalize our approach to consider
time-dependent gauge conditions and transformations, as well
as how to construct gauge-invariant phenomenological time-
dependent models of light-matter interaction.

We can extend the previously developed theory of arbitrary
gauge quantization by allowing the transverse part of the
quantization function to be an explicit function of time, such
that (dropping the explicit g index for now) K = K(x, x′, t ). In
this case, one can follow the development in prior sections in
the exact same way by taking the system to be quantized
at a definite time t0, and then determining the explicit time
dependence of any observables when calculating expectation
values [67,74].

Alternatively, we can account for the explicit time de-
pendence of observables that arises from the time-dependent
gauge condition by means of an additional time-dependent
Hamiltonian term, generated by a canonical transformation
prior to quantization, and then treating all operators as hav-
ing no explicit time dependence. This is analogous to the
approach in Ref. [59], where, after quantization, a unitary
transformation with explicit time dependence is introduced
to define a time-dependent gauge transformation. Here we
generalize this approach by introducing it before quantization,
and for arbitrary gauges.

Specifically, a modification to the Hamiltonian arises
due to the canonical transformation that takes the coordi-
nates (A,�A) to (A⊥,�). With time-independent constraints,
this transformation does not alter the Hamiltonian. With
time-dependent constraints, however, P(x) becomes explic-
itly time-dependent, and more care is needed to perform the
canonical transformation to the unconstrained variables [74].

A canonical transformation from the set of constrained
variables (A,�A) to the unconstrained variables (A⊥,�) can
be implemented by writing the Lagrangian expressed in terms
of the constrained variables as equal to a new Lagrangian
expressed in terms of the unconstrained variables, up to a total
time derivative which does not affect the extremization of the
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action:∫
d3xȦ · �A − H (A,�A, t )

=
∫

d3xȦ⊥ · � − H ′(A⊥,�, t ) + dG

dt
. (73)

Here we have used a condensed notation by suppressing func-
tional dependencies of the fields as well as the dependence of
the Hamiltonians H and H ′ on the variables unaffected by the
desired transformation. One way to implement this canonical
transformation is by using a type-2 generating function [75]:

G = −
∫

d3xA⊥ · � +
∫

d3xG2(A,�, t ). (74)

For Hamilton’s equations to be preserved in the uncon-
strained variables, one requires then ∂G2

∂A = �A, ∂G2
∂�

= A⊥,
and H ′ = H + ∫

d3x ∂G2
∂t . Clearly, this can be accomplished

by a form G2 = A · �A + � · A⊥, which we can express as a
function of A and � as

G2(A,�, t )=A · [� + P(t )]+� ·
∫

d3x′δ⊥(x − x′) · A(x′),

(75)

where we have emphasized that the explicit time dependence
comes from (the transverse part of) P. From this, it is easy to
determine the relation

H ′(t ) − H (t )

=
∫

d3x
∂G2(A,�, t )

∂t

= −
∫

d3x
∫

d3x′A⊥(x, t ) ·
[

∂

∂t
K⊥(x, x′, t )

]
ρA(x′, t ).

(76)

Upon quantization, this term becomes simply
∫

Â⊥ · ˙̂P⊥,
and so the only change in the case of time-dependent gauge
function is

Ĥ → Ĥ (t ) = Ĥ +
∫

d3xÂ⊥(x) · ˙̂P⊥(x, t ). (77)

This additional term added to the Hamiltonian is equivalent to
the gauge transformation φ̂ → φ̂ − ˙̂�, since this transforms
[ÊF]‖ → [ÊF]‖ + ˙̂A‖ (i.e., if Â‖ = ∇�̂), which when applied
to the longitudinal interaction term in Eq. (69), and employing
the quantization constraint relation in Eq. (9), generates the
term in Eq. (77). Thus, a broad class of gauge transformations
as defined in Eqs. (4a) and (4b) can be implemented within
the arbitrary gauge quantization theory.

The notion of gauge transformations also must be modified
to account for the explicit time dependence of the gauge
transformation function, Ŵg′g(t ). Here we shall consider the
untruncated case for notational simplicity, although the pro-
cedure is identical with truncation of the material and/or
photonic subspaces.

It is simple to show that the form of the Schrödinger evolu-
tion is conserved under a gauge transformation |ψ ′

g(t )〉 =
Ŵg′g(t ) |ψg(t )〉, provided the Hamiltonian changes as

(restoring gauge indices)

Ĥg′
(t ) = Ŵg′g(t )Ĥg(t )Ŵ †

g′g(t ) − ih̄Ŵg′g(t )
∂

∂t
Ŵ †

g′g(t ). (78)

Using the definition of Ŵg′g(t ) [Eq. (30), but with �̂g(x) →
�̂g(x, t )], one can show the second term in the above
equation then takes the form

− ih̄Ŵg′g(t )
∂

∂t
Ŵ †

g′g(t ) =
∫

d3x[ ˙̂Pg′
⊥(x, t ) − ˙̂Pg

⊥(x, t )] · Â⊥(x).

(79)

Reference [59] suggests that the Coulomb gauge is some-
how more fundamental than the multipolar gauge, and must be
used when time-dependent interactions are to be considered.
Here, we take the view that gauge symmetry is a fundamental
property of the QED Lagrangian, and thus any gauge should
give consistent results, provided any approximations to the
theory are implemented consistently across gauges.

When describing time-dependent interactions and/or
gauge conditions (as in Refs. [59,60]), however, the Coulomb
gauge is potentially unique in that it is defined, conveniently,
by KC

⊥(x, x′, t ) = 0 for all t , and thus is a time-invariant
gauge. In contrast, when the light-matter interaction strength
is given an explicit time dependence, the multipolar gauge
constraint condition itself should also be given this explicit
time dependence to get something similar to the usual form
of the multipolar Hamiltonian. Thus, the additional term
[Eq. (77)] arises, which does not exist in the time-independent
multipolar gauge.

It should also be noted that an explicitly time-dependent
Hamiltonian is always an approximation, since the energy
nonconserving nature of a time-dependent Hamiltonian means
some external system has dynamics which are not explicitly
modeled. Thus, choosing to impose time dependence in a
specific gauge can potentially lead to different results than if it
is imposed in other gauges, and analysis of the physical origin
of the time dependence may need to be taken to resolve this
potential ambiguity [60].

For the case of time-dependent coupling between the trans-
verse field and matter, we can introduce this in a way which
is unambiguous and equivalent in both the Coulomb and mul-
tipolar gauges as follows: in the Coulomb gauge, the minimal
coupling is introduced via the transverse part of ẐA [see
Eq. (43)]. Thus, we can, for example, modulate the transverse
field’s interaction strength with matter by phenomenologically
modulating this parameter by a time-dependent factor μ(t )
such that ẐA(x) → μ(t )ẐA(x). In the multipolar gauge, the
coupling is entirely mediated by the transverse polarization
P̂mp

⊥ (x). Thus, we can make the equivalent approximation by
taking P̂mp

⊥ (x) → μ(t )P̂mp
⊥ (x).

Now, in the Coulomb gauge, ẐA(x) is simply a function
which generates (neglecting the magnetic interaction terms)
the minimal coupling replacements p̂α → p̂α − qαÂ⊥(r̂α ).
In contrast, in the multipolar gauge, P̂mp

⊥ (x) is a parameter
which appears in the Lagrangian. As such, by making this
quantity time-dependent, we must add to the Hamiltonian the
additional term given by Eq. (77) and understand the gauge
condition as depending explicitly on time. Additionally, one
must still make the replacement [ẐA(x)]⊥ → μ(t )[ẐA(x)]⊥
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to ensure Ûmp = 1 even under the new time-dependent gauge
condition. In summary, we can implement time-dependent
phenomenological interactions between the transverse field
and the active material particles in any gauge by letting

[ẐA(x)]⊥ → μ(t )[ẐA(x)]⊥, (80a)

Kg
⊥(x, x′) → Kg

⊥(x, x′, t ) = μ(t )Kg
⊥(x, x′), (80b)

Ĥ → Ĥ + μ̇(t )
∫

d3xÂ⊥(x) · P̂g
⊥(x). (80c)

To transform between gauges, we can perform the time-
dependent gauge transformation via ŴC,mp(t ) [see Eq. (30),
following the rule in Eq. (78)] to transform from one gauge
to another, and the additional term is correctly accounted for
by this transformation. Consequently, one can introduce time-
dependent interactions in systems with ultrastrong coupling in
either gauge without introducing any ambiguity or violating
gauge invariance. Using our formalism of the time-dependent
quantization function K(x, x′, t ), this is done without treating
any gauge as more fundamental than another, although as
noted in Ref. [59], this is most easily done in the Coulomb
gauge, where the coupling strength can straightforwardly be
made time-dependent.

In contrast to Ref. [60], which claims that introducing
time-dependent light-matter interaction strengths necessarily
breaks the gauge invariance of the fundamental light-matter
Lagrangian, we note that this is circumvented by applying
the time-dependent modulation of the interaction strength
only to the transverse part of the interaction, since the trans-
verse vector potential is gauge-invariant. This in fact produces
equivalent results to the replacements made at the level of
the Coulomb and multipolar gauge Hamiltonians described
above, and allows one to introduce gauge-invariant time-
dependent couplings in a completely unambiguous way.

Thus ultrastrong time-dependent light-matter interactions
are not gauge relative, as fully expected, if using a correct and
unambiguous theory. Furthermore, it should also be noted that
modulating the longitudinal (quasistatic) interaction is likely
to lead to undesired and unphysical predictions beyond just
the breaking of gauge invariance, as this would involve the
modulation of the Coulomb forces which bind together the
constituent atoms of the matter degrees of freedom. Clearly
the desired phenomenological model in many cases should be
that of a time-dependent transverse coupling only.

VI. THE DIPOLE APPROXIMATION
AND TWO-LEVEL SYSTEMS

In this section we apply the results of Sec. III to some com-
monly used models and approximations in quantum optics.
Specifically, we discuss the dipole approximation (or long-
wavelength approximation) in Sec. VI A, TLSs in Sec. VI B,
and how to go beyond the dipole approximation for effective
single-particle models in Sec. VI C. We focus on the case of
the dispersive and absorbing dielectric, but analogous results
for the case of a real dielectric, where the fields are expanded
in terms of the generalized transverse normal modes of the
system (see Appendix D) can easily be derived by applying
the appropriate approximations to the generalized Coulomb
and multipolar gauges in Eqs. (D39) and (D40).

A. Dipole approximation

In the Coulomb and multipolar gauges, the Hamiltonian is
in a particularly convenient form to expand the field potential
functions around x = rA = 0, the center of the, e.g., molec-
ular charge distribution. In particular, taking this expansion
to first order in r̂α results in the dipole approximation. For
example, under the dipole approximation, the operator Ûg

becomes (with no mode truncation) [27,29,59]

Ûg = exp

(
i

h̄
d̂ · Âg

0

)
, (81)

where we have defined the dipole operator d̂ = ∑
α qα r̂α .

Similarly, V̂mp becomes V̂mp = exp (− i
h̄ d̂ · Â⊥,0). Note one

could also define a dipole operator for each particle, which
is naturally more suited to multiparticle models such as the
Dicke and Hopfield models [76]. In this section we shall use
fields with the 0 subscript to correspond to the evaluation
at the origin (or, more generally at the center of a charge
distribution x = rA); for example, here Â0≡Â(0).

The Hamiltonian in the Coulomb gauge, after applying the
dipole approximation to Eq. (52) (with no mode truncation),
is

ĤC = exp

(
i

h̄
d̂ · Â⊥,0

)
Ĥ0 exp

(
− i

h̄
d̂ · Â⊥,0

)

+ ĤF − d̂ · [ÊF]‖,0, (82)

and in the multipolar (or dipole) gauge

Ĥmp = ĤF + Ĥ0 − d̂ · ÊF,0 +
∑
α,α′

qαqα′

2ε0
r̂α · δ⊥(0) · r̂α′ .

(83)

The last term in Eq. (83) is not well-defined, which is a well-
known problem [24,46]. However, under mode truncation, the
divergence becomes finite:

ˆ̃Hmp = ĤF + Ĥ0 +
⎛
⎝i
∑
μν

h̄χ∗
μν âμξ̂ g†

ν + H.c.

⎞
⎠

+
∑
μν

h̄χμνξ̂
g†
μ ξ̂ g

ν − d̂ · [ÊF]‖,0, (84)

where, within the dipole approximation,

ξ̂ g
μ = − d̂ · f∗

μ(0)√
2ε0 h̄χμμ

, (85)

and the mode-truncated result for the Coulomb gauge simply
replaces Â⊥,0 with Â⊥,0. Note that, as mentioned in Sec. IV C
and further justified in Sec. VII, the third term on the right-
hand side of Eq. (84) can also be written as −d̂ · [ÊF]⊥,0,
where [ÊF]⊥(x) is the correctly truncated transverse and
bosonic part of the electric field operator defined in Eq. (68).

B. Two-level systems

If we restrict ourselves to only two quantized material
states |e〉 and |g〉 (for the active media), with energies +h̄ω0/2
and −h̄ω0/2, respectively, then we can take advantage of the
SU(2) Pauli matrix algebra, and write Ĥ0 = h̄ω0σ̂z/2, where
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σ̂z = |e〉 〈e| − |g〉 〈g|. Furthermore, the only information about
the TLS which is required, in addition to its energy level sep-
aration, is its dipole moment. We shall assume the two states
to have parity symmetry, and take the off-diagonal matrix
element to be real:

〈e| d̂ |e〉 = 〈g| d̂ |g〉 = 0, (86a)

〈e| d̂ |g〉 = 〈g| d̂ |e〉 = d, (86b)

such that d̂ = dσ̂x, where σ̂x = |e〉 〈g| + |g〉 〈e|. We can then
calculate the matrix exponentials in Eq. (82) to obtain the
Coulomb gauge Hamiltonian under the dipole approximation
for a TLS:

ĤC = ĤF − d · [ÊF]‖,0σ̂x

+ h̄ω0

2

[
cos

(
2d · Â⊥,0

h̄

)
σ̂z + sin

(
2d · Â⊥,0

h̄

)
σ̂y

]
,

(87)

where σ̂y = i |g〉 〈e| − i |e〉 〈g|. The corresponding multipolar
gauge Hamiltonian is also easily obtained:

Ĥmp = ĤF + h̄ω0

2
σ̂z − d · ÊF,0σ̂x. (88)

In Eq. (88) we have been able to drop the problematic
divergent term d · δ⊥(0) · d/(2ε0), which although not well-
defined, is a c-number which does not contribute to the
Hamiltonian dynamics in the two-level subspace. The mode-
truncated Hamiltonian in the TLS approximation is easily
obtained by expressing Eq. (87) in terms of the truncated field
Â⊥,0 for the Coulomb gauge, and letting d̂ → dσ̂x in Eq. (84).
For example, in the single-mode limit where χμν = χ , we
have, in alignment with previous works [27,53,59],

ˆ̃HC
(1) = h̄χ â†â − d · [ÊF]‖,0σ̂x + h̄ω0

2

× {cos (2[ηâ† + η∗â†)]σ̂z + sin [2(ηâ† + η∗â†)]σ̂y}
(89)

and

ˆ̃Hmp
(1) = h̄χ â†â − d · [ÊF]‖,0σ̂x

+ ih̄χ (ηâ†−η∗â)σ̂x + h̄ω0

2
σ̂z, (90)

where η = d · f∗(0)/
√

2ε0h̄χ , and we have dropped a term
proportional to the identity.

C. Beyond the dipole approximation for a two-level system

Here we discuss an effective single-particle model for a
TLS. The results in this section can be generalized to higher-
level systems as well.

To derive general results beyond the dipole approximation,
one can assume in some instances an effective single-particle
model for the polarization consisting of a single charge q with
position operator r̂, and a charge −q which remains in a po-
sition eigenstate of the Hamiltonian with eigenvalue rA = 0.
This is just one toy model (reminiscent of the hydrogen atom),
and other effective single-particle models exist; for example,
we could also have a charge +q with position operator r̂ and a

charge −q with position operator −r̂. Sticking with the former
case, we have

P̂g
(x) = −qKg(x, r̂), (91)

where r̂ = dσ̂x/q. We can derive simpler expressions by not-
ing that, since σ̂x is proportional to the position operator, one
can immediately evaluate any function of operators which
depends only on the position operator by using the eigenbasis
of σ̂x. By construction (to preserve gauge invariance upon
truncation), we have formulated our theory such that the entire
Hamiltonian can be simplified in this manner. For example,
for a function f̂ (r̂), one can write

f̂ (r̂) = f (rdip) + f (−rdip)

2
+ f (rdip) − f (−rdip)

2
σ̂x, (92)

where rdip = d/q is an effective position coordinate. Such a
representation could be of course generalized to include cases
where the position operator is a generic Hermitian matrix in
the two-level subspace. We find, not yet considering mode
truncation,

Ĥg = ĤF + h̄ω0

2

[
cos

(
�̂

g
A

)
σ̂z + sin

(
�̂

g
A

)
σ̂y]

+ q2

4ε0

∫
d3x{[Kg

⊥(x, rdip)]2 − [Kg
⊥(x, rdip)]2}σ̂x

+ q

2

∫
d3xÊF(x) · [Kg(x, rdip) + Kg(x,−rdip)]

+ q

2

∫
d3xÊF(x) · [Kg(x, rdip) − Kg(x,−rdip)]σ̂x,

(93)

where �̂
g
A = d · ∫ 1

−1 dsÂg(srdip)/h̄, and we have dropped the
c-number term,

q2

4ε0

∫
d3x{[Kg

⊥(x, rdip)]2 + [Kg
⊥(x, rdip)]2}, (94)

which does not contribute dynamically. In the case of mode

truncation, the Hamiltonian ˆ̃Hg is similar to Eq. (93), but
with replacements ĤF → ĤF, �̂

g
A → �̂

g
A, and ÊF → ÊF =

[ÊF]⊥ + [ÊF]‖, where [ÊF]⊥ is the bosonic portion of the
correctly truncated transverse electric field operator, defined
in Eq. (68). Additionally, the second line instead becomes

q2

4ε0

∑
μ

{[∫
d3xKg

⊥(x, rdip) · fμ(x)

]2

−
[∫

d3xKg
⊥(x,−rdip) · fμ(x)

]2
}

σ̂x, (95)

and the c-number term that is dropped is modified accordingly
to smooth out the divergence.

013722-16



GAUGE-INVARIANT THEORY OF TRUNCATED QUANTUM … PHYSICAL REVIEW A 107, 013722 (2023)

From this result, it is straightforward to obtain the Coulomb
gauge Hamiltonian beyond the dipole approximation:

ĤC = ĤF + h̄ω0

2

[
cos

(
�̂C

A

)
σ̂z + sin

(
�̂C

A

)
σ̂y
]

− d
2

·
∫ 1

0
ds{[ÊF(srdip)]‖ − [ÊF(−srdip)]‖}

− d
2

·
∫ 1

−1
ds[ÊF(srdip)]‖σ̂x. (96)

Similarly, for the multipolar gauge,

Ĥmp = ĤF + h̄ω0

2
σ̂z

− d
2

·
∫ 1

0
ds[ÊF(srdip) − ÊF(−srdip)]

− d
2

·
∫ 1

−1
dsÊF(srdip)σ̂x. (97)

Note that the second line of Eqs. (96) and (97) vanish for
the common situation in which the electric field is an even
function of position (e.g., in cavity QED where a dipole is
placed at a modal antinode). With mode truncation, Eqs. (96)
and (97) should be expressed in terms of the truncated field
variables, with the additional term to the multipolar gauge
Hamiltonian:

1

4ε0

∑
μ

{[
d·
∫ 1

0
dsfμ(srdip)

]2

−
[

d·
∫ 0

−1
dsfμ(srdip)

]2
}

σ̂x.

(98)

Considering a one-dimensional system and neglecting the
longitudinal field terms, the Coulomb gauge result shown by
Eq. (96) was also found in Ref. [31], where it was noted that
due to the spatial integral over the transverse vector potential,
going beyond the dipole approximation introduces a natural
cutoff for high-frequency interactions, as �̂C

A vanishes for
mode wavelengths much shorter than |rdip|. Here we have
extended these results to consider an arbitrary gauge Hamilto-
nian for the general three-dimensional case, and including the
longitudinal terms.

VII. RESOLUTION OF GAUGE AMBIGUITY ASSOCIATED
WITH PHOTON DETECTION AND FIELD OBSERVABLES

A potential ambiguity that can arise when determining ob-
servables of the electromagnetic field is the gauge-dependent
nature of the field operators. As an example, consider the
transverse electric field operator in the Coulomb gauge ÊC

⊥ =
[ÊF]⊥, and the multipolar gauge, Êmp

⊥ = [ÊF]⊥ − 1
ε0

P̂mp
⊥ . In

this section we focus on gauge ambiguities associated with
(electromagnetic) mode truncation, so the polarization can be
truncated or untruncated.

Suppose we want to calculate an observable which is a
function of the electric field, 〈Ô(Êg)〉g, for gauges g = C, mp,
and the subscript on the expectation value indicates it is to be
calculated with respect to a state vector (or density operator)
in the gauge g. Without any truncation, we have, by construc-
tion of the manifestly gauge invariant quantum theory pre-
sented in previous sections, 〈Ô(ÊC)〉C = 〈Ô(Êmp)〉mp. Since P̂

is nonzero only in the vicinity of the matter charged particles,
one should be able to calculate any observable evaluated at
locations far from the position of the free matter particles
as 〈Ô(ÊC)〉C = 〈Ô(Êmp)〉mp = 〈Ô([ÊF]⊥)〉C = 〈Ô([ÊF]⊥)〉mp.
However, as the multipolar and Coulomb gauges have dif-
ferent Hamiltonians, 〈Ô([ÊF]⊥)〉C and 〈Ô([ÊF]⊥)〉mp will
generally be different when mode truncation is considered.

To illustrate this issue, consider the following expansion of
the bosonic part of the electric field:

[ÊF(x)]⊥ = i
∑

μ

√
h̄χμμ

2ε0
fE⊥
μ (x)âμ + H.c., (99)

where fE
μ are proposed modal functions for the electric field

expansion defined through naive projection, given in Ap-
pendix C. We will ultimately show that this is generally not
the correct form of the electric field operator mode expansion
when mode truncation is to be performed.

Suppose Eq. (99) is expressed in the Coulomb gauge, such
that [ÊF]⊥ = Ê⊥. Then, to obtain the multipolar gauge ex-
pression for the transverse electric field, we apply the PZW
transformation (using the dipole approximation for simplic-
ity):

Ŵmp,CâμŴ †
mp,C = âμ + i

d̂ · f∗
μ(0)√

2h̄ε0χμμ

, (100)

and so

Ŵmp,C[ÊF(x)]⊥Ŵ †
mp,C

= [ÊF(x)]⊥− d̂

ε0
·
⎡
⎣1

2

∑
μ

fE⊥
μ (x)f∗

μ(0) + c.c.

⎤
⎦. (101)

The quantity in square brackets is equal to δ⊥(x) if the mode
expansion is complete (see Appendix C), but for a finite mode
expansion, it becomes nonzero even away from the dipole
location at x = 0. Thus, upon mode truncation we have a
potential ambiguity; should we truncate with respect to the
photonic Hilbert space, using P̂M, or with respect to the sum
over mode index μ?

In Ref. [59] this potential ambiguity was identified, with
the proposed solution to truncate with respect to the mode
index. However, no definitive argument was given for why
this should be the case, beyond the fact that it is unitarily
equivalent to the seemingly less ambiguous situation in the
Coulomb gauge. Here we show that this can be justified by
a proper restoration of the gauge invariance lost under naive
mode truncation.

To resolve this ambiguity, we take an approach similar in
spirit to that of Ref. [59], by explicitly modeling the detector
degree of freedom, and using the mode truncation procedure
outlined in this work to derive a gauge-invariant model of the
detector constituent particles.

To do so, we can apply the theory in previously
developed sections (and the Appendixes) by generaliz-
ing the quantum charge and current densities to be-
come ρ̂A(x) → ρ̂A(x) + ρ̂d(x), and ĴA(x) → ĴA(x) + Ĵd(x),
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where

ρ̂d(x) =
∑
αd

qαdδ(x − r̂αd ), (102)

Ĵd(x) =
∑
αd

qαd
˙̂rαdδ(x − r̂αd ), (103)

corresponding to “detector” particles with position operators
r̂αd and charge qαd where again we assume

∑
αd

qαd = 0.
This change induces P̂(x) → P̂(x) + P̂d(x), to reflect the ad-
ditional detector degrees of freedom in the polarization. We
assume these particles to be localized around a position rd,
and as such, we take the following form for the multipolar
gauge polarization [as well as the corresponding change in
ZA(x)]:

P̂mp
d (x) =

∑
αd

qαd (r̂αd − rd )
∫ 1

0
dsδ[x − rd − s(r̂αd − rd )].

(104)

Obviously this is an oversimplified model of photodetection
[77], but it is sufficient to capture the essential features with
respect to gauge invariance and mode truncation. For the sake
of simplicity (and because we assume weak coupling of the
detector to the field), we will assume a truncation of the total
material subspace such that the detector degree of freedom can
be reduced to a TLS with energy separation h̄ωd. Similarly,
we assume the dipole approximation at the location of the
detector rd.

The Hamiltonian for this system under mode truncation is
that of Eq. (69), generalized to incorporate the additional de-
tector. Expanding to first order in the detector dipole moment
operator d̂d = ∑

αd
qαd (r̂αd − rd ), we obtain the Coulomb and

multipolar gauge Hamiltonians:

ˆ̃HC
d = ˆ̃HC + h̄ωd

2
σ̂ d

z + ωddd · Â⊥(rd )σ̂ d
y , (105)

ˆ̃Hmp
d = ˆ̃Hmp + h̄ωd

2
σ̂ d

z −
⎛
⎝i
∑
μν

h̄χ∗
μνη

d∗
ν â′

μ + H.c.

⎞
⎠σ̂ d

x ,

(106)

where we have used d̂d = ddσ̂
d
x , and we have defined ηd

μ =
dd · f∗

μ(rd )/(
√

2ε0h̄χμμ) and â′
μ = âμ + iημσ̂x, where ημ =

d · f∗
μ(0)/(

√
2ε0h̄χμμ). Suppose, now, that the detector TLS

frequency ωd is resonant with a transition of the Hamiltonian
(neglecting the detector part) between eigenstates | j〉 and |i〉
with frequency ω j − ωi = ωd [59]. By using perturbation the-
ory (Fermi’s golden rule), the photodetection rate should be
proportional to RC and Rmp in the Coulomb and multipolar
gauges, respectively, where

RC = | 〈iC| ωddd · Â⊥(rd ) | jC〉 |2, (107)

Rmp = | 〈imp| i
∑
μν

h̄χ∗
μνη

d∗
ν â′

μ + H.c. | jmp〉 |2. (108)

The aim now is to show these are equivalent. First, we note
that in the Coulomb gauge

∂

∂t
Â⊥(x) = i

h̄
[ ˆ̃HC, Â⊥(x)]

= −i
∑
μν

h̄χμν√
2ε0h̄χμμ

fμ(x)âν + H.c.

= −ÊC
⊥(x), (109)

where ÊC
⊥ is the correctly truncated transverse electric field

operator for the Coulomb gauge defined in Eq. (68). It is
generally not equal to the transverse electric field operator
which one would obtain by simply truncating the expansion in
Eq. (99), and this suggests that truncating Eq. (99) directly is
the incorrect approach in a dispersive and absorbing medium.

Using Eq. (109), if we take matrix elements with respect

to the eigenstates of the Hamiltonian ˆ̃HC, we can derive the
relationship

〈iC| Â⊥ | jC〉 =
∑
μν

1√
2ε0h̄χμμ

〈iC| h̄χμνfμâν − H.c. | jC〉
ω j − ωi

.

(110)

Using the fact that ωd = ω j − ωi, and multiplying by a factor
of |i|2 = 1, we find

RC =
∣∣∣∣∣∣〈iC|

⎛
⎝i
∑
μν

h̄χ∗
μνη

d∗
ν âμ + H.c.

⎞
⎠ | jC〉

∣∣∣∣∣∣
2

. (111)

Now, we note that the PZW transformation (excluding the
detector subspace), applied to Eq. (111), simply takes âμ to
â′

μ, and the matrix elements to be evaluated in the eigenstates
of the multipolar gauge. Thus, RC = Rmp, and we can confirm
the final result: the operator which should be used to model
photodetection at transition frequency ω is ωÂ⊥(x), and this
quantity is gauge invariant. Equivalently, the correctly trun-
cated transverse electric field operator Êg

⊥(x) can be used,
which is Êg

⊥ = V̂g[ÊF]⊥V̂†
g , and [ÊF]⊥ is defined in Eq. (68).

This fact can be understood by noting that the matrix element
of Eq. (108) is that of the operator dd · Êmp

⊥ (rd ).
We also comment that, as has been pointed out previously,

the notion of what the “correct” truncated electric field is
can be fundamentally ambiguous, and depends on what is
ultimately being measured in experiment [59,62]. In this case,
this definition is consistent with photodetection experiments.
We also note that this definition of the truncated field vio-
lates causality [59]; however, this is perfectly consistent with
a truncated mode approximation [78], at least assuming an
anharmonic mode spectrum.

VIII. CONCLUSIONS

In conclusion, we have presented a general theory of
gauge-invariant light-matter interactions under material and
photonic subspace truncation in an arbitrary medium, focus-
ing on the realistic case of an inhomogeneous dispersive and
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absorbing dielectric. Our theory is thus applicable to a wide
range of optical and photonic systems.

In Sec. II we gave the fundamental minimal-coupling ac-
tion which gave Maxwell’s equations and the Lorentz force
law for a system with medium reservoir oscillator degrees of
freedom [ultimately characterized by the dielectric function
ε(x, ω)], as well as free material particles. We then quan-
tized the system using a quantization function approach in
Sec. III, where the gauge of the system was left arbitrary,
allowing us to show manifestly that the quantum theory was
gauge invariant, and easily recover known results for the
common Coulomb and multipolar gauges. In Sec. IV we
showed how gauge invariance manifests in the quantum the-
ory, and how material and photonic space truncation can be
included without sacrificing gauge invariance in the reduced
subspace, allowing one to derive models which can be used
to model ultrastrong light-matter interactions for common
models in quantum optics, including TLSs and single-mode
models. We drew contrast with a discrete mode expansion in
lossy systems, where the mode expansion Hamiltonian ĤF is
nondiagonal, with the more familiar normal mode expansion,
which can be implemented in free space, or a lossless and
dispersionless dielectric. In particular, we argued that this
difference requires rigorous open quantum system models of
loss in resonant mode systems (e.g., a cavity-qubit system
with photon loss) to be derived in the Coulomb gauge, as this
gauge is the unique gauge in which information regarding the
part of the “reservoir” electromagnetic field (to be traced out)
can be encoded in a purely photonic operator subspace.

Next, in Sec. V we extended the arbitrary-gauge quantiza-
tion function approach to canonical quantization by allowing
for gauge conditions with explicit time dependence, and
showed how this could be used to introduce unambiguous
phenomenological time-dependent modulation of the trans-
verse light-matter coupling strength. We applied our theory
to common models and approximations used in the literature
in Sec. VI, including the dipole approximation, the TLS,
and how to go beyond the dipole approximation for effective
single-particle models. Finally, in Sec. VII we discussed how
a particular gauge ambiguity could arise with respect to ob-
servables of a mode-truncated field, and how to resolve this
ambiguity by means of an explicit “detector particle” model,
where gauge invariance is preserved using the techniques of
Sec. IV. This allowed us to show that the vector potential is
the fundamental field coordinate to be truncated directly, and
subsequently, we showed how to obtain the correctly truncated
electric field from this result.

Finally, we note that our results can be used as a starting
point for more fundamental models of loss and dissipation
in quantum optics. For example, the techniques of material
and mode truncation can be used to derive rigorous and accu-
rate models of dipole interactions with a few discrete modes,
modelled as quantized QNMs (as shown in Appendix C).
Separating the entire electromagnetic field into QNM and
reservoir components [39,41], and using standard methods
of open quantum systems, a master equation could then be
derived to govern the lossy dipole-QNM system. This would
solve the long-standing problem of how to go beyond a phe-
nomenological formulation of the system-reservoir coupling
in quantum optics and input-output theory [52] in the USC

regime for general three-dimensional resonators, which has
recently been shown to be essential to predicting emission
spectra and other observables from cavity-QED systems in the
USC regime [53].
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APPENDIX A: ACTION AND EQUATIONS OF MOTION

The total action for the system described in Sec. II is [7,11]

S = Sem[Aμ] + SX[Xω] + SA[rα] + Sint[Aμ; rα; Xω], (A1)

where

Sem[Aμ] =
∫

d4x

(
ε0

2
E2 − 1

2μ0
B2

)
, (A2a)

SA[rα] = 1

2

∑
α

mα ṙ2
α, (A2b)

SX[Xω] = 1

2

∫
d4x

∫ ∞

0
dω
(
Ẋ2

ω − ω2X2
ω

)
,

(A2c)

Sint[Aμ; rα; Xω] =
∫

d4x
∫ ∞

0
dωα(x, ω)Xω · E

−
∫

d4xJμ
A Aμ, (A2d)

with

α(x, ω) =
√

2ε0ω

π
εI (x, ω) (A3)

and the four-current for the free particles is Jμ
A (x) =

(cρA(x, t ), JA(x, t )). This current satisfies a continuity equa-
tion ∇ · JA + ρ̇A = 0, where

ρA(x, t ) =
∑

α

qαδ(x − rα ), (A4a)

JA(x, t ) =
∑

α

qα ṙαδ(x − rα ). (A4b)

The electric and magnetic fields are expressed in terms of the
potentials as E = −Ȧ − ∇φ and B = ∇ × A, respectively.

Requiring that the action be stationary, we obtain the fol-
lowing set of equations:

ε0∇ · E +
∫ ∞

0
dω∇ · [α(x, ω)Xω] = ρA, (A5a)

1

μ0
∇ × B − ε0Ė −

∫ ∞

0
dωα(x, ω)Ẋω = JA, (A5b)

mα r̈α = qαE(rα ) + qα ṙα × B(rα ), (A5c)

Ẍω + ω2Xω = α(x, ω)E. (A5d)

Clearly, Eqs. (A5a) and (A5b) are the Gauss and Ampère-
Maxwell laws with active material sources, as well as a
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polarization field PM = ∫
dωα(x, ω)Xω arising from the pas-

sive medium reservoir which also acts as a source—the
“passivity” of the medium is demonstrated by the “Fano di-
agonalization” of Sec. III C, which allows the fields to be
expressed in terms of bosonic polariton operators and the
photonic Green’s function without explicit reference to the
medium interaction. Equation (A5c) is the Lorentz force equa-
tion of motion for the active free particles, and Eq. (A5d) is the
equation of motion for the passive medium reservoir field.

APPENDIX B: QUANTIZATION VIA DIRAC’S
PRESCRIPTION WITH CONSTRAINTS

In this Appendix, we quantize the system consisting of the
electromagnetic fields, passive medium, and active material
particles using Dirac’s prescription.

We note that we have three constraints for this system:
χ0 = χ1 = χ2 = 0, as given by Eqs. (3a), (3b), and (9). These
constraints are to be understood as applying only on a subset
of phase space in which all the constraints are applied—in
the parlance of Dirac, these are weak equalities [79]. To
proceed with the quantization procedure, we must evalu-
ate Poisson brackets between these constraints. In particular,
these should be evaluated before applying the constraints. It is
easy to verify that the Poisson brackets of χ0 with the other
two constraints vanish. This means χ0 is a so-called first-
class constraint, and the remaining Poisson brackets (over the
“second-class” constraints) thus form an orthogonal matrix
Ci j (x, x′) = {χi(x), χ j (x′)}1, which can be evaluated as

C(x, x′) = δ(x − x′)
[

0 −1
1 0

]
, (B1)

with inverse (in this case) C−1 = CT , which satisfies∑
k

∫
d3x′′Cik (x, x′′)C−1

k j (x′′, x′) = δi jδ(x − x′). (B2)

From this, one then defines the Dirac bracket [12,47,67]:

{A, B}D ≡ {A, B}

−
∑

i j

∫
d3x

∫
d3x′{A, χi(x)}C−1

i j (x, x′){χ j (x′), B},

(B3)

and quantizes by imposing [Â, B̂] = ih̄{A, B}D.

Evaluating in this manner, we find the nonzero commuta-
tors to be (in the Schrödinger picture)

[X̂ω(x), �̂ω′ (x′)] = ih̄Iδ(x − x′)δ(ω − ω′), (B4)

[r̂α, p̂α′ ] = ih̄Iδαα′ , (B5)

[Â(x), �̂A(x′)] = ih̄[Iδ(x − x′) + ∇xK(x′, x)]

= ih̄[δ⊥(x − x′) + ∇xK⊥(x′, x)], (B6)

1Here, for example, the Poisson bracket for fields f (x) and g(x′)
which depend on fields θi and their conjugates �θi takes the form
{ f (x), g(x′)} = ∑

i

∫
d3y[ δ f (x)

δθi (y)
δg(x′ )

δ�θi
(y) − δg(x′ )

δθi (y)
δ f (x)

δ�θi
(y) ], with all fields

evaluated at equal times.

and

[p̂α, �̂A(x)] = ih̄qα∇r̂α K(x, r̂α ). (B7)

We can also construct the quantum Hamiltonian:

Ĥ =
∑

α

˙̂rα · p̂α +
∫

d3x ˙̂A · �̂A

+
∫

d3x
∫ ∞

0
dω ˙̂Xω · �̂Xω

− L̂. (B8)

While these commutators define, in principle, a working
quantum theory of fields, they do not separate photonic and
material degrees of freedom in the form of canonical com-
mutation relations; that is, the operators Â and �̂A cannot
be expanded as a superposition of bosonic creation and an-
nihilation operators. Nonetheless, a canonical transformation
can be easily found to describe the system in terms of new
coordinates which do satisfy the usual canonical commutation
relations.

After quantization, the “weak equalities” of the constraints
become strong equalities, and can be applied to the quantum
operators. The constraint χ1(x) = 0 means that the longitudi-
nal part of �̂A(x) can be expressed analytically in terms of
ρ̂A(x):

�̂A,‖(x) = P̂‖(x)

=
∑

α

qα (r̂α − rA) ·
∫ 1

0
dsδ‖[x − rA − s(r̂α − rA)],

(B9)

where the second equality can be shown to be consistent with
Eq. (12). For this work, we take rA = 0 hereafter without loss
of generality. Note that, more generally, one can also consider
situations where rA → r̂A corresponds to a dynamical degree
of freedom (e.g., a center-of-mass coordinate) [18,80].

By means of a canonical transformation, we can define new
unconstrained canonical coordinates Â⊥ and �̂ = �̂A − P̂
[12]. In this new coordinate system, the field variables are
manifestly transverse, and the Gauss’s law constraint simply
becomes ∇ · �̂ = 0. One can then verify that we have the
modified commutators from Sec. III B, which now take their
usual canonical form.

APPENDIX C: CONSTRUCTION OF DISCRETE MODES
FROM THE BOSONIC CONTINUUM AND RELATIONSHIP

TO QUANTIZED QUASINORMAL MODE THEORY

In this Appendix, we first detail in Sec. C 1 how discrete
modes can be constructed out of the continuous mode expan-
sion expressed in terms of the macroscopic QED operators
b̂(r, ω), b̂†(r, ω), as was used to discuss mode truncation
in Sec. IV C, and then in Sec. C 2 connect to the important
example of quantized QNMs.

1. Construction of discrete modes in system
with dispersion and absorption

In general, we can construct a discrete “modal” operator as
âμ = ∫

d3x
∫∞

0 Lμ(x, ω) · b̂(x, ω), where Lμ(x, ω) is a func-
tion which projects the full bosonic subspace of the Fano
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diagonalization onto a discrete Fock subspace. For this to be
true, we must require [âμ, â†

η] = δμη, and so

∫
d3x

∫ ∞

0
dωLμ(x, ω) · L∗

η(x, ω) = δμη. (C1)

Under this definition, we have ĤF = ∑
μη h̄χμηâ†

μâη,
where

χμη =
∫

d3x
∫ ∞

0
dωωLμ(x, ω) · L∗

η(x, ω), (C2)

P̂Mb̂(x, ω)P̂M =
∑

μ

L∗
μ(x, ω)âμ, (C3)

and

fμ(x)

=
√

2χμμ

π

∫
d3x′

∫ ∞

0

dω

ω

√
εI (x′, ω)G⊥(x, x′, ω) · L∗

μ(x′, ω)

(C4)

are the mode profiles for the expansion of the vector po-
tential in Eq. (61). Alternatively, one could define mode
profiles for an expansion of the transverse electric field, as in
Eq. (99):

fE⊥
μ (x)

=
√

2

χμμπ

∫
d3x′

∫ ∞

0
dω
√

εI (x′, ω)G⊥(x, x′, ω) · L∗
μ(x′, ω).

(C5)

However, to preserve gauge invariance under truncation, the
properly truncated electric field operator should instead be

expanded in terms of the functions f ′
μ = ∑

η

χ∗
μη√

χμμχηη
fη.

This construction is general, but can be used to describe,
e.g., quantized QNMs [39]. Additionally, these “modes” need
not be true modes in the sense that they satisfy Maxwell’s
equations with the appropriate boundary conditions—rather,
they constitute, in the most general case, a truncation of the
spatial and frequency-dependent degrees of freedom of the
“Fano-diagonalized” polariton operators in which the electro-
magnetic and passive medium fields are expressed as a linear
functional thereof.

By appropriate choice of projection functions, the untrun-
cated results can be recovered by imposing an appropriate
completeness relation. Specifically, if the projection functions
satisfy

∑
μ

Lμ(x, ω)L∗
μ(x′, ω′) = Iδ(x − x′)δ(ω − ω′), (C6)

then

∑
μη

χμη√
χμμχηη

fμ(x)f∗
η (x′)

= 2

π

∫
d3y

∫ ∞

0

dω

ω
εI (y, ω)G⊥(x, y, ω)·G⊥,∗(y, x′, ω)

= 2

π

∫ ∞

0

dω

ω
Im[G⊥(x, x′, ω)]

= δ⊥(x − x′), (C7)

where in the second line we have used Eqs. (C2) and (C6), in
the third the relations (32), (33), and (C2), and in the fourth
an identity related to causality proven in Ref. [5].

Similarly one can show
∑

μ fE⊥
μ (x)fμ(x′) = δ⊥(x − x′).

Note that the completeness relation can be put in the more
usual form by introducing symmetrized mode functions
f s
μ(x) = ∑

η[χ
1
2 ]ημfη(x)/

√
χηη. That the matrix χ

1
2 neces-

sarily exists relies on χ being invertible. From the form of
Eq. (C2), and the orthogonality and completeness relations
imposed on the projection functions Lμ(x, ω), χ takes the
form of an inner product with positive weight function ω,
and thus is invertible. The symmetrized mode functions then
satisfy

∑
μ f s

μ(x)f s,∗
μ (x′) = δ⊥(x − x′).

For an example, a mode expansion that is complete in the
spatial part can be found by using plane waves as the basis
set for L. In this case the spatial part could take the form
( k0

2π
)

3
2 eikn·x where kn = (nx, ny, nz )k0, with nx, ny, nz integers,

and k0 being a momentum cutoff which would go to zero as
the quantization volume → ∞.

It should be noted that this expansion is not the same as
the common normal mode approach often taken in dielectric
media without dispersion or absorption, where the mode func-
tions are solutions to the Helmholtz equation. In the absence
of loss or dispersion, and with closed or periodic boundary
conditions, these are the generalized eigenfunctions which
satisfy

∫
d3xε(x)hi(x) · h j (x) = δi j . These functions are gen-

eralized transverse, in that they satisfy ∇ · [ε(x)hi(x)] = 0.
Only in the limit εR(x, ω) → ε(x) and εI (x, ω) → 0, and
for closed or periodic boundary conditions, can one expand
the fields as linear combinations of these generalized trans-
verse eigenfunctions. In fact, our approach does not even
require the modal functions fμ(r) to satisfy the Helmholtz
equation.

In the case that the projection functions Lμ(x, ω)
are well isolated in frequency, one can approximate the
matrix χμη in Eq. (C2) as diagonal, with ωμ ≡ χμμ,
and in this case the generalized completeness relation,
as well as the mode expansions take their more usual

forms Â⊥(x) ≈ ∑
μ

√
h̄

2ε0ωμ
f (x)âμ + H.c., and [ÊF(x)]⊥ ≈

i
∑

μ

√
h̄ωμ

2ε0
f (x)âμ + H.c.

As shown in Appendix D, the development of the
arbitrary-gauge quantization of the electromagnetic field is
implemented more naturally for lossless and dispersionless
systems with closed or periodic boundary conditions by uti-
lizing a constraint equation [analogous to χ2—Eq. (9)] more
suitable for the implementation of the generalized Coulomb
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and multipolar gauges, as well as an appropriate modified La-
grangian. Such an approach yields mode expansions directly
in terms of the generalized eigenfunctions to the Helmholtz
equations.

2. Relationship to quantized quasinormal modes

A particularly noteworthy example of the construction of
discrete modes out of the bosonic continuum is in the quan-
tized quasinormal mode (QNM) theory [39,42,81]; QNMs,
with mode profiles f̃μ(x), are eigenfunctions of the Helmholtz
equation, which for open boundary conditions is a non-
Hermitian eigenproblem:

∇ × ∇ × f̃μ(x) − ω̃2
μ

c2
ε(x, ω̃μ)f̃μ(x) = 0, (C8)

along with suitable boundary conditions [i.e., the Silver-
Müller conditions of Eq. (29)]. The eigenfrequency ω̃μ =
ωμ − iγμ is the complex QNM frequency, with real part ωμ

and imaginary (dissipative) part γμ; QNMs allow one to
calculate relevant quantum optics quantities such as cavity
Q factors, complex effective mode volumes, Purcell factors,
and radiative β factors [10,17,37,38]. Notably, QNMs are the
open-cavity modes for both dielectric resonators and systems
with material loss (e.g., also describing localized plasmon
modes of metallic resonators, which are also QNMs, with
radiative and nonradiative loss). In the case of lossless di-
electrics (i.e., with no material loss), the dissipation captured
in γμ is entirely through radiative loss.

For quantized QNMs, the mode projection functions
Lμ(x, ω) take the form

Lμ(x, ω) =
∑

η

[S− 1
2 ]μη

√
ωη

2π

√
εI (x, ω)

ω̃η − ω
F̃′

η(x, ω). (C9)

While these are orthonormal, they are not complete, and so
approximating the field expansion in terms of purely QNM
operators is necessarily a form of mode truncation, which
requires the procedures outlined in Sec. IV C to restore gauge
invariance. The symmetrizing matrix Sμη is given by the fre-
quency integral

Sμη =
√

ωμωη

2π

∫ ∞

0
dω

Snrad
μη (ω) + Srad

μη (ω)

(ω − ω̃μ)(ω − ω̃∗
η )

, (C10)

where

Snrad
μη (ω) =

∫
V

d3xεI (x, ω)f̃μ(x) · f̃∗
η (x) (C11)

gives the nonradiative loss contribution through a QNM over-
lap integral over a region V containing the absorptive material,
which is assumed to be separated from the rest of space by a
discontinuity in the dielectric function, and

Srad
μη (ω) =

∫
R3−V

d3xεI (x, ω)F̃μ(x, ω) · F̃∗
η(x, ω)

= nBc

ω

∮
S∞

dAsF̃μ(s, ω) · F̃∗
η(s, ω) (C12)

gives the radiative loss through a far-field surface S∞.
The function F̃′

μ(x, ω), in Eq. (C9), is defined piecewise,
where within the absorptive region V it is equal to f̃μ(x), and

outside of this region it is defined as F̃μ(x, ω), which is a
regularized form to avoid the divergence of f̃μ(x) in the far
field and can be obtained from a Dyson equation approach
[41], or a near-field to far-field transformation [82].

The transverse Green’s function for locations x, within the
volume V , can be expanded as [83]

G⊥(x, x′, ω) =
∑

μ

ω

2(ω̃μ − ω)
f̃ (x)F̃′

μ(x′, ω). (C13)

Substituting these results into Eq. (C4), we find, for x
within the volume V ,

fμ(x) =
∑

η

f̃η(x)[S
1
2 ]ημ

√
χμμ

ωη

. (C14)

This expression also holds approximately for locations near
the volume V , e.g., in plasmonic systems where the field is
dominated by the QNMs in the near vicinity of the scattering
structure [83,84].

The functions fμ(x) are similar to symmetrized QNM
mode functions which have appeared in previous works. How-
ever, previous works have performed the mode expansion in
terms of the electric field, as opposed to the vector potential
(which plays a more fundamental role in ultrastrong light-
matter interactions), so the expressions we show here are
slightly different.

As a consistency check, note that due to the pole in
Eq. (C9), for Qμ ≡ ωμ/(2γμ) � 1, the frequency integral in
the definition of χμμ is sharply peaked about ω = ωμ and thus
we can approximate χμμ ≈ ωμ. In this common case, we can

also expand [ÊF(x)]⊥ ≈ i
∑

μ

√
h̄ωμ

2ε0
fμ(x)âμ + H.c., which is

the same result reached in previous works on quantized QNMs
[39].

APPENDIX D: QUANTIZATION AND TRUNCATION
IN A DIELECTRIC MEDIUM WITHOUT DISPERSION OR

DISSIPATION

For a medium with no dispersion or absorption, the di-
electric function is real and independent of frequency such
that ε = ε(x). In this case Maxwell’s equations yield eigen-
modes of the medium, hμ(x), which satisfy the Helmholtz
equation,

∇ × ∇ × hμ(x) − ω2
μ

c2
ε(x)hμ(x) = 0, (D1)

and when solved with closed or periodic boundary conditions,
yields corresponding (real) eigenvalues ωμ. The eigenfunc-
tions are generalized transverse, in that they satisfy ∇ ·
[ε(x)hμ(x)] = 0 and can be chosen to be real [65]. These
are normal modes, which are orthogonal in the sense that∫

d3xε(x)hμ(x) · hν (x) = δμν , and complete in the sense that
any generalized transverse function can be expanded as a
linear combination of them [63,65,85]. In Sec. D 1 we perform
canonical quantization using Dirac’s constrained quantization
in the generalized Coulomb gauge, and show how the fields
can be expanded in terms of the generalized transverse nor-
mal mode expansion; then in Sec. D 2 we perform a PZW
transformation to obtain the result for the generalized multi-
polar gauge, recovering previously known results [63–65,85].
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In Sec. D 3 we truncate the material and mode degrees of
freedom for this system in a manner consistent with gauge
invariance in the truncated space.

Note for open resonators and cavities, even with no ma-
terial loss (i.e., a real dielectric), one should formally use
QNMs if performing few mode quantization (as desired in
cavity-QED), though mode quantization using normal modes
with heuristic dissipation is often a very good approxima-
tion for single-mode high-Q resonators outside of the USC
regime. However, with several cavity modes, it can be es-
sential to capture the effects of the QNM phase [39,86,87],
even when not considering USC. Performing quantization
with material loss and carefully taking the limit of a loss-
less dielectric naturally recovers a description that is valid
for the QNMs of dielectric cavity systems, which is also
consistent with the fluctuation-dissipation theorem [81]. As
noted in Appendix C, in that case, the dissipation is fully con-
tained through the radiative loss, which is an inherent part of
the QNM.

1. Canonical quantization in the generalized Coulomb gauge

While results for a nonabsorbing and nondispersive dielec-
tric can be obtained as a limiting case of the theory presented
in the main text [81], it is more convenient to start with a
different effective Lagrangian which does not explicitly con-
tain the medium reservoir degrees of freedom, and gives the
macroscopic Maxwell’s equations upon extremization of the
action:

Lr = 1

2

∑
α

mα ṙ2
α + 1

2

∫
d3x

[
ε0ε(x)E2 − 1

μ0
B2

]

−
∫

d3xJμ
A Aμ. (D2)

This Lagrangian gives the same canonical momenta as the
one in the main text for the scalar potential and particle co-
ordinates: �φ = 0, pα = mα ṙα + qαA(rα ), and gives for the
vector potential the canonical momentum �A = −ε0ε(x)E.
The constraint χ0 = �φ = 0 is thus unchanged, as well as
Gauss’s law χ1 = ∇ · �A − ρA = 0, provided it is expressed
in terms of the new canonical momentum.

To quantize this system in the generalized Coulomb gauge,
one approach is to use the quantization function K(x, x′)
as in Sec. III B, where the transverse part of this function
determines the gauge. We briefly mention how this can be
done later, with appropriate constraints on the form of K.
Alternatively, we can take a more direct approach, explicitly
let the gauge constraint be χ2 = ∇ · (εA) = 0, and calculate
the Dirac brackets from this. Choosing the latter approach, the
nonzero elements of the constraint matrix are C12(x, x′) and
C21(x, x′) = −C12(x′, x), where

C12(x, x′) = ∇x · [ε(x)∇xδ(x − x′)]. (D3)

This implies

−∇x · [ε(x)∇xC−1
12 (x, x′)

] = δ(x − x′). (D4)

While we do not solve for an explicit form for the
inverse constraint matrix, that C−1

12 satisfies Eq. (D4)

is in fact the only information needed to quantize the
theory.

Constructing the Dirac bracket between the field coordi-
nate and momentum, we obtain

Qi j (x, x′) ≡ {Ai(x),�A j (x′)}D

= δi jδ(x − x′) − ε(x′)∇x′
j ∇x

i C−1
12 (x, x′). (D5)

We can show that this function is generalized transverse in its
first argument, in that it satisfies

∇x
i [ε(x)Qi j (x, x′)] = 0. (D6)

To prove this, we use Eq. (D4), obtaining

∇x
i [ε(x)Qi j (x, x′)]

= ∇x
j [ε(x)δ(x − x′)] + ε(x′)∇x′

j δ(x − x′), (D7)

and to show this is zero, we can integrate against a test func-
tion: ∫

d3x′∇x
i [ε(x)Qi j (x, x′)] f j (x′) = 0. (D8)

Similarly, one can show that ∇x′
j Qi j (x, x′) = 0, i.e.,

it is transverse with respect to its second argument).
Since Qi j (x, x′) is generalized transverse with respect to
x and i, it must have an expansion within the general-
ized eigenfunctions of the Helmholtz equation: Qi j (x, x′) =∑

μ Qμ, j (x′)hμ,i(x). The expansion coefficients Qμ, j (x′) can
be found as

∫
d3xhμ(x) · Q(x, x′), and so

Qμ, j (x′) = ε(x′)hμ, j (x′)

− ε(x′)∇x′
j

∫
d3xε(x)hμ,i(x)∇x

i C−1
12 (x, x′).

(D9)

Since the integral in the second line of Eq. (D9) consists of
a transverse function εhμ integrated against a longitudinal
function ∇C−1

12 , it vanishes. As such, we can write

Qi j (x, x′) =
∑

μ

ε(x′)hμ,i(x)hμ, j (x′). (D10)

In this form, it can be seen that Q is the generalized transverse
delta function, introduced in other works [64,65]. For any
vector function f (x), one can define

[f̂ (x)](ε)
⊥ =

∫
d3xQ(x, x′) · f (x′)

=
∑

μ

hμ(x)
∫

d3x′ε(x′)hμ(x′) · f (x′), (D11)

where [f (x)](ε)
⊥ = [f⊥(x)](ε)

⊥ denotes the generalized trans-
verse component of f , which satisfies

∇ · (ε(x)[f̂ (x)](ε)
⊥ ) = 0. (D12)

Now, the only other nonzero Dirac brackets are
{rα,i, pα′, j}D = δαα′δi j , and

{pα,i,�A j (x)}D = −qαε(x)∇rα

i ∇x
jC

−1
12 (rα, x). (D13)

Thus, we can construct separable photonic and matter Hilbert
spaces by, similarly as in Sec. III B, defining a new canonical
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variable: � = �A − PgC, where

PgC(x) = −
∫

d3x′F(x, x′)ρA(x), (D14)

and F(x, x′) = −ε(x)∇xC−1
12 (x′, x). This function is defined

by two important properties: F(x, x′)/ε(x) is longitudinal, and
its longitudinal part is the Green’s function for the divergence
operator; i.e., F‖(x, x′) = K‖(x, x′). This latter property en-
sures that � is transverse, as can seen from the constraint χ1

(because ∇ · PgC = −ρA). Note that one could alternatively
arrive at the quantized theory in the generalized Coulomb
gauge by using a quantization function K which satisfies
these same properties as F as the quantization function in the
approach from Sec. III B.

We can now promote Dirac brackets (multiplied by ih̄)
to commutators in the usual fashion, and promote canonical
variables to operators. We thus have

[Â(x), �̂(x′)] = ih̄Q(x, x′), (D15)

which implies that the fields have modal expansions [63]

Â(x) =
∑

μ

√
h̄

2ε0ωμ

hμ(x)âμ + H.c., (D16a)

�̂(x) = −iε0ε(x)
∑

μ

√
h̄ωμ

2ε0
hμ(x)âμ + H.c. (D16b)

We then construct the Hamiltonian in the usual manner, find-
ing

Ĥ =
∑

α

[p̂α − qαÂ(r̂α )]2

2mα

+ 1

2

[∫
d3x

(�̂ + P̂gC)2

ε0ε(x)
+ B̂2

μ0

]
−
∫

d3xP̂gC · ∇φ̂.

(D17)

We can now make several simplifications. First, we note
that the term

∫
�̂ · P̂gC/ε(x) vanishes, because �̂ is trans-

verse, and P̂gC/ε(x) is longitudinal. Second, the last term can
be written as∫

d3x ˆPgC · ∇φ̂ =
∫

d3x
P̂gC

ε(x)
[ε(x)∇φ̂]‖, (D18)

but the longitudinal part of (ε(x)∇φ̂) can be found from the
constraint χ1, by noting that since ε(x)Ȧ is transverse; then
the constraint simply becomes

∇ · [ε0ε(x)∇φ̂] = −ρ̂A = ∇ · ˆPgC. (D19)

Thus, the total Hamiltonian in the generalized Coulomb
gauge ĤgC can be written

ĤgC =
∑

α

[p̂α − qαÂ(r̂α )]2

2mα

+ ĤF + V̂Coul, (D20)

with

ĤF = 1

2

∫
d3x

[
�̂2

ε0ε(x)
+ B̂2

μ0

]

=
∑

μ

h̄ωμâ†
μâμ, (D21)

where in the second line we have used the expansions in
Eq. (D16) and dropped the zero point energy, and

V̂Coul = −
∫

d3x
P̂gC · P̂gC

‖
2ε0ε(x)

. (D22)

Explicit expressions can be derived for P̂gC, and thus V̂Coul

using the following method. First, note that the longitudinal
part is already fixed by Gauss’s law:

P̂gC
‖ (x) = −

∫
d3x′K‖(x, x′)ρ̂A(x′)

= ∇x
∫

d3x′ ρ̂A(x′)
4π |x − x′| . (D23)

Now we can introduce the auxiliary function N̂(x) =
(P̂gC − P̂gC

‖ )/ε(x), which is generalized transverse. Thus, this
function can be expanded in terms of the modal functions
N̂(x) = ∑

μ n̂μhμ(x), where n̂μ are operator-valued expan-
sion coefficients. These can be found as

n̂μ =
∫

d3xhμ(x) · [ ˆPgC(x) − ˆPgC‖(x)]

= −
∫

d3xhμ(x) · P̂gC
‖ (x), (D24)

and thus we can find an explicit expression:

P̂gC(x) = P̂gC
‖ (x) + ε(x)N̂(x)

= P̂gC
‖ (x) −

∑
μ

ε(x)hμ(x)
∫

d3xP̂gC
‖ (x′) · hμ(x)

= P̂gC
‖ (x) − ε(x)

[
P̂gC

‖ (x)

ε(x)

](ε)

⊥
. (D25)

These results fully recover previous findings on quantiza-
tion in the generalized Coulomb gauge [63–65,85], using a
constrained quantization approach. Note that the electric field
operator is, in the generalized Coulomb gauge,

ÊgC(x) = − 1

ε0ε(x)
[�̂(x) + P̂gC(x)]. (D26)

2. PZW transformation to generalized multipolar gauge

As in Sec. III we can transform from the generalized
Coulomb gauge Hamiltonian ĤgC to the generalized multi-
polar Hamiltonian Ĥgmp by the PZW operator:

Ĥgmp = Û †
PZWĤgCÛPZW, (D27)

and the unitary operator takes the same form as the usual PZW
transformation:

ÛPZW = exp

[
i

h̄

∫
d3xÂ(x) · ẐA(x)

]
. (D28)
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Note we have used the variable ZA(x) = ∑
α qα r̂α

∫ 1
0 dsδ(x −

sr̂α ) from the main text to represent a quantity usually referred
to as the polarization in this context, rather than P, to avoid
confusion with the gauge-dependent polarization defined in
the main text and previous subsection, which is used in the
canonical transformation from �̂A to �̂.

Using the commutation relation (D15), we can find the
transformation of the canonical momentum coordinate for the
field as

Û †
PZW�̂(x)ÛPZW = �̂(x) +

∫
d3x′ẐA(x′) · Q(x′, x). (D29)

Note that the second term in Eq. (D29) is not the general-
ized transverse component of the polarization ẐA; rather, the
second term, when integrated against a vector function f (x),
is an integral over the dot product of ẐA and the generalized
transverse component of f (x).

Applying the PZW transformation to the Hamiltonian term
involving �̂, we thus obtain

Û †
PZW

∫
d3x

�̂2

2ε0ε(x)
ÛPZW

=
∫

d3x
�̂2

2ε0ε(x)
+
∫

d3x
�̂ · ẐA

ε0ε(x)
+
∫

d3x
(ẐA − P̂gC)2

2ε0ε(x)
.

(D30)

To arrive at the second term in Eq. (D30), we have used the
fact that �̂/ε(x) is already generalized transverse. For the
third term, we first note that we can use the identity

ε(x′)Qji(x′, x) = ε(x)Qi j (x, x′) (D31)

to write it as

∫
d3x

ε(x)

2ε0

⎧⎨
⎩
[

ẐA(x)

ε(x)

](ε)

⊥

⎫⎬
⎭

2

. (D32)

Then we use the decomposition ẐA = ẐA,⊥ + ẐA,‖, and sub-
sequently,[

ẐA(x)

ε(x)

](ε)

⊥
= ẐA,⊥(x)

ε(x)
+
[

ẐA,‖(x)

ε(x)

](ε)

⊥
. (D33)

Finally, we use Eq. (D25), and note that ẐA,‖ = P̂gC
‖ . The

entire generalized multipolar gauge Hamiltonian is then, ne-
glecting the magnetic terms as in the main text,

Ĥgmp =
∑

α

p̂2
α

2mα

+ ĤF +
∫

d3x
�̂ · ẐA

ε0ε(x)
+
∫

d3x
Ẑ2

A

2ε0ε(x)
,

(D34)
again in agreement with Refs. [63–65].

The electric field operator in the generalized multipolar
gauge is, using Eqs. (D26) and (D29),

Êgmp(x) = ÊgC(x) −
∫

d3x
ẐA(x′) · Q(x′, x)

ε0ε(x)

= ÊgC(x) −
[

ẐA(x)

ε0ε(x)

](ε)

⊥

= ÊgC(x) − 1

ε0ε(x)
[ẐA,⊥(x) − P̂gC

⊥ (x)]

= [ÊF(x)]⊥ − ẐA(x)

ε0ε(x)
, (D35)

where in the second line we have used Eqs. (D11) and (D31),
in the third line we have used Eqs. (D25) and (D33), and in the
final line we have used defined [ÊF(x)]⊥ = −�̂(x)/[ε0ε(x)]
as the part of the transverse electric field operator that can be
expanded in terms of bosonic operators, and Eq. (D26).

3. Material and mode truncation

In this subsection, we show how to introduce material and
mode truncation in a manner which preserves gauge invari-
ance. The procedure is essentially the same as in Sec. IV,
but considering only two gauges (generalized Coulomb and
generalized multipolar).

First, note that we can write the generalized Coulomb
gauge Hamiltonian in the following form:

ĤgC = ĤF + ÛPZWĤ0Û
†
PZW, (D36)

where Ĥ0 = ∑
α

p̂2
α

2mα
+ V̂Coul, and again we have neglected the

magnetic terms. From this form, it is easy to see that we can
write the generalized multipolar Hamiltonian as

Ĥgmp = Û †
PZWĤFÛPZW + Ĥ0. (D37)

As in Sec. IV B, we can introduce gauge-invariant interac-
tions within the truncated material space by assuming Ĥ0 to be
represented by a discrete energy basis of a few material eigen-
states, found in the absence of coupling with the medium. We
then truncate the material particle position degrees of freedom
in the operator ÛPZW to obtain the correct materially trun-
cated Hamiltonian in either gauge. Note that this procedure,
as pointed out in Ref. [65], neglects the influence of local
variations in ε(x) on the energy structure of the truncated
material system. Assuming a material system of molecular
or atomic scales, this variation can sometimes reduce the
free-space Coulomb interaction between material particles by
approximately a factor of 1/ε(x0), at the location of the sys-
tem of particles x0, but a full treatment of this requires a model
of dispersion, and is beyond the scope of this formalism [65].
We can partially circumvent this problem by instead assuming
the truncated Ĥ0 to consist of the medium-modified energy
levels, and focus on the interactions with the transverse field
�̂.

To truncate the mode expansion, we can use the mode
truncation operator defined in Eq. (62); this is equivalent
to letting the sum in the field expansions (D16) run over a
finite number of modes, as well as in ĤF = ∑

μ h̄ωμâ†
μâμ.

As with material truncation, we should apply this directly to
the unitary operators which generate the minimal coupling
Hamiltonian.

Applying both material and mode truncation, then we find

ÛPZW → ˆ̃UPZW, such that

ˆ̃UPZW = exp

[
i

h̄

∫
d3xÂ(x) · ẐA(x)

]
. (D38)
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Thus, we find the correctly truncated generalized Coulomb
gauge Hamiltonian:

ˆ̃HgC = ĤF + ˆ̃UPZWĤ0
ˆ̃U†

PZW, (D39)

and the correctly truncated multipolar gauge Hamiltonian

ˆ̃Hgmp = ˆ̃U†
PZWĤgC

ˆ̃UPZW = ˆ̃U†
PZWĤF

ˆ̃UPZW + Ĥ0, (D40)

and, explicitly

ˆ̃U†
PZWĤF

ˆ̃UPZW = ĤF −
∫

d3x[ÊF(x)]⊥ · ẐA(x)

+
∑

μ

[
∫

d3xẐA(x)·hμ(x)]2

2ε0
, (D41)

where [ÊF(x)]⊥ = P̂M[ÊF(x)]⊥P̂M. The difference with naive,
direct mode truncation of the total Hamiltonian is in the third
term (the polarization-squared term), as is clear from compar-
ison with Eq. (D34).
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