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We study quantum dynamics of many-qubit systems strongly coupled to a quantized electromagnetic cavity
field in the presence of decoherence and dissipation for both quantum emitters and cavity photons, taking into
account the varying coupling strength of different qubits to the cavity field and the spread of their transition
frequencies. Compact analytic solutions for time-dependent quantum state amplitudes and observables are
derived for a broad class of open quantum systems in Lindblad approximation with the use of the stochastic
Schrödinger equation approach. We show that depending on the initial quantum state preparation, an ensemble of
qubits can evolve into a rich variety of many-qubit entangled states with destructive or constructive interference
between the qubits. In particular, when only a small fraction of qubits are initially excited, the dissipation in a
cavity will inevitably drive the system into robust dark states that are completely decoupled from the cavity and
live much longer than the decay time of the cavity field. We also determine the conditions under which coherent
coupling to the quantized cavity field overcomes the dephasing caused by a spread of transition frequencies in
multiqubit systems and leads to the formation of a decoupled dark state.
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I. INTRODUCTION

Solid-state cavity quantum electrodynamics (QED) at-
tracted much interest as a promising platform for quantum
information and quantum sensing systems (see, e.g., [1–5] for
recent reviews). A typical scenario involves an ensemble of
quantum emitters (ideally, two-level systems) such as quan-
tum dots, defects in crystals, or molecules, strongly coupled to
a quantized electromagnetic (EM) field in a dielectric or plas-
monic nanocavity. We will call these quantum emitters qubits
for brevity, although the logical qubits forming the gates may
involve many two-level systems as well as photonic or mixed
degrees of freedom. Several or many qubits are required for
most applications. Although direct near-field coupling among
qubits is possible and desired for some gating protocols, in
the nanophotonics context such coupling would require de-
terministic placement of qubits with sub-nm accuracy, which
is challenging. A simpler scenario which still permits various
ways of quantum state manipulation is the one in which the
qubits are coupled only through the common cavity field. This
is the situation considered in this paper.

The problem of N qubits strongly coupled to a quantized
cavity mode has been considered many times, starting from
the seminal Tavis-Cummings paper [6]. Inherent in most of
these studies is the assumption of identical qubits coupled
to the field with identical coupling strengths. This makes the
system invariant to permutations and allows one to drastically
reduce the number of degrees of freedom and related compu-
tational effort; see, e.g., the recent work [7] (and references
therein) where an efficient numerical solver was proposed to
solve the N-qubit master equation in the Lindblad approxi-

mation. In the solid-state nanocavity context, the cavity field
is strongly nonuniform, especially in plasmonic nanocavi-
ties where it varies on a nanometer scale. This makes the
qubit-cavity coupling strength strongly variable from qubit to
qubit. Moreover, for many popular quantum emitters, such
as quantum dots, optically active point defects, excitons in
semiconductor nanostructures, etc., the spread of transition
frequencies exceeds homogeneous linewidth, making inho-
mogeneous broadening the dominant source of dephasing.
Any of these factors break permutation symmetry and in-
crease the complexity of the problem, making it difficult to
solve even numerically for large N . As a result, the problems
with dissimilar quantum emitters are usually analyzed for few
qubits, and even then numerical treatment of the Lindblad
master equation is required, e.g., [8–10].

Here we are able to drastically simplify the analysis and
obtain analytic or semianalytic solutions for quantum dy-
namics of N strongly coupled dissimilar qubits or multilevel
fermionic systems in the presence of decoherence and dissi-
pation for both quantum emitters and cavity photons. This
progress is made possible by applying a modified version
of the stochastic Schrödinger equation (SSE) formalism. The
idea of adding Langevin noise to the Schrödinger equation is
nothing new (see, e.g., [11–17]). This approach is typically
used for numerical Monte Carlo simulations. We recently
developed a version of SSE suitable for analytic solutions of
open strongly coupled cavity QED problems [18,19] and, as
we show here, it is quite useful in analysis of nonuniform
and inhomogeneously broadened many-qubit systems. In this
paper we focus on the dissipation-driven formation of highly
entangled dark states that are decoupled from the cavity field.
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The ability to generate and control such states is a problem of
great practical importance for the rapidly developing field of
plasmonic nanocavity QED, where the dissipation of a cavity
mode is much faster than the relaxation in quantum emit-
ters [20–25]. The dissipation-driven formation of entangled
bright and dark states in ensembles of quantum emitters has
been studied extensively in the context of the Dicke model
of superradiance [26,27]; see, for example, [28–34] and ref-
erences therein. The typical bad-cavity or no-cavity regime
of Dicke superradiance is in a sense opposite to the regime
of strong-coupling dynamics, although extended samples can
still demonstrate complex oscillatory quasichaotic propaga-
tion effects [35,36].

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian and general classification of quantum states
for N two-level qubits strongly coupled to a quantized cav-
ity mode, including the spread of transition frequencies and
coupling strengths. In Sec. III we add the effects of dissipa-
tion, dephasing, and noise to the model using the stochastic
equation of evolution, which we introduced in more detail
elsewhere [18,19]. In Sec. IV we obtain analytic solutions of
the equations formulated in Sec. III and provide numerical
examples illustrating dissipation-driven formation of entan-
gled dark states decoupled from the cavity field as well as
the corresponding emission spectra. In Sec. V we generalize
the analysis of Sec. IV to include a large spread of transi-
tion frequencies of the qubits and band-to-band transitions in
multilevel electron systems. In Sec. VI we further generalize
the analysis of the same model to provide the classification
of bright and dark states for arbitrary M-photon excitations
in dissipative strongly coupled N-qubit systems and illustrate
this formalism with analytic results and numerical examples
for small values of M and N . Appendix A derives some useful
analytic formulas for the spatial field distribution in the prac-
tically important case of a nanocavity formed by a metallic
nanotip or a nanoparticle over a metallic substrate, which has
been used in a variety of recent experiments. Appendix B
derives approximate analytic results for quantum dynamics of
inhomogeneously broadened ensembles of qubits.

Since most results in this paper are in the analytic form
and the plots are normalized, here, we list typical values of
the parameters in experimental solid-state nanophotonic sys-
tems which determine the strength of light-matter coupling
and relaxation rates. Strong-coupling cavity QED experi-
ments with molecular quantum emitters typically employ
fluorescent organic dye molecules. The dipole moments of
electronic transitions for a single molecule vary from several
D [20] to 10–20 D [37,38]. J-aggregates of 10’s or 100’s of
molecules were used to achieve strong and even ultrastrong
coupling regime [38–40]. Molecular vibrational transitions
have typical dipole moments in the ∼0.1–2 D range [41]. Vi-
brational strong coupling in the midinfrared has been achieved
for molecular ensembles [42]. Semiconductor quantum dots
(QDs) make another popular choice of a quantum emitter in
strong-coupling experiments. Early demonstrations of strong
coupling to a single QD involved an epitaxial III-V QD with
a large interband dipole moment of ∼30 D in a dielectric
microcavity at low temperature [43,44]. More recent strong-
coupling experiments with a single quantum emitter at room
temperature utilized colloidal QDs [45] with lower dipole

moments ∼ 5–10 D but placed in a plasmonic nanocavity
[5,23–25,46,47].

The relaxation times in quantum emitters are strongly de-
pendent on temperature, cavity geometry, and material quality.
At low temperatures, the linewidth of an electronic transition
in molecules in diffraction-limited microcavities reaches the
natural width limited by radiative transitions, 20–40 MHz
[37,48]. For an epitaxial QD in a solid matrix the linewidth
is in 10’s of GHz [43]. For colloidal QDs at room tem-
perature the total linewidth reaches 10’s of meV [24,25,45].
The radiative lifetimes are from a few to a few 10’s of ns,
both for QDs [24,43,45,49] and for electronic transitions in
molecules [37,50]. Furthermore, when the qubits are placed in
a plasmonic nanocavity, the decay time of their excited state is
shortened due to coupling to nonradiative plasmon modes and
Ohmic dissipation of the optical near field of quantum emitters
in the metal [5,49,51], while still remaining much longer than
the photon lifetime in plasmonic nanocavities which is in 10’s
of fs [52].

Photon decay times are longest for dielectric microcavities:
photonic crystal cavities, nanopillars, Fabry-Perot cavities,
distributed Bragg reflector mirrors, etc. Their quality fac-
tors are typically between 103–107, corresponding to photon
lifetimes from sub-ns to µs. However, the field localization
in the dielectric cavities is diffraction limited, which limits
the attainable single-qubit vacuum Rabi frequency values to
hundreds of µeV. Therefore, the strong-coupling regime for a
single or few quantum emitters is possible only at low tem-
peratures. Interestingly, even in these experiments the cavity
decay rate is faster than the decoherence of quantum emitters,
although not by orders of magnitude (see, e.g., [37,43,44,48]).
In plasmonic nanocavites based on metallic nanoparticles,
nanotips, or nanogaps, single-emitter Rabi splitting on the
order of 100–300 meV has been observed [20–25], enabling
room-temperature strong coupling.

II. N QUBITS IN A NONUNIFORM
NANOCAVITY FIELD: THE MODEL

Our formalism is applicable to any open cavity-QED sys-
tem with a few or many qubits located in a nonuniform
cavity field. The results are particularly important for metal-
lic nanocavities with strong field nonuniformity on the nm
scale and ultrashort photon lifetimes. Therefore, we will have
in mind a plasmonic nanocavity formed, e.g., by a nanotip
or nanoparticle over a metallic substrate [23,25,51,52] as
sketched in Fig. 1(a) or a graphene nanostructure support-
ing surface plasmon-polariton modes as in Fig. 1(b) (e.g.,
[53,54]).

We begin by introducing the Hamiltonian and defin-
ing the variables for N two-level systems with states |0 j〉
and |1 j〉, where j = 1, . . . , N , with energy levels 0 and
Wj . We introduce the operators of annihilation and creation
of an excited state, |1 j〉, σ̂ j = |0 j〉〈1 j |, and σ̂

†
j = |1 j〉〈0 j |,

which satisfy standard (anti)commutation relations within
each qubit: σ̂ j

†|0 j〉 = |1 j〉, σ̂ j |1 j〉 = |0 j〉, σ̂ j σ̂ j = σ̂ j
†σ̂ j

† = 0;
σ̂ j σ̂ j

† + σ̂ j
†σ̂ j = 1. Then one can define the dipole moment

operator d̂ = ∑N
j=1(djσ̂

†
j + d∗

j σ̂ j ), where dj = 〈1 j |d̂|0 j〉, and

the Hamiltonian for all qubits Ĥa = ∑N
j=1 Wj σ̂

†
j σ̂ j . The
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FIG. 1. An ensemble of quantum emitters (e.g., quantum dots or
molecules) in a nanocavity consisting of (a) a metallic nanoparticle
or nanotip of the scanning probe above a metallic substrate, or (b) a
graphene nanopatch supporting a surface plasmon-polariton mode.

N-qubit system interacts with a single-mode field Ê =
E(r)ĉ + E∗(r)ĉ†, where ĉ and ĉ† are standard annihilation and
creation operators for bosonic Fock states. The function E(r)
is the spatial structure of the electric field in a cavity. It is
normalized as in [55]∫

V

∂[ω2ε(ω, r)]

ω∂ω
E∗(r)E(r)d3r = 4π h̄ω (1)

to preserve the standard form of the field Hamiltonian Ĥem =
h̄ω(ĉ†ĉ + 1

2 ). Here V is a quantization volume and ε(ω, r) is
the dielectric function of a dispersive medium that fills the
cavity. The relation between the modal frequency ω and the
function E(r) can be found by solving the classical electrody-
namics boundary-value problem corresponding to the cavity
in question.

The total Hamiltonian after adding the electric-dipole inter-
action with the field within the rotating-wave approximation
(RWA) is

Ĥ = h̄ω

(
ĉ†ĉ + 1

2

)
+

N∑
j=1

Wj σ̂
†
j σ̂ j−h̄

N∑
j=1

(�R j σ̂
†
j ĉ + H.c.),

(2)
where �R j = dj·E(rj )

h̄ is the Rabi frequency for the jth qubit
located at the position rj in the cavity. Note that this model
includes a spread of the transition energies of the qubits Wj ,
and the variation of the cavity EM field depending on the
position of each qubit, which is essential for any nanocavity.
Therefore, the model loses permutation symmetry which was

used to drastically simplify the analysis in [6,7]. Nevertheless,
as we show below, a significant reduction in the dimensional-
ity of the problem is possible in our case too.

Hereafter, we will use the Hamiltonian in the interaction
picture:

Ĥint = −h̄
N∑

j=1

(�R j σ̂
†
j ĉei� j t + H.c.), (3)

where � j = Wj

h̄ − ω. For an arbitrary quantum state of the N-
qubit system coupled to a cavity mode, the state vector can be
expanded over all possible combinations of subsystems as

	 =
∞∑

n=0

N∑
p=0

Cp
N∑

αp=1

Cnpαp |n〉|p, αp〉, (4)

where |n〉 is a Fock state of the boson (EM) field, |p, αp〉
is a qubit state, and Cnpαp are the complex amplitudes to be
determined. Here, the index αp denotes different subsets of p
elements out of a set of j = 1, 2, . . . , N , which correspond
to the excitation of p qubits out of N . The total number of
such subsets is determined by the binomial coefficient C p

N =
N!

p!(N−p)! . The state |p, αp〉 can be written as

|p, αp〉 =
⎛
⎝∏

jp∈αp

|σ̂ †
jp
〉
⎞
⎠|0qub〉,

where jp ∈ αp are qubit numbers belonging to the subset
marked by index αp and

|0qub〉 =
N∏

j=1

|0 j〉 = |0, α0〉. (5)

As a reminder, when the coefficients Cnpαp are calculated
using the Hamiltonian (3), then the operators used to calculate
the observables should be transformed in the same way the
Hamiltonian (2) was transformed into the interaction picture,

Eq. (3), namely, σ̂ j → σ̂ je−i
Wj
h̄ t and ĉ → ĉe−iωt .

Similar to the case of identical qubits and identical field
strength at the location of each qubit [6], the Schrödinger
equation with the Hamiltonian (3) leads to a set of linear
equations for the probability amplitudes Cnpαp which can be
split into independent blocks corresponding to the condition

n + p = M = const. (6)

The dimension of the Hilbert space within each inde-
pendent block is

∑min[M,N]
p=0 C p

N ; for M � N it is equal to∑N
p=0 C

p
N = 2N . Further reduction of the dimensionality of

the problem would require identical values of the Wj and
�R j in which case all states including initial conditions have
exact permutation symmetry and one could sum over all states
corresponding to various combinations αp made of p excited
atoms (see [7] and the discussion in Sec. VI).

As we discuss in Sec. VI, in the presence of dissipation
and noise, the noise source terms couple the groups with dif-
ferent values of M. However, in the strong-coupling regime,
such noise-induced coupling scales as a small ratio of dis-
sipation rates to the Rabi frequency and therefore can be
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included perturbatively. A similar perturbative approach has
been developed for nonlinear strong coupling of electron-
photon-phonon systems [56]. In practice, the generation of
nonclassical multiphoton number states is still a tremendous
experimental challenge. Therefore, in Secs. III–V we choose
initial conditions corresponding to single-photon excitation
energies. Single-photon sources of quantum light are readily
available and can be used for initialization of both single-
and many-qubit states with a single-photon excitation energy.
These are widely used in quantum information applications,
including, for example, Bell states and their generalizations
to many-qubit systems (see, e.g., [57,58]). With single-photon
excitations as initial conditions, the states that can be reached
as a result of evolution of the system include the ground
state |0〉�N

j=1|0 j〉 and the states with energies close to the
single-photon energy:

	 = C00|0〉�N
j=1|0 j〉 + C10|1〉�N

j=1|0 j〉

+
N∑

j=1

C0 j |0〉|1 j〉�N
m 	= j |0m〉, (7)

where the time-dependent complex amplitudes C00, C10, and
C0 j fully characterize a given quantum state and are to be
determined from the analysis below. We postpone the anal-
ysis of arbitrary multiphoton excitations with fully quantized
multiphoton states until Sec. VI.

III. DESCRIPTION OF DISSIPATION AND NOISE USING
STOCHASTIC EQUATIONS OF EVOLUTION

A standard way to include the effects of dissipation is
based on the master equation for the density matrix ρ̂ of the
system [59]

d

dt
ρ̂ = − i

h̄
[Ĥ , ρ̂] + L̂(ρ̂), (8)

where L̂(ρ̂) is the relaxation operator. If there are S states
in a given basis |α〉, Eq. (8) corresponds to 1

2 S(S + 1) equa-
tions for the matrix elements ραβ = ρ∗

βα . The number of
equations that need to be solved can be reduced to S via the
method of the stochastic equation of evolution for the state
vector [11–19]. This becomes possible if the structure of the
relaxation operator permits representing the right-hand side of
Eq. (8) in the form

− i

h̄
[Ĥ , ρ̂] + L̂(ρ̂ ) = − i

h̄
(Ĥeffρ̂ − ρ̂Ĥ†

eff ) + δL̂(ρ̂), (9)

where Ĥeff = Ĥ + Ĥ (ah) is an effective non-Hermitian
Hamiltonian.

Within the Markovian models of relaxation, the stochastic
equation for the state vector takes the form

d

dt
|	〉 = − i

h̄
Ĥeff|	〉 − i

h̄
|R〉. (10)

In Eq. (10) the vector |R〉 is a stochastic Langevin source with
the following statistical properties:

|R〉 = 0, Rα (t ′)R∗
β

(t ′′) = h̄2δ(t ′ − t ′′)Dαβ,

Dαβ = 〈α|δL̂(ρ̂)|β〉ρ̂�⇒|	〉〈	|; (11)

the overbar (. . . ) means averaging over the noise statistics,
Rα = 〈α|R〉. The dyadics CαC∗

β in Eqs. (10) and (11) where
Cα = 〈α|	〉 correspond to the density matrix elements ραβ in
the master equation (see the proof in [18]).

The observables in the method of the stochastic equa-
tion are determined by g = 〈	|ĝ|	〉, where ĝ is an operator
corresponding to the physical quantity g. This definition dif-
fers from a standard one by an additional averaging over
the noise statistics. The choice of operators Ĥ (ah) and cor-
relators Dαβ should ensure the conservation of the norm of
the stochastic vector 〈	|	〉 = 1 and bring the system to a
physically reasonable steady state in the absence of external
perturbation.

Another widely used method to include the effects of
dissipation in quantum optics is the Heisenberg-Langevin ap-
proach [60,61]. However, when applied to the dynamics of
strongly coupled systems, the Heisenberg equations become
nonlinear (see, e.g., [60]), whereas the stochastic equation for
the state vector, Eq. (10), is always linear, which is an impor-
tant advantage of this method.

The representation of the type shown in Eq. (9) is possible,
in particular, for the Lindblad relaxation operator. Here we
will use the Lindbladian L̂(ρ̂) in the case of independent
dissipative reservoirs for the field and qubits and at zero
temperature:

L(ρ̂) = −� j

[
γ j

2
(σ̂ †

j σ̂ j ρ̂ + ρ̂σ̂
†
j σ̂ j − 2σ̂ j ρ̂σ̂

†
j )

]

− μ

2
(ĉ†ĉρ̂ + ρ̂ĉ†ĉ − 2ĉρ̂ĉ†), (12)

which gives

Ĥeff = Ĥ − ih̄
1

2

⎛
⎝∑

j

γ j σ̂
†
j σ̂ j + μĉ†ĉ

⎞
⎠,

δL̂(ρ̂ ) =
∑

j

γ j σ̂ j ρ̂σ̂
†
j + μĉρ̂ĉ†. (13)

Here the relaxation constants μ and γi are determined by the
cavity Q factor and inelastic relaxation of the qubits, respec-
tively. The Q factor is determined by adding up diffraction
and Ohmic losses in a cavity, e.g., [62,63]. Elastic relaxation
processes (pure dephasing) are included later in this section.
The case of arbitrary temperatures is considered in [18]. Note
that for a qubit with the transition in the visible or near-IR
range, even a room-temperature reservoir is effectively at zero
temperature.

Introducing state vectors 	 of the type given in Eq. (7), we
obtain a set of stochastic equations for the amplitudes,

Ċ00 + γ00C00 = − i

h̄
R00, (14)

Ċ10 + γ10C10 − i
N∑

j=1

�∗
R jC0 je

−i� j t = − i

h̄
R10, (15)

Ċ0 j − γ0 jC0 j − i�R jC10ei� j t = − i

h̄
R0 j, (16)
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where the relaxation constants are related to the EM field and
qubit relaxation constants in the Lindbladian (12) by

γ00 = 0, γ10 = μ

2
, γ0 j = γ j

2
. (17)

The noise properties are given by

R∗
αn(t ′)Rβm(t ′′) = h̄2δαβδnmDαn,αnδ(t ′ − t ′′), (18)

D00,00 =
N∑

j=1

γ j

∣∣C0 j

∣∣2 + μ|C10|2, D10,10 = 0, D0 j,0 j = 0.

(19)

To include elastic relaxation (pure dephasing) in the Lind-
bladian (12) we need to add the term [64]

L(el)(ρ̂) = −� j

[
γ

(el)
j

2
(σ̂z j σ̂

†
z j ρ̂ + ρ̂σ̂z j σ̂

†
z j − 2σ̂

†
z j ρ̂σ̂z j )

]
,

where σ̂z j = σ̂
†
z j = |1 j〉〈1 j | − |0 j〉〈0 j | and γ

(el)
j is an elastic

relaxation constant. Recent analysis [18,19] shows that for
two-level qubits the elastic processes can be included by mak-
ing the following replacements in the expressions for γ0 j and
D0 j,0 j : γ0 j �⇒ γ0 j + γ

(el)
j , D0 j,0 j �⇒ D0 j,0 j + 2γ

(el)
j |C0 j |2.

These relationships lead to standard relaxation timescales
of populations T1 j = 1

γ j
and coherence T2 j = 1

1
2T1 j

+γ
(el )
j

[64].

Therefore, including pure dephasing processes leads to cor-
rections in the last of Eqs. (17) and the last of Eqs. (19),
namely,

γ0 j = γ j

2
+ γ

(el)
j , D0 j,0 j = 2γ

(el)
j |C0 j |2. (20)

Taking into account Eqs. (20), it is easy to show that for
any set of elastic scattering rates Eqs. (14)–(16) conserve the
norm:

N∑
j=1

∣∣C0 j

∣∣2 + |C10|2 + |C00|2 = 1; (21)

and Eqs. (15) and (16) preserve the following relationship
which includes only the rates of inelastic relaxation:

d

dt

⎛
⎝ N∑

j=1

∣∣C0 j

∣∣2 + |C10|2
⎞
⎠ = −

N∑
j=1

γ j |C0 j |2 − μ|C10|2. (22)

If pure dephasing processes can be neglected and the reser-
voir temperature is much lower than the optical transition
frequency (in energy units), we always have D0 j,0 j=D10,10=0,
which, together with R10 = R0 j = 0, allows one to neglect
the contribution of noise sources R10 and R0 j when calculat-
ing observables (see [18,19]). In this case, Eqs. (14)–(16) can
be considered an improved version of the Weisskopf-Wigner
approximation because they not only include dissipation as
imaginary parts of eigenenergies, but also conserve the norm
of the state vector [see Eq. (21)].

IV. QUANTUM DYNAMICS AND EMISSION SPECTRUM
OF AN ENSEMBLE OF QUBITS WITH EQUAL

TRANSITION FREQUENCIES

A. Analytic solution for quantum dynamics in a nonuniform
cavity field

Here we consider a low-Q plasmonic cavity with a field
decay time much shorter than dissipation times in qubits
T(1,2) j . In this case the dissipation is dominated by the field
decay, and we can set γ0 j ≈ 0 in Eqs. (14)–(16). Furthermore,
considering the low-temperature limit (as compared to the op-
tical frequency) we can set γ00 = D0 j,0 j = D10,10 = 0, which,
together with R10 = R0 j = 0, allows one to neglect the effect
of noise terms R10 and R0 j [18,19]. Of course, the resulting
solutions will be valid at the intermediate timescales shorter
than the qubit relaxation times. The solution including qubit
relaxation is equally straightforward to obtain, but it is more
cumbersome.

The resulting coupled equations for the probability ampli-
tudes C10 and C0 j read as

Ċ10 + μ

2
C10 − i

N∑
j=1

�∗
R jC0 je

−i� j t = 0, (23)

Ċ0 j − i�R jC10ei� j t = 0, (24)

whereas the solution for the amplitude of the ground state is

C00(t ) = C00(t = 0) − i

h̄

∫ t

0
R00dt, (25)

so that C00(t ) − C00(t = 0) = 0. The value of C2
00(t ) can be

also determined directly from the conservation law (21), but
we will need Eq. (25) when calculating the emission spectrum
below.

These equations can be immediately solved for an ensem-
ble of qubits with the same transition frequencies but with
different Rabi frequencies since they are located in a nonuni-
form field of a nanocavity. The case of different transition
frequencies is considered in the next section. We can set
� j = 0 in Eqs. (23) and (24) and introduce the new variable

F =
N∑

j=1

�∗
R jC0 j, (26)

which yields

Ċ10 + μ

2
C10 − iF = 0, (27)

Ḟ − i�2
NC10 = 0, (28)

where

�2
N =

N∑
j=1

|�R j |2 (29)

is a collective Rabi frequency. The initial conditions C10(0) =
F (0) = 0 give a trivial steady-state solution, and there are an
infinite number of states corresponding to F = 0.

Seeking the solution ∝ e�t gives(
C10

F

)
= e− μ

4 t

[
Aei�t

(
1

K1

)
+ Be−i�t

(
1

K2

)]
, (30)
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where

K1,2 = ±� − i
μ

4
, � =

√
�2

N − μ2

16
(31)

and the constants A and B are given by the initial conditions

A = K2C10(0) − F (0)

K2 − K1
, B = F (0) − K1C10(0)

K2 − K1
,

and

F (0) =
N∑

j=1

�∗
R jC0 j (0).

Similarly, from Eq. (24) when � j = 0 we obtain

C0 j (t ) = C0 j (0) + i�R j

∫ t

0
C10(t ′)dt ′. (32)

Using the solution for C10 which follows from Eq. (30),

C10(t ) =
[
C10(0)

(
cos �t − μ

4�
sin �t

)

+ i
F (0)

�
sin �t

]
e− μ

4 t , (33)

we arrive at

C0 j (∞) = C0 j (0) − �R j
F (0)

�2
N

. (34)

Note that Eq. (34) is valid for any μ.
At long times one always has C10(∞) = F (∞) = 0.

Therefore, for the initial state satisfying the condition

C0 j (0)

C0i(0)
= �R j

�Ri
, (35)

all energy stored initially in the qubit system is radiated away
over a short cavity decay time ∼1/μ. Such a state is the
generalization of the bright Dicke state (see, e.g., [7,58]) to an
ensemble of quantum emitters strongly coupled to a spatially
nonuniform field of a plasmonic cavity.

Consider an arbitrary initial state:

|	(0)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C00(0)
C10(0)
C01(0)

. . .

C0 j (0)
. . .

C0N (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C00(0)
0
0
. . .

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
C10(0)
C01(0)

. . .

C0 j (0)
. . .

C0N (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

We are interested in the subset of equations for variables C10

and C0 j that end up being separated from the ground state.
Since the system is linear, we can split the last column on the
right-hand side of Eq. (36) into two components:⎛
⎜⎜⎜⎜⎜⎜⎝

C10(0)
C01(0)

. . .

C0 j (0)
. . .

C0N (0)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
C01(0) − �R1

F (0)
�2

N

. . .

C0 j (0) − �R j
F (0)
�2

N

. . .

C0N (0) − �RN
F (0)
�2

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C10(0)
�R1

F (0)
�2

N

. . .

�R j
F (0)
�2

N

. . .

�RN
F (0)
�2

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

It is easy to see that the first column on the right-hand side of
Eq. (37) corresponds to a stationary (dark) state with C10 =
F = 0. The second column gives rise to the bright state found
before. As a result, we obtain

C10(∞) = 0, C0 j (∞) = C0 j (0) − �R j

∑N
m=1 �∗

RmC0m(0)∑N
j=1 |�R j |2

.

(38)

Then from Eq. (21) the amplitude of the ground state is
given by

|C00(∞)|2 = 1 −
N∑

j=1

∣∣∣∣∣C0 j (0) − �R j

∑N
m=1 �∗

RmC0m(0)∑N
j=1 |�R j |2

∣∣∣∣∣
2

.

(39)

It is clear from Eqs. (38) and (39) that if the number J of
initially excited qubits is much smaller than the total number
of qubits, J � N , then the change of the initial quantum state
of the qubit ensemble is of the order of J/N . Therefore, an en-
semble of ground-state qubits effectively shields an arbitrary
initial state of a relatively small group of excited qubits from
coupling to the cavity field. The shielding is due to formation
of an entangled dark state in which the destructive interference
leads to decoupling of the many-body state from the cavity
field, even though each qubit remains strongly coupled to the
quantum field of a cavity.

The following numerical example in Fig. 2 illustrates
the formation of an entangled dark state in an ensemble
of qubits in a nonuniform field of a nanocavity. To have
an explicit analytic expression for the nanocavity field dis-
tribution we use the model described in Appendix A: a
metallic sphere over a metallic substrate, where the metallic
sphere can represent a nanoparticle or an apex of a nanotip
as in recent strong-coupling experiments [20,22,23,25,47].
For a strongly subwavelength field localization the quasi-
electrostatic approximation is valid and one can solve the
electrostatic boundary-value problem for a given geometry.
As we discuss in Appendix A, this restricts the spectral range
to near-infrared or longer wavelengths, in order to stay away
from the interband transition region and plasmon resonances.
Rigorous modeling of plasmonic nanocavities is outside the
scope of this paper; we just need an example of a spatial field
distribution. There is an extensive literature on theoretical and
numerical approaches to describe lossy and leaky plasmonic
cavity modes (see, e.g., a recent review [52] or [65]). For our
example, we take the sphere of radius R = 10 nm with its
center located on z axis at z0 = 1.2R above the substrate. We
will use the line-charge approximation (A21) for the electric
field of a cavity mode, which is an excellent approximation
to the exact formula, as one can see from the middle plot in
Fig. 12. Let us take N = 21 qubits distributed uniformly on
the substrate at distances from ρ = 0 to 10 nm from the z
axis. The inset shows the top view of one possible realization
of this distribution. The angular positions of the qubits in the
substrate plane are randomly generated and do not affect the
results because the cavity field has an axial symmetry. As a
reminder, we neglect any direct coupling between the qubits
due to, e.g., their dipole-dipole interactions.
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FIG. 2. Time evolution of the populations for an ensemble of
N = 21 qubits in the nanocavity formed by the metallic sphere of
radius R = 10 nm with its center located on z axis at z0 = 12 nm
above the substrate; see Appendix A for the field distribution. The
molecules are assumed to be distributed uniformly within a circle
of radius 10 nm on the substrate, with the center of the circle at
the cavity axis ρ = 0. The inset shows the top view of one possible
realization of this distribution, with random angular positions in the
substrate plane. The effective cavity volume is 50 nm3, the transition
dipole moment is 10 Debye, the Rabi frequency at ρ = 0 is 120 meV,
and the cavity decay time is 1/μ = 20 fs. Top blue curve: the sum of
the occupation probabilities of all qubits

∑N
j=1 |C0 j |2 when only the

qubit in the center of the cavity is excited, i.e., C01(0) = 1. Middle red
curve: the occupation |C01(t )|2 of the initially excited qubit. Bottom
orange curve: the sum of all occupation probabilities when the qubits
were initially prepared in the bright state (35).

First, we consider an arbitrary initial state which is neither
bright nor dark. Let us assume for definiteness that only one
qubit located at the maximum field ρ = 0 is initially excited,
i.e., its initial probability amplitude C01(t = 0) = 1, whereas
all other qubits are in the ground state. The subsequent exci-
tation of this qubit as described by |C01(t )|2 is shown as the
middle red curve in Fig. 2, whereas the sum of populations
of all qubits is the top blue curve. As is obvious from the
picture, after the bright-state component of the initial state
is radiated away over a short time of a few 1/μ, the system
remains in an entangled dark state which is decoupled from
the cavity mode and has a lifetime determined by relaxation
constants of the qubits. This can also be verified by calculating
F (t ) from Eq. (26) which approaches zero over the same
timescale. Only a few percent (∼1/N) of the total excitation
energy are radiated away. This result remains qualitatively the
same when we vary the distribution of the initial excitation;
only the fraction of the radiated energy changes. The dynam-
ics changes if the system was initially prepared exactly in
the bright state described by Eq. (35). In this case, all initial
excitation is radiated away over the time of the order of a few
1/μ. The bottom (orange) curve in Fig. 2 shows the behavior
of the sum of all qubit populations when the system starts from
the bright state.

If the cavity size is increased by, e.g., increasing the value
of R, the collective Rabi frequency �N decreases as V −1/2,
where V is the cavity volume. According to in Eqs. (30) and
(31), this will increase the period of oscillations of popula-

tions in Fig. 2, but the fraction of the excitation energy left
in the dark state will remain the same. Moreover, the dark
state will survive even if �N becomes smaller than the cavity
decay rate μ/4, as long as �N remains greater than

√
γ0 jμ/2,

where γ0 j is the relaxation rate for the qubits defined in the
previous section and assumed to be the same for all qubits
here. However, this robustness of the dark state only exists for
identical qubits. As we will see in Sec. V, for an ensemble
of qubits with a large spread of transition frequencies �m, the
reduction of the collective Rabi frequency below �m destroys
the dark state. Furthermore, as we discuss in Sec. VI, for mul-
tiphoton excitations reducing the collective Rabi frequency
below the cavity decay rate activates noise terms which couple
eigenstates with different excitation energies and effectively
accelerate the relaxation in the qubit ensemble. Therefore,
the strong-coupling condition in which �N is larger than all
relaxation rates in the system is essential for the dark-state
formation in most cases.

B. Emission spectrum

Detecting the radiation from quantum emitters placed in
nanocavities is one of the most straightforward ways to study
their quantum dynamics [2,20,23,25,60,66]. The power spec-
trum received by the detector can be calculated as [60,66]

P(ν) = AS(ν),

where

S(ν) = 1

π
Re
∫ ∞

0
dτ eiντ

∫ ∞

0
dt K (t, τ ), (40)

K = 〈	(0)|ĉ†(t )ĉ(t + τ )|	(0)〉; (41)

ĉ†(t ) and ĉ(t ) are Heisenberg creation and annihilation opera-
tors for the cavity field, 	(0) is an initial state of the system.
The coefficient A is determined by the cavity design, spatial
structure of the cavity field, and detector properties.

These equations indicate that to calculate the power
spectrum one has to solve the Heisenberg-Langevin equa-
tions for the operators ĉ(t ) and ĉ†(t ) [60] and evaluate
the correlator including averaging over the noise statistics,
K ⇒ 〈	(0)|ĉ†(t )ĉ(t + τ )|	(0)〉. However, the Heisenberg-
Langevin equations are nonlinear in the strong-coupling Rabi
oscillations regime for a single-photon field. Therefore, it is
more convenient to utilize the solution of the linear stochastic
equation (10) for the state vector. The corresponding proce-
dure is described in [56] where we prove that the correlator
K (t, τ ) can be calculated as

K (t, τ ) = 〈 �(t, τ ) |	C (t + τ )〉. (42)

Here 	C (t + τ ) = ĉ	(t + τ ), where 	(t + τ ) is the solution
to the stochastic Schrödinger equation (10) on the time in-
terval [0, t + τ ] with initial condition |	(0)〉; �(t, τ ) is the
solution to Eq. (10) on the time interval [t, t + τ ] with initial
condition 	C (t ), and 	C (t ) = ĉ	(t ), where 	(t ) is also the
solution to Eq. (10) but over the time interval [0, t]. The
overbar in Eq. (42) denotes averaging over the statistics of
noise sources, which according to the Langevin approach is
equivalent to averaging over the reservoir degrees of free-
dom [67].
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Now we apply this formalism to calculate the emission
spectrum of an excited qubit in an ensemble of ground-state
qubits. Since we just want to illustrate how the formation of an
entangled dark state suppresses the emission from the cavity,
we can simplify algebra and consider identical Rabi frequen-
cies: �R j = �R, �2

N = N�2
R. If needed, a more cumbersome

analytic solution for the spectrum can also be readily obtained
for an arbitrary distribution of Rabi frequencies using the state
vector derived in the previous subsection.

As before, we will solve for the evolution over the interme-
diate timescales when only the field dissipation has to be taken
into account. Consider an initial state in which only one qubit
is excited, |	(0)〉 = |0〉|11〉�N

m=2|0m〉. As usual, we seek the
solution of the stochastic equation for the state vector in the
form of Eq. (7). From Eqs. (7) and (10) one can get

	C (t ) = ĉ	(t ) = C10(t )|0〉�N
j=1|0 j〉. (43)

According to the above procedure, we need to find the
solution of Eqs. (23)–(25) with initial condition (43) at the
time interval [t, t + τ ]. One can see that Eqs. (23) and (24)
have a trivial zero solution, whereas Eq. (25) yields

�(t, τ ) =
[
C10(t )− i

h̄
e−i ω

2 τ

∫ τ

0
R00(t+t ′)dt ′

]
|0〉�N

j=1|0 j〉.

(44)

Substituting Eqs. (43) and (44) into Eq. (42) and taking into
account that the term linear with respect to the noise source
gives zero upon averaging, we obtain

K (t, τ ) = C∗
10(t )C10(t + τ ). (45)

Using Eq. (30) for the function C10(t ) we get

K (t, τ ) = |�R|2
�2

e− μ

4 τ e− μ

2 t sin (�t ) sin [�(t + τ )]. (46)

The resulting power spectrum in Eq. (40) is given by

S(ν) = 8|�R|2
πμ(μ2 + 16�2)

Re
μ − 2iν(

μ

4 − iν
)2 + �2

.

Taking into account the fact that we solved the problem in
the interaction picture, the measured spectrum is obtained by
replacing ν ⇒ ν − ω. Using also Eq. (31), we obtain

S(ν) = 1

2π

|�R|2[
(ν−ω)2 − (

N |�R|2 − μ2

8

)]2+μ2

4

(
N |�R|2 − μ2

16

) .
(47)

Under the condition μ � 2|�R|√N the spectrum is
simplified:

S(ν) = 1

2π

|�R|2
((ν − ω)2 − N |�R|2)2 + μ2

4 N |�R|2
,

i.e., the spectrum consists of two well-resolved lines shifted
with respect to ω by ±|�R|√N , with the maximum value
Smax(±|�R|√N ) = 1

π
2

Nμ2 and linewidth ∼μ

2 . The dependence

Smax ∝ 1
N reflects the destructive interference effect described

above: the probability of the photon emission by a qubit scales
as Prad ≈ 1

N .

FIG. 3. Normalized emission spectra given by Eq. (47) for three
values of N and the cavity decay rate μ/2 = �R. The height of the
peaks scales as 1/N .

This behavior is illustrated in Fig. 3 which shows the
emission spectra given by Eq. (47) for three different qubit
numbers N and the cavity decay rate μ/2 = �R. The most in-
teresting result here is not the splitting of the spectrum which
is an obvious consequence of strong coupling, but the fact that
the peak intensity (the height of the peaks) gets suppressed
with increasing N as 1/N . This behavior is robust and does
not depend on the details of initial excitation as long as the
number of initially excited qubits is much smaller than N ; see
the discussion after Eqs. (38) and (39).

As we already pointed out, the dissipation-driven transi-
tion of a system into a dark state is not surprising by itself
and has been studied before for various systems; see, e.g.,
the formation of subradiant states in the Dicke superradiance
problem [34] or quantum dots in a plasmonic cavity [9,10]. It
is nontrivial, however, that in our case of a strongly coupled
N-qubit system, the amount of energy loss from the system
before it goes into the dark state approaches zero as 1/N
due to destructive interference from unexcited qubits. It is
also convenient that we have a complete analytic solution
describing the effect.

V. MANY-QUBIT SYSTEMS WITH DIFFERENT
TRANSITION FREQUENCIES

In this section we consider an ensemble of qubits with
a large spread of transition frequencies interacting with a
spatially nonuniform cavity mode. This is usually the case for
quantum dots where the inhomogeneous broadening is related
to the dispersion of the dot sizes. We will assume that the
inhomogeneous broadening dominates:

μ

4�m
� 1, (48)

where �m is the half-width of the inhomogeneous broadening.
We will show below that under strong-coupling conditions
the inhomogeneous broadening leads to long-period pulsa-
tions of individual qubit populations but does not prevent the
formation of a collective dark state decoupled from the cavity
mode, as long as the collective Rabi frequency �N in Eq. (29)
remains larger than �m.
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It follows from Eq. (24) that

C0 j = C0 j (0) + i�R j

∫ t

0
C10(τ )ei� jτ dτ, (49)

which can be substituted into Eq. (23) to obtain

Ċ10 + μ

2
C10 = i

N∑
j=1

�∗
R jC0 j (0)e−i� j t

−
∫ t

0

N∑
j=1

|�R j |2C10(τ )ei� j (τ−t )dτ. (50)

Now we introduce the Laplace transform

Cp =
∫ ∞

0
C10(t )e−pt dt, C10(t ) = 1

2π i

∫ x+i∞

x−i∞
Cpept d p.

Since the functions
∑N

j=1 �∗
R jC0 j (0)e−i� j t and∑N

j=1 |�R j |2e−i� j t do not grow as t → ∞, we can assume
Re[p] > 0 and therefore x > 0. Laplace transforming Eq. (50)
gives

pCp − C10(0) + μ

2
Cp = iFp − CpDp, (51)

where

Fp =
∫ ∞

0

⎛
⎝ N∑

j=1

�∗
R jC0 j (0)e−(i� j+p)t

⎞
⎠dt =

N∑
j=1

�∗
R jC0 j (0)

i� j + p
,

Dp =
∫ ∞

0

N∑
j=1

|�R j |2e−(i� j+p)t dt =
N∑

j=1

|�R j |2
i� j + p

.

Solving Eq. (51) gives

C10(t ) = 1

2π i

∫ x+i∞

x−i∞

C10(0) +∑N
j=1

�∗
R jC0 j (0)
i� j+p

p + μ

2 +∑N
j=1

|�R j |2
i� j+p

ept d p. (52)

The functions C0 j (t ) are determined by substituting Eq. (52)
into (49).

The behavior of the function C10(t ) is determined by zeros
of the denominator of the integrand in Eq. (52):

C10(t ) →
∑

k

Akep0kt ,

where p0k are the solutions of equation

(
p + μ

2

)
�N

j (i� j + p) +
N∑

j=1

|�R j |2�N
k 	= j (i�k + p) = 0.

(53)
Equation (53) determines a set of N + 1 normal modes
for the system of Eqs. (23) and (24) after the replacement
C0 j (t )e−i� j t → C0 j (t ) which eliminates explicit time depen-
dence. The Laplace transform is especially convenient in the
limit of a continuous spectrum (see Appendix B). The dynam-
ics of the populations of individual qubits should include the
beat notes with characteristic periods T ∼ πN

�m
. At the same

time, as long as the collective Rabi frequency �N remains
greater than the inhomogeneous linewidth, strong coupling
still leads to the formation of a collective dark state in which

FIG. 4. Time evolution of the populations for an ensemble of
N = 41 qubits with transition frequencies distributed pseudoran-
domly in the range ±�m = 50 meV around resonance with a cavity
mode. The cavity decay, Rabi frequency distribution, geometry, and
spatial distribution are the same as for the example in Fig. 2. Top
blue curve: the sum of the occupation probabilities of all qubits∑N

j=1 |C0 j |2 when only one qubit in the center of the cavity is excited
initially, i.e., C01(0) = 1. Bottom red curve: the occupation |C01(t )|2
of the initially excited qubit.

only a small fraction ∼1/N of the initial excitation energy
is radiated away whereas the sum of all qubit populations
remains approximately constant and close to its initial value.

We illustrate this dynamics by solving numerically the set
of Eqs. (23) and (24) for particular values of the parameters.
One example is shown in Figs. 4 and 5. Here we consider
N = 41 qubits with transition frequencies distributed pseudo-
randomly in the range ±�m = 50 meV around resonance with
a cavity mode, which corresponds to typical spread of fre-
quencies of semiconductor quantum dots. The geometry and
spatial distribution are the same as for the example in Fig. 2.
The cavity decay time is again 20 fs, i.e., μ = 33 meV and the
Rabi frequency in the center of the cavity is 120 meV. As is
clear from the figures, over a very short initial time of the order

FIG. 5. Excitation probability of the cavity mode |C10(t )|2 for
the same conditions as in Fig. 4. Inset: same for a short initial
time interval, showing initial relaxation of the cavity field and Rabi
oscillations.
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FIG. 6. Time evolution of the sum of the occupation probabilities
of N = 41 qubits

∑N
j=1 |C0 j |2 with transition frequencies distributed

pseudorandomly in the range ±�m = 90 meV around resonance
with a cavity mode. The cavity decay time, Rabi frequency distri-
bution, geometry, and spatial distribution are the same as for the
example in Fig. 2. Only one qubit in the center of the cavity is
initially excited, i.e., C01(0) = 1. Three curves correspond to three
different collective Rabi frequencies �N . Top orange curve: �N =
540 meV, middle red curve: �N = 270 meV, bottom blue curve:
�N = 27 meV.

of several 1/μ a small ∼1/N fraction of the initial excitation
energy is radiated away and the entangled dark state is estab-
lished. After that, individual qubit populations undergo slow
quasichaotic oscillations, as expected from a system of cou-
pled oscillators with incommensurate frequencies, whereas
the sum of all populations remains almost constant except for
a very slow decay with characteristic timescale of > 104 1/μ.
This decay is due to a small residual coupling to a cavity
mode: as one can see from the long-time dynamics in Fig. 5,
the cavity mode maintains quasichaotic oscillations at a very
low level of ∼10−4. Eventually, the relaxation of individual
qubits which we neglected here will kick in, typically over
ps timescales at room temperatures and ns to µs scale at low
temperatures.

The initial stage of relaxation to the dark state (μt � 20)
is modulated by fast Rabi oscillations that are not even visible
in Fig. 4 but can be seen in the inset of Fig. 5. The subsequent
slow beat-note oscillations of individual qubit populations
vary from qubit to qubit and between different random real-
izations of the distribution of transition frequencies, but the
qualitative picture remains the same. The beat-note oscilla-
tions become strictly periodic when the transition frequencies
are separated by the same frequency interval, but this would
be an unrealistic situation.

If the collective Rabi frequency �N becomes smaller than
�m, for example because of an increase in the cavity vol-
ume, the decay of the sum of the occupation probabilities
of all qubits

∑N
j=1 |C0 j |2 accelerates. This is illustrated in

Fig. 6 which shows the evolution of the sum of populations
for three values of the Rabi frequency at the cavity center:
�R(0) = 120 meV (top curve), 60 meV (middle curve), and
6 meV (bottom curve, which correspond the values of the
collective Rabi frequency �N = 540, 270, and 27 meV, re-
spectively. There is an obvious shortening of the decay time

when �N becomes much smaller than the total spread of
transition frequencies determined by 2�m = 180 meV. With
increasing spectral density of qubits, the periods of beat notes
increase, eventually leading to a continuous spectrum of in-
homogeneous broadening, where further analytic insights can
be obtained, especially for the photon mode dynamics which
is not significantly affected by beat-note oscillations. Some
limiting cases are described in Appendix B.

Multilevel electron systems

Here we consider a multilevel quantum-confined elec-
tron system such as electron states in a quantum well or
a transition-metal-dichalcogenide (TMD) monolayer, or per-
haps in a quantum wire or a multilevel quantum dot. Note that
quantum well structures are usually placed in planar cavities
where only one dimension is subwavelength. Furthermore,
all epitaxially grown semiconductor nanostructures cannot be
squeezed into a nanometer gap and have to be integrated
into a larger-size cavity, for example, a dielectric microcavity
[2,43,44,68–72]. At the same time, plasmonic nanostructures
and tip-induced nanocavities have been increasingly used
to achieve a strong-coupling regime, especially with TMD
monolayer semiconductors [73–75].

Optical transitions in such systems occur generally be-
tween two groups of electron energy states, for example,
between electron states in the conduction band and valence
band. Let us take zero energy in the middle between these
two groups and denote positive energies in the conduction
band as Wj (latin indices) and negative energies in the valence
band as −Wα (greek indices). The frequencies of the optical
transitions are

ω jα = Wj + Wα

h̄
. (54)

We do not consider here the intraband optical transitions
within each group, e.g., α ⇐⇒ β or m ⇐⇒ n, although the
formalism below can be easily extended to include them. The
RWA Hamiltonian is

Ĥ = h̄ω

(
ĉ†ĉ + 1

2

)
+

J∑
j=1

Wjâ
†
j â j −

A∑
α=1

Wα â†
α âα

− h̄
J∑

j=1

A∑
α=1

[(�R; jα â†
j âα ĉ + �∗

R; jα â†
α â j ĉ

†)], (55)

where �R; jα = dα j ·E
h̄ .

It is again convenient to work in the interaction picture
where

Ĥ = −h̄
J∑

j=1

A∑
α=1

�R; jα â†
j âα ĉei� jαt + H.c., (56)

where � jα = ω jα − ω. Note that the electric-dipole-
forbidden transitions are eliminated by values d jα = 0.

Instead of the excitation and deexcitation operators for a
qubit that are specific to a two-level system, σ̂ †and σ̂ , it is eas-
ier to introduce standard creation and annihilation operators of
the fermion states. Therefore, the states that were denoted as
|0 jα〉 and |1 jα〉 when using the operators σ̂ † and σ̂ become
|0 j〉|1α〉 and |1 j〉|0α〉 when using standard fermion operators.

013721-10



DISSIPATION-DRIVEN FORMATION OF ENTANGLED … PHYSICAL REVIEW A 107, 013721 (2023)

We consider again lowest-energy states corresponding to zero-
or single-photon excitations:

	 = C00|0〉�J
j=1|0 j〉�A

α=1|1α〉 + C10|1〉�J
j=1|0 j〉�A

α=1|1α〉

+
N,A∑
j,α

C0 jα|0〉|1 j〉|0α〉�J
m 	= j |0m〉�A

β 	=α|1β〉. (57)

Equations for the probability amplitudes C10 and C0 jα within
the stochastic Schrödinger equation formalism become

Ċ10 + μ

2
C10 − i

J∑
j=1

A∑
α=1

�∗
R; jαC0 jαe−i� jαt = 0, (58)

Ċ0 jα − i�R; jαC10ei� jαt = 0. (59)

If spin states are degenerate, pairs { j, α} corresponding to
different spin states { j↓, α↓} and { j↑, α↑} have to be taken into
account separately in Eqs. (58) and (59).

To proceed, we assign the number s = 1, . . . , J × A to
each pair { j, α} and therefore reduce the problem to the one
already solved in this section. The most interesting result, in
our opinion, is still the formation of a long-lived entangled
dark state decoupled from the cavity field when the collective
Rabi frequency (

∑J
j=1

∑A
α=1 |�R; jα|2)1/2 exceeds the width

of the inhomogeneous broadening |� jα|max.

VI. NONCLASSICAL MULTIPHOTON STATES
IN DISSIPATIVE STRONGLY COUPLED SYSTEMS

Many of the results obtained in previous sections for
single-photon excitations, in particular the formation of dark
entangled qubit states decoupled from the cavity field, can be
generalized to arbitrary multiphoton excitations which corre-
spond to N � M and M > 1 in Eqs. (4) and (6). To avoid
cumbersome algebra, consider an example of equal Rabi fre-
quencies and exact resonance, when one can set �R j = �R

and � j = 0 in the Hamiltonian (3). This is not a critical
assumption and it can be avoided at the expense of more com-
plicated final expressions. Within the stochastic equation for
the state vector, any group of probability amplitudes with a
fixed value of M = n + p is described by the following system
of equations:

(
d

dt
+ γnpαp

)
Cnpαp − i

⎛
⎝�R

√
n + 1

p∑
αp−1

C(n+1)(p−1)αp−1

+�∗
R

√
n

N−p∑
αp+1

C(n−1)(p+1)αp+1

⎞
⎠ = Rnpαp (t ), (60)

where

Rnpαp (t )R∗
n′ p′α′

p
(t ′) = h̄2δ(t − t ′)Dnpαp;n′ p′α′

p
. (61)

The lower index in the sums shows the type of a subset and
the upper index shows the number of elements in the sum.
Equation (60) implies that the subsets αp−1 and αp+1 are
related to subset αp through

|p, αp〉 = σ̂
†
jp−1

|p − 1, αp−1〉, |p, αp〉 = σ̂ jp+1 |p + 1, αp+1〉,
(62)

where each pair αp, αp−1 or αp, αp+1 corresponds to a certain
value of the qubit index: jp−1 or jp+1. Each subset αp cor-
responds to a certain finite number of subsets αp−1 or αp+1

which contribute to the summation in Eq. (60).
In the general case the presence of noise source terms

Rnpαp couples the groups with different values of M. However,
in the strong-coupling regime such a noise-induced coupling
scales as a small parameter

γnpαp

�R
� 1 and therefore can be

included perturbatively. A similar perturbative approach has
been developed for nonlinear strong coupling of electron-
photon-phonon systems [56].

Furthermore, for high enough photon frequencies h̄ω � T ,
one can assume zero temperature of dissipative reservoirs. At
optical frequencies this is true even at room temperature. In
this case the method of determining relaxation rates γnpαp and
correlators Dnpαp;n′ p′α′

p
is described in Sec. III. Assuming in

addition that field dissipation is dominant in a nanocavity, we
obtain

γnpαp = n
μ

2
, (63)

Dnpαp;n′ p′α′
p

= 〈n|〈p, αp|δL̂(ρ̂)ρ̂=|	〉〈	||p′, α′
p〉|n′〉

= μδpp′δαpα′
p

√
(n + 1)(n′ + 1) × C(n+1)pαpC

∗
(n′+1)p′α′

p
,

(64)

where the operator δL̂(ρ̂) is determined by the last term in
Eq. (13). It follows from Eq. (64) that nonzero autocorre-
lators of noise terms inside the group with a fixed value
of M = n + p are determined by averages of the amplitudes
C(n+1)pαpC

∗
(n+1)pαp

from the group with M ⇒ M + 1:

Dnpαp;npαp = μ(n + 1)C(n+1)pαpC
∗
(n+1)pαp

;

whereas, nonzero cross correlators coupling the groups with
different M = n + p and M ′ = n′ + p′ are determined by the
amplitudes C(n+1)pαpC

∗
(n′+1)pαp

from the groups with M ⇒
M + 1 and M ′ ⇒ M ′ + 1:

Dnpαp;n′ pαp = μ
√

(n + 1)(n′ + 1)C(n+1)pαpC
∗
(n′+1)pαp

.

Therefore, for low-temperature reservoirs the coupling be-
tween blocks with different M exists only in the downward
direction. The maximum value of M is determined by the
initial energy of the system; thermal excitations above initial
M are impossible. Within the group corresponding to maxi-
mum M all correlators Rnpαp (t )R∗

n′ p′α′
p
(t ′) are equal to zero

and therefore one can neglect the noise terms in Eq. (60) for
this group as they do not affect the observables. The noise
terms in lower-M groups affect how the deexcitation proceeds
across all possible relaxation channels (as, e.g., in [56]). At
the same time the relaxation rate of the states in the highest-M
group is determined only by the values of γnpαp = n μ

2 .
These properties allow us to obtain intuitive analytic results

describing quantum dissipative multiqubit dynamics at low
reservoir temperature. For example, consider the states in the
highest-M group where we can set Rnpαp = 0 in Eq. (60) and
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take into account Eq. (63). This gives(
d

dt
+ n

μ

2

)
Cn(M−n)αM−n

− i

⎛
⎝�R

√
n + 1

M−n∑
αM−n−1

C(n+1)(M−n−1)αM−n−1

+�∗
R

√
n

N−M+n∑
αM−n+1

C(n−1)(M−n+1)αM−n+1

⎞
⎠ = 0, (65)

where n = 0, 1, . . . , M.
The main technical difficulty with solving Eqs. (65) is

related to the rules imposed by Eq. (62),which dictate how
each element of the subset αM−n is related to the elements
of subsets αM−n∓1 which enter the sums

∑M−n
αM−n−1

(. . . ) and∑N−M+n
αM−n+1

(. . . ), respectively. However, one avoids this compli-
cation when finding complex energy eigenvalues by summing
each of Eqs. (65) over all subsets αM−n. This results in the
following equations for the variables:

Fn =
CM−n

N∑
αM−n

Cn(M−n)αM−n :

(
d

dt
+ n

μ

2

)
Fn − i[�R

√
n + 1(N − M + n + 1)Fn+1

+ �∗
R

√
n(M − n + 1)Fn−1] = 0. (66)

For example, consider the case of M = 2. Seeking Fn ∝ e�t

we obtain⎛
⎝ � −i(N − 1)�R 0

−i2�∗
R � + μ

2 −i
√

2�R

0 −i
√

2�∗
R � + μ

⎞
⎠
⎛
⎝F0

F1

F2

⎞
⎠ = 0, (67)

which gives

�

(
� + μ

2

)
(� + μ) + 2N |�R|2� + 2(N − 1)|�R|2μ = 0.

(68)
When N � 1, Eq. (68) can be factorized:

(� + μ)
[
�
(
� + μ

2

)
+ 2N |�R|2

]
= 0,

which gives

�1,2 ≈ −μ

4
± i

(
2N |�R|2 − μ2

16

)1/2

, �3 ≈ −μ. (69)

It is easy to see that the roots �1,2 describe evolution of
coupled one-photon and zero-photon states,

	n=0,1 = 	n=0 + 	n=1 =
C2

N∑
α2

C02α2 |0〉|2, α2〉

+
C1

N∑
α1

C11α1 |1〉|1, α1〉,

whereas root �3 describes evolution of the two-photon state,

	n=2 = C20α0 |2〉|0, α0〉, where |0, α0〉 ≡ |0qub〉.

Therefore, for a large number of qubits the two-photon state
evolves independently of other states and decays with decay
rate μ. At the same time, one- and zero-photon states get
entangled while oscillating with collective Rabi frequency
≈(2N |�R|2 − μ2

16 )1/2 and decay with decay rate μ

4 .
As the next example, we consider an initial state in which

M qubits are excited whereas the cavity field is in the vacuum
state, i.e., 	 (0) = ∑CM

N
αM

C(0)
0MαM

|0〉|M, αM〉. The superscript (0)
denotes initial moment of time t = 0. An arbitrary initial state
is a superposition of bright and dark initial states. Let us
consider their evolution separately.

A. Dark states

These are uncoupled from the cavity field and therefore are
relatively long lived, especially in the nanocavity QED context
where the relaxation is dominated by the cavity field decay.
The dark states must satisfy the conditions

N−M+1∑
αM

C(0)
0MαM

= 0. (70)

Every element of the subset αM−1 in Eqs. (70) is related to the
elements of subset αM in the sum

∑N−M+1
αM

(. . . ) according
to the rules of Eqs. (62). It is easy to see that an initial-state
vector which satisfies the conditions C(0)

(n>0)(M−n)αM−n
= 0 and

Eqs. (70) remain constant with time, i.e., is a stationary solu-
tion of Eqs. (65). Equations (70) contain CM−1

N equations for
CM

N variables, i.e., the dark-state conditions can be satisfied
when CM

N > CM−1
N . This gives the condition for the existence

of dark states: not more than half of the qubits can be initially
excited,

N � 2M. (71)

The structure of a dark state can be visualized for a simple
example, when M = 2 and N = 4. In this case the initial-state
vector is given by

	 (0) = |0〉(C(0)
12 |1〉|1〉|0〉|0〉 + C(0)

13 |1〉|0〉|1〉|0〉
+ C(0)

14 |1〉|0〉|0〉|1〉 + C(0)
23 |0〉|1〉|1〉|0〉

+ C(0)
24 |0〉|1〉|0〉|1〉 + C(0)

34 |0〉|0〉|1〉|1〉), (72)

where the ket before the parentheses is the photon state. Equa-
tions (70) become

C(0)
12 + C(0)

13 + C(0)
14 = 0, C(0)

12 + C(0)
23 + C(0)

24 = 0,

C(0)
13 + C(0)

23 + C(0)
34 = 0, C(0)

14 + C(0)
24 + C(0)

34 = 0,

which gives the dark state as

C(0)
12 = C(0)

34 = A, C(0)
13 = C(0)

24 = B, C(0)
14 = C(0)

23 = C, (73)

and

A + B + C = 0. (74)

Note that the dark states at any moment of time correspond to
the trivial solution of Eqs. (66): Fn = 0 for any n. Therefore,
they cannot be analyzed with Eqs. (66).
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FIG. 7. An example of time evolution of populations for the M = 2, N = 4 state (76), when the two qubits are excited initially, namely,
C12 = 1 and all other coefficients are zero. The Rabi frequency �R is 100 meV and cavity decay time 1/μ = 20 fs. Left panel: occupation
probability of the two-photon state |C0(t )|2; middle panel: same for |C12(t )|2 and |C34(t )|2; right panel: same for |C13(t )|2. The dynamics of
other |Ci j (t )|2 probabilities looks similar to that of |C13(t )|2.

B. Bright states

Obviously, one of the bright states is a completely symmet-
ric state:

C(0)
0MαM

= const = 1√
CM

N

. (75)

In this case due to symmetry we have Cn(M−n)αM−n = Fn

CM−n
N

at

any moment of time. Such states are typical for the systems
possessing permutational symmetry [7]. Then, from Eqs. (66)
we obtain that there is only one stationary state Fn = 0 for any
n, which means that the energy of the state satisfying Eq. (75)
will be radiated away completely.

The state given by Eq. (75) is not the only bright state.
Consider again the case of M = 2 and N = 4 for illustration.
In this case the state vector at an arbitrary moment of time has
the structure

	 = |0〉(C12|1〉|1〉|0〉|0〉 + C13|1〉|0〉|1〉|0〉 + C14|1〉|0〉|0〉|1〉
+C23|0〉|1〉|1〉|0〉 + C24|0〉|1〉|0〉|1〉 + C34|0〉|0〉|1〉|1〉)

+ |1〉(C1|1〉|0〉|0〉|0〉 + C2|0〉|1〉|0〉|0〉
+C3|0〉|0〉|1〉|0〉 + C4|0〉|0〉|0〉|1〉) + |2〉C0|0〉|0〉|0〉|0〉.

(76)

Consider the following initial state: C(0)
14 = −C(0)

23 	= 0,
C(0)

i j 	=14,23 = 0, C(0)
1,2,3,4 = 0, C(0)

0 = 0. One can show that in

this case at any moment of time C14 = −C23, C(0)
i j 	=14,23 = 0,

C1 = C4 = −C2 = −C3, C0 = 0. As a result, Eqs. (65) yield
the following equations:

d

dt
C14 − 2i�RC1 = 0,

(
d

dt
+ μ

2

)
C1 − i�∗

RC14 = 0,

which describe decaying Rabi oscillations at frequency
≈(2|�R|2 − μ2

16 )1/2 resulting in a complete radiative energy
loss with amplitude decay rate μ

4 . Formally, these expressions
for the decay rate and Rabi frequency obtained using Eqs. (65)
are similar to those obtained from Eqs. (66). However, it is
easy to see that the above solution corresponds to the trivial
solution of Eqs. (66), i.e., Fn = 0 for all n, and therefore it
cannot be derived from Eqs. (66).

Since the system is linear, an antisymmetric initial state of
a more general form

C(0)
12 = −C(0)

34 , C(0)
13 = −C(0)

24 , C(0)
14 = −C(0)

23

is also bright. It is easy to see that any initial state of the type
(72) can always be split into two bright states (symmetric and
antisymmetric one) and one dark state. For example, suppose
that we initially excited one pair of qubits with probability
of 1, i.e., 	 (0) = |0〉|1〉|1〉|0〉|0〉, where as always the first ket
describes the photon state. This state can be represented as a
sum of a symmetric bright state

	
(s)
bright = 1

6 |0〉(|1〉|1〉|0〉|0〉 + |1〉|0〉|1〉|0〉 + |1〉|0〉|0〉|1〉
+ |0〉|1〉|1〉|0〉 + |0〉|1〉|0〉|1〉 + |0〉|0〉|1〉|1〉),

an asymmetric bright state

	
(as)
bright = 1

2 |0〉(|1〉|1〉|0〉|0〉 − |0〉|0〉|1〉|1〉),

and a dark state

	dark = 1
6 |0〉(2|1〉|1〉|0〉|0〉 − |1〉|0〉|1〉|0〉 − |1〉|0〉|0〉|1〉
−|0〉|1〉|1〉|0〉 − |0〉|1〉|0〉|1〉 + 2|0〉|0〉|1〉|1〉).

One can see that 1
3 of the original excitation energy goes to

the dark state and is preserved until the qubit decay kicks
in. The fraction of the preserved excitation increases if the
initial state is closer to the dark state. For example, an initial
state 	 (0) = 1√

2
|0〉(|1〉|1〉|0〉|0〉 + |0〉|0〉|1〉|1〉) is a sum of a

symmetric bright state

	
(as)
bright = 1

2
√

2
|0〉(|1〉|1〉|0〉|0〉 + |1〉|0〉|1〉|0〉 + |1〉|0〉|0〉|1〉

+ |0〉|1〉|1〉|0〉 + |0〉|1〉|0〉|1〉 + |0〉|0〉|1〉|1〉),

and a dark state

	dark = 1

2
√

2
|0〉(|1〉|1〉|0〉|0〉 − |1〉|0〉|1〉|0〉 − |1〉|0〉|0〉|1〉

− |0〉|1〉|1〉|0〉 − |0〉|1〉|0〉|1〉 + |0〉|0〉|1〉|1〉).

In this case, 1
2 of the original excitation energy goes into the

dark state.
Figures 7 and 8 illustrate this dynamics with a numeri-

cal example by solving Eqs. (65) with the rules imposed by
Eq. (62) for the initial state 	 (0) = |0〉|1〉|1〉|0〉|0〉 in which
two qubits are excited with unit probability and all other
coefficients are zero. This initial state is a mix of bright and
dark states. As is clear from Fig. 7 plotted for the M = 2,
N = 4 state given by Eq. (76), the bright-state part is radiated
away over the time of several 1/μ, after which all occupa-
tions containing one or two photons, namely, |Cj (t )|2 where
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FIG. 8. Sum of all occupation probabilities for the M=2, N=4
state (76) (dashed blue curve) and the M = 2, N = 6 state (solid
red curve) as a function of time, for the same initial conditions: two
qubits are excited, namely, C12 = 1 and all other coefficients are zero.

j = 0, 1, 2, 3, 4, approach zero whereas all two-qubit coeffi-
cients approach an entangled dark state decoupled from the
cavity mode, in which the sum of all qubit populations is equal
to 1

3 as predicted by our analytic theory; see the dashed blue
curve in Fig. 8.

With increasing total number of qubits N , the fraction of
the initial excitation which goes into the dark state increases
rapidly, as illustrated with the M = 2, N = 6 example in
Fig. 8; see the solid red curve. This behavior is qualitatively
similar to the case of single-photon excitations solved in the
main text. If the experiment has a complete control over qubit
excitations, one can switch between dark and bright states as
needed; however, even in the case of no control the fact that
a large or even dominant fraction of the initial excitation goes
into a long-lived dark state makes low-Q plasmonic nanocav-
ities more appealing for applications.

For large values of m and N the procedure of expanding an
initial state into bright and dark states is unlikely to be simpler
than direct solution of ordinary differential equations (65)
obtained within the SSE method. However, there is a class
of initial states for which this procedure is still the simplest.
Consider the subset of states which do not have any common
qubit and denote it as |M, α̃M〉. There are obviously L = N

M of
such states and we consider only the excitations where L is
integer. If only such states are excited initially and all initial
amplitudes are the same and equal to 1√

L
, such states keep

almost all their initial energy, especially for large N − M�1:
the amplitudes of states in |M, α̃M〉 approach 1√

L
N−M

N−M+1

whereas the amplitudes of all other states |M, αM〉 are excited
from zero to the level of 1√

L
1

N−M+1 .

VII. CONCLUSIONS

We found analytic solutions for the quantum dynamics of
many-qubit systems strongly coupled to a quantized electro-
magnetic cavity mode, in the presence of decoherence and
dissipation for both quantum emitters and cavity photons.
Analytic or semianalytic solutions are derived for a broad
class of open quantum systems including identical qubits, an

ensemble of qubits in a nonuniform nanocavity field with a
broad distribution of coupling strengths and transition fre-
quencies, and multilevel electron systems. The formalism is
based on the stochastic equation of evolution for the state vec-
tor, within Markov approximation for the relaxation processes
and rotating-wave approximation with respect to the optical
transition frequencies. Although the stochastic Schrödinger
equation is typically used for numerical Monte Carlo simula-
tions, our version of this approach turned out to be convenient
for the analytic theory.

We demonstrated in the analytic derivation that the
interaction of an ensemble of qubits with a single-mode spa-
tially nonuniform quantum field leads to entangled states of
practical importance, with destructive or constructive interfer-
ence between the qubits depending on the initial excitation.
In particular, if one or a small fraction of qubits were excited
initially whereas the field was in the vacuum state, the subse-
quent relaxation drives the whole ensemble of qubits into an
entangled dark state which is completely decoupled from the
leaky cavity mode, even though each qubit remains strongly
coupled to the field. It is nontrivial that only a small fraction
1/N of the initial excitation energy is lost before the system
goes into the dark state, where N is the number of qubits in
the ground state.

We found the conditions in which strong coupling over-
comes the spread of transition frequencies of an ensemble of
qubits or a multielectron system and leads to formation of
a decoupled many-qubit dark state with conserved total ex-
citation energy, despite quasichaotic oscillatory dynamics of
individual qubits. We also studied the interplay of bright and
dark states for multiphoton excitation energies and determined
the conditions for the formation of decoupled dark states.

A potentially important effect not included in this paper
is direct dipole-dipole coupling between neighboring qubits.
Dipole-dipole interactions can affect both the relaxation rates
of the qubits and the transition frequencies, which would
change the numerical values of these phenomenological pa-
rameters, without affecting the results. At the same time,
dipole-dipole coupling contributes an additional interaction
term in the Hamiltonian which affects the dynamics of en-
tangled dark states and could be potentially utilized for
manipulation of the quantum state and implementation of
logic gates. This is an interesting topic for future work.
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APPENDIX A: SPATIAL DISTRIBUTION
OF THE ELECTRIC FIELD IN A PLASMONIC

NANOCAVITY

In this Appendix, we derive a representative example of
the spatial distribution of the cavity field that we use in the
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FIG. 9. To-scale diagram of the first four image charges for z0 =
1.1 with all scales normalized to the radius of the sphere. Also shown
are z∞ ≡ limn→∞ zn and z∞ ≡ limn→∞ zn (we calculate these in the
text). No image charges are placed in the sphere below z∞ and none
are placed in the substrate above z∞. The axes are the z and ρ of a
cylindrical coordinate system.

numerical examples in this paper. We are interested in fields
oscillating at optical frequencies in a plasmonic nanocavity.
Consider for definiteness the nanocavity created by a metal-
lic sphere in (sub)nm vicinity to the metallic substrate, as
in strong-coupling experiments with gold nanoparticles or
in typical nanotip-based cavity QED experiments (see, e.g.,
[20,22,23,25,47,51]). One can approximate the tip apex as a
sphere, with the radius R and variable distance to the substrate.
In the above experiments, the tip apex radius was 10–20 nm
whereas the nanoparticle radius varied in broader limits 20–
50 nm.

All plasmonic nanocavities demonstrated so far are leaky,
i.e., the field emitted by the qubits is coupled to propagating
EM modes of various kinds. Nevertheless, the spatial distribu-
tion of the electric field confined in the region much smaller
than wavelength, for example in the near zone of the nanopar-
ticles or in the nanogap between the tip and the substrate,
can still be described in the quasielectrostatic approximation.
Within our approach based on phenomenological relaxation
rates, the losses due to coupling to radiating modes contribute
to the overall cavity loss rate μ. A detailed modeling of cavity
modes in lossy and leaky plasmonic nanocavities is outside
the scope of this paper.

We work in a cylindrical system of coordinates with the
origin on the plane and the cylindrical axis, the z axis, inter-
secting the center of a sphere at z = z0 > 0. The placement
of the coordinate system is illustrated in Fig. 9. We will

normalize all spatial scales to the radius of the sphere. Since
the sphere and the plane do not intersect, we have z0 > 1.
To find the spatial distribution of the nanocavity field, we
assume both the nanosphere and the substrate to be per-
fect conductors. We solve the problem using the method of
images, as suggested in [76]. Note that the method of im-
ages can be extended to materials with arbitrary complex
dielectric permittivities; for example, for a plane interface
between the materials with dielectric permittivities ε1 and ε2

the image charge gets multiplied by the factor ε1−ε2
ε1+ε2

[77],
which approaches the ideal conductor limit of −1 in the limit
of large |ε2| � 1, no matter whether it is the real or imaginary
part of the dielectric permittivity which has a large absolute
value. For an interface with a sphere the situation is more
complicated as it requires summation over an infinite number
of image charges, but again the corrective factor is an explicit
function of dielectric constants and approaches the ideal con-
ductor limit when the dielectric constant of a sphere |ε2| � 1
(see [78]). If we take gold as an example [79], at near-infrared
and longer wavelengths the Drude limit of |ε2| � 1 is valid.
For example, at the wavelength of 750 nm the dielectric con-
stant of bulk gold is ε2 � −20 + 1.2i [79]. We numerically
checked that for our geometry the resulting correction to the
field amplitude as compared to an ideal conductor is less
than 10% at near-infrared and longer wavelengths. At visible
and shorter wavelengths there will be a large deviation from
the Drude limit, especially in the interband transition region.
Furthermore, there will be plasmon resonances dependent on
the cavity geometry.

Our problem, then, is that of solving the Laplace equa-
tion with Dirichlet boundary conditions on a sphere and a
plane not intersecting the sphere. The geometry requires the
placement of an infinite number of point charges along the z
axis. Without loss of generality, we suppose the sphere to be
at some positive potential and the plane to be at a potential of
zero. Note that here we are interested only in the spatial field
distribution; the amplitude is determined by the normalization
condition (1) for the quantized field mode.

First, we place an image charge q0 at z0, the center of the
sphere; this raises the sphere to the desired nonzero potential.
But, q0 breaks the boundary condition for the plane; the plane
is distorted by q0 to some nonzero, nonuniform potential. To
restore the plane to ground, we place another image charge
q0 = −q0 at z0 = −z0 inside the half-space: this is the reflec-
tion of q0 in the plane. But now the boundary condition for the
sphere is not satisfied. Typically, when it is introduced in ele-
mentary texts on electricity and magnetism (e.g., [77,80,81]),
correcting the distortion on the plane by q0 (a plane and a point
charge) is the first problem solved via the method of images
and correcting the distortion on the sphere by q0 (a sphere and
a point charge) is the second. To cancel the effect of q0 on the
sphere, we place q1 at z1 such that (z0 − z1)(z0 − z0) = 1 and
q1/q0 = −[(z0 − z1)/(z0 − zn)]1/2. But now q1 distorts the
plane; so, we place q1 = −q1 at z1 = −z1, etc. The distortion
of the plane by each qn is canceled by qn, the reflection of qn

in the plane; the distortion of this qn on the sphere is canceled
by qn+1, the reflection of qn in the sphere. The first four image
charges are depicted in Fig. 9.

In the following section, we write a set of coupled differ-
ence equations (or recursion relations) for the image charges
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and their positions on the z axis; we solve these equations to
obtain closed-form expressions for qn and zn in terms of the
initial conditions q0 and z0; then, we write the field on the
metallic substrate, the location of the quantum emitters, as an
infinite series where each term is the contribution from qn and
its reflection in the plane qn.

1. Series solution via difference equations

We set q0 = 1 since the field amplitude is determined by
normalization as already stated. Then we have

qn = −qn, (A1)

zn = −zn, (A2)

(z0 − zn+1)(z0 − zn) = 1, (A3)

qn+1

qn
= −

(
z0 − zn+1

z0 − zn

)1/2

= − 1

z0 − zn
, (A4)

where the second line of Eq. (A4) follows from Eq. (A3) and
the fact that 1/(z0 − zn) > 0. Decoupled and with the qn’s and
zn’s eliminated, Eqs. (A1)–(A4) are

(z0 − zn+1)(z0 + zn) = 1, (A5)

1

qn
+ 1

qn+2
= 2z0

qn+1
. (A6)

Equation (A6) is solved in [76] but Eq. (A5) is not; we
present solutions to both equations. The solution we present
to Eq. (A6) is similar to the solution in [76].

Equation (A6) is a second-order, linear difference equa-
tion in 1/qn; furthermore, the zeroth (1/qn) and second
(1/qn+2) terms are both multiplied by the same coefficient,
namely, 1. The solutions to this kind of equation are nicely
expressed in terms of hyperbolic functions; this is due to the
following two identities for hyperbolic functions:

sinh ϑn + sinh ϑ (n + 2) = 2 cosh ϑ sinh ϑ (n + 1),

cosh ϑn + cosh ϑ (n + 2) = 2 cosh ϑ cosh ϑ (n + 1). (A7)

Since sinh and cosh are linearly independent, Eq. (A7) implies
that

1/qn = A sinh αn + B cosh αn, (A8)

where α defined by

cosh α = z0 (A9)

is the general solution to Eq. (A6). The constants A and B can
be determined from the given initial conditions q0 and z0. We
use Eq. (A4) to find that 1/q1 = 2z0 = 2 cosh α; thus, A and
B are determined by the system

1/q0 = 1 = A,

1/q1 = 2 cosh α = A cosh α + B sinh α. (A10)

Equation (A10) is solved by A = 1 and B = 1/ tanh α; so, the
image charges are given by

qn = sinh α

sinh α(n + 1)
. (A11)

In writing Eq. (A11), we have used the identity

sinh ϑ cosh ϕ + cosh ϑ sinh ϕ = sinh (ϑ + ϕ) (A12)

to simplify the expression obtained from substituting the val-
ues of A and B found from solving Eq. (A10) into Eq. (A8).

We have obtained a closed-form expression for qn; now,
we turn our attention toward doing the same for zn. While
Eq. (A5) is nonlinear, it is first order and rational; further-
more, it is of a form such that it can be reduced to a
linear second-order difference equation via a simple nonlinear
change of variable: this method is detailed in [82]. We rear-
range Eq. (A5) by solving for zn+1 and adding z0 = cosh α to
both sides:

zn+1 + cosh α = 2 cosh α − 1

zn + cosh α
. (A13)

We write Eq. (A13) in terms of the new variable ξn where the
ξn’s are defined by zn + cosh α = ξn+1/ξn; this leads to

ξn+2 + ξn = 2 cosh α ξn+1. (A14)

Equation (A14) is identical to Eq. (A6); so, Eq. (A14) is also
solved by Eq. (A8), which implies

zn + cosh α = cosh α(n + 1) + C sinh α(n + 1)

cosh αn + C sinh αn
. (A15)

Note that Eq. (A15) contains only one undetermined constant
while Eq. (A8), from which Eq. (A15) is derived, contains
two. This is due to the fact that Eq. (A15) is the general
solution to Eq. (A5), which is first order, while Eq. (A8) is
second order.

Applying the initial condition z0 = cosh α to Eq. (A15)
yields C = 1/ tanh α which leads to

zn = sinh α

tanh α(n + 1)
. (A16)

To obtain Eq. (A16), we have again used Eq. (A12) to
simplify.

Using the expressions obtained for qn and zn, we can write
the field E as an infinite series; but first, we consider the
asymptotic behaviors of qn and zn for large n. Since, for large
n, sinh α(n + 1) behaves like e|α|n, qn rapidly approaches 0.
On the other hand, zn rapidly approaches the constant | sinh α|
since tanh α(n + 1) rapidly approaches 1 if α > 0 or −1 if
α < 0. Denote

z∞ ≡ lim
n→∞ zn = |sinh α| = (

z2
0 − 1

)1/2
. (A17)

The last equality follows from the identity sinh arcoshx =
(x2 − 1)1/2 which holds for all x such that |x|>1. Since z∞=
(z2

0 − 1)1/2, z∞ > z0 − 1 (i.e., the point z = z∞ on the z axis
is inside the ball) follows from the triangle inequality (see
Fig. 10); so, all image charges are placed inside one of the
conductors (zn strictly decreases from z0 as n increases so
z0 � zn > z∞ for all n), as expected.
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FIG. 10. The existence of a triangle with sides of these lengths is
ensured by the Pythagorean theorem. The triangle inequality applied
to this triangle yields 1 + (z2

0 − 1)1/2 > z0; so, z∞ > z0 − 1. See
Eq. (A17).

We are interested in the field E in the z = 0 plane. In this
plane we have

E =
∞∑

n=0

[
qn(ρ − ẑzn)(
ρ2 + z2

n

)3/2 − qn(ρ + ẑzn)

(ρ2 + z2
n )3/2

]

= −2ẑ
∞∑

n=0

qnzn(
ρ2 + z2

n

)3/2 . (A18)

Since the field in the plane, as computed with Eq. (A18), is
purely in the z direction, we will from now on write the mag-
nitude of the field E = −Ez instead of the field E; also, since
we are going to normalize the field, we drop the prefactor of 2
on the second line of Eq. (A18). Substituting Eqs. (A11) and
(A16) into Eq. (A18), we arrive at

EN ≡ sinh2 α

N∑
n=1

cosh αn

sinh2 αn

[
ρ2 +

(
R sinh α

tanh αn

)2]−3/2

→ E as N → ∞. (A19)

For large n, the nth term in Eq. (A19) is proportional to e−|α|n;
the series converges rapidly, more rapidly for larger values of
|α|, that is, for larger values of z0 [cosh x is increasing on x ∈
(0,∞)]. Consider Fig. 11 which illustrates convergence of the
series for the case z0 = 1.1; EN does not change appreciably
between N = 20 and 104. Furthermore, for z0 � 2 it is enough
to have N = 3.

2. Two approximations

Equation (A19) is straightforward to use in numerical
simulation but is unwieldy for the analytic derivation of the
quantum dynamics in the main text. We consider two physi-
cally motivated approximations; we call one the point-charge
approximation and the other the line-charge approximation.

We define the point-charge approximation

E p
N ≡ QN ZN(

ρ2 + Z2
N

)3/2 , (A20)

where QN ≡ ∑N−1
0 qn and ZN ≡ (1/QN )

∑N−1
0 znqn. The

point-charge approximation is the field due to a real dipole
composed of QN at z = ZN and −QN at −ZN . By “real dipole”
we mean two point charges with charges of opposite sign but
equal magnitude separated by some finite distance. Unlike the
field due to a dipole vector located at the origin, the field of
this real dipole does not diverge for small as ρ → 0. QN is
just the total sum of charges. ZN is the average of the displace-
ments of the charges weighted according to the magnitude of

FIG. 11. EN plotted against ρ for z0 = 1.1 and various values
of N . EN is the field due to the first 2N image charges; it is the
first N terms in the series solution for the field [Eq. (A19)]. The
lines corresponding to E20 and E104 are indistinguishable. All fields
are normalized to the same scale defined by placing the unit charge
q0 = 1 in the middle of the sphere and normalizing all distances by
the radius of the sphere.

the charges, i.e., it is the position of the qn’s center of mass but
with charge instead of mass. The point-charge approximation
is the field due to the point charge which most closely resem-
bles the infinite series of image charges above the substrate
and that most-closely resembling charge’s reflection in the
plane.

The line-charge approximation is

El
N ≡ QN

z0 −
√

z2
0 − 1

⎛
⎜⎝ 1√

ρ2 + z2
0 − 1

− 1√
ρ2 + z2

0

⎞
⎟⎠,

(A21)

where QN is the same as in the point-charge approximation.
The line-charge approximation is the field due to a total charge
of QN distributed uniformly over the line between zn and
z∞ and the reflection of this object in the plane. We chose
a uniform charge distribution not because the discrete dis-
tribution of image charges is well approximated by uniform
continuous distribution (it is not), but because it is simple and
because it leads to an integrand with a nice antiderivative. The
line-charge approximation is the most straightforward way to
include the fact that the qn’s are extended in the z direction.

While the point-charge approximation is a single term, its
dependence on z0, through ZN and QN , is not expressed in
closed form. On the other hand, while the line-charge approx-
imation is two terms, its dependence on z0 is simpler; it still
contains QN but does not contain ZN . We will see that the
line-charge approximation is also more accurate for z0 ∼ 1
which is our main interest.

Figure 12 illustrates the accuracy of the point- and line-
charge approximations at three values of z0. We evaluate the
accuracy of the approximations by comparing them to E20
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FIG. 12. Three plots of E20 [the series solution, Eq. (A19)],
E p

20 [the point-charge approximation, Eq. (A20)], and El
20 [the line-

charge approximation, Eq. (A21)] against ρ for three values of z0,
namely, 1.1 (top panel), 1.2 (middle panel), and 11 (bottom panel).
In the bottom panel, the lines corresponding to E20 and E p

20 are indis-
tinguishable. All fields are normalized to the same scale described in
the caption to Fig. 11. The numerical examples in the main text make
use of the line approximation with z0 = 1.2.

[since N = 20 is enough terms for the series to converge at
z0 = 1.1 (see Fig. 11), it should also be enough for z0 = 1.2
and 11]. The line-charge approximation is more accurate than
the point-charge approximation for z0 ∼ 1. For z0 <≈ 1.2 the
line-charge approximation underestimates the field at small
ρ and for z0 >≈ 1.2 the line-charge approximation overesti-
mates the field at small ρ. For large z0 (e.g., the z0 = 11 plot in
Fig. 12), while the point-charge approximation has converged
to the true field, the line-charge approximation hovers above
the true field, that is, the line-charge approximation overes-
timates the field by about the same amount for all ρ. The
origin of this hovering behavior becomes apparent when we
consider the point-charge approximation of the line-charge
approximation, i.e., an approximation of an approximation
(and the point-charge approximation is appropriate for any

FIG. 13. Plot of the point-charge [Eq. (A20)] and line-charge
[Eq. (A21)] approximations evaluated at z0 = 11 as well as the line-
charge approximation evaluated at 11 + [11 − (112 − 1)1/2]/2 =
11 + 301/2 against ρ. The lines correspond to E p

20(z0 = 11) and
El

20(z0 = 11 + 301/2) are nearly indistinguishable. All fields are nor-
malized to the same scale described in the caption to Fig. 11.

distant-from-the-origin and localized charge distribution mir-
rored in the plane). The best-fit point charge to the line of
charge involved in the line-charge approximation is a charge
located at the center of the line, that is, at z = z0 − (z0 −
z∞)/2; however, this is slightly too close to the origin: for
large z0, the exact field is best approximated by a point charge
at z = z0. Figure 13 corroborates this argument; it shows that,
for z0 = 11, when the substitution z0 → z0 + (z0 − z∞)/2 is
made, the point- and line-charge approximations agree.

APPENDIX B: THE LIMIT OF A CONTINUOUS
SPECTRUM OF TRANSITION FREQUENCIES

Consider a large enough sample of qubits with a dense
enough distribution of transition frequencies, so that the con-
tinuous distribution limit in Eq. (50) is justified. This is
possible when

|�R j | � � j − � j±1.

In the opposite limit, the field is mostly coupled to one
qubit closest to resonance. In the continuous limit, we replace
� j ⇒ � and introduce the density of states g(�) as

k+p∑
j=k

Oj =
∫ �k+p

�k

O(�)g(�)d�,

where Oj is a sequence of discrete values of a given function.
Then Eq. (50) is transformed as

Ċ10 + μ

2
C10 = i

∫ ∞

−∞
e−i�t�∗

R�C0�(0)g(�)d�

−
∫ t

0

[∫ ∞

−∞
ei�(τ−t )|�R�|2g(�)d�

]
C10(τ )dτ.

(B1)
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It is convenient to parametrize the density of states g(�) and
�R� as

g(�) = N

2�m
f (�), �R� = �N√

N
ρ(�),

where 2�m is the width of the distribution of frequency de-
tunings. With this parametrization

∫∞
−∞ f (�)d� = 2�m. As

a result, Eq. (B1) takes a form convenient for applying the
Laplace transform:

Ċ10 + μ

2
C10 = i

√
N�N

2�m
F̃ (t ) − |�N |2

2�m

∫ t

0
D̃(t − τ )C10(τ )dτ,

(B2)
where

F̃ (t ) =
∫ ∞

−∞
F�e−i�t d�; F� = C0�(0)ρ∗(�) f (�);

D̃(t ) =
∫ ∞

−∞
D�e−i�t d�; D� = |ρ(�)|2 f (�).

Since
∫∞
−∞ |�R�|2g(�)d� = ∑N

j=1 |�R j |2 = �2
N , one can

show that
∫∞
−∞ D�d� = 2�m.

Applying Laplace transform to Eq. (B2) gives

pCp − C10(0) + μ

2
Cp = i

√
N�N

2�m
F̃p − |�N |2

2�m
CpD̃p, (B3)

where

F̃p =
∫ ∞

0
F̃ (t )e−pt dt =

∫ ∞

−∞

F�

i� + p
d�,

D̃p =
∫ ∞

0
D̃(t )e−pt dt =

∫ ∞

−∞

D�

i� + p
d�.

Solving Eq. (B3) gives

C10(t ) = 1

2π i

∫ x+i∞

x−i∞

C10(0) + i
√

N�N
2�m

∫∞
−∞

F�d�
i�+p

p + μ

2 + |�N |2
2�m

∫∞
−∞

D�d�
i�+p

ept d p,

(B4)

where, as usual, the analytic continuation of the complex p
plane to the region Re[p] � 0 corresponds to the counter-
clockwise integration path around the poles in the integrals∫∞
−∞

(... )d�

i�+p .
The poles of an integrand in Eq. (B4) are determined by

p + μ

2
+ |�N |2

2�m

∫ ∞

−∞

D�

i� + p
d� = 0. (B5)

In our system the inhomogeneous broadening is much greater
than the decay rate of the cavity field �m � μ [see Eq. (48)].
In the strong-coupling regime, the Rabi frequency is also
much greater than the cavity decay rate �N � μ. The value of
the ratio between �m and �N determines two distinct dynamic
regimes.

1. Strong inhomogeneous broadening

In this case

|�N |2
2�2

m

� 1 � N |�N |2
4�2

m

, (B6)

where the second inequality is due to the limit of a continuous
spectrum: the typical value of the Rabi frequency 〈�R〉 ∼ �N√

N
should exceed the distance between discrete spectral lines
2�m/N . The first inequality ensures that near the pole the

value of |p| ∼ max[μ,
�2

N
�m

] � �m. In this case, taking into
account correct direction of the integration path around the
pole in Eq. (B4), we obtain a standard expression

1

i� + p
⇒ πδ(�) − i

P
�

,

where P is principal value of the integral. The resulting solu-
tion of Eq. (B5) is

p0 = −μ

2
− π |�N |2

2�m
D�=0 + i

|�N |2
2�m

∫ ∞

−∞

P
�

D�d�. (B7)

It is easy to show that the expression π |�N |2
2�m

D�=0 is exactly
the probability of transition per unit time from the state
|1〉�N

j=1|0 j〉 into the continuous spectrum of states of excited
qubits calculated with Fermi’s golden rule.

The time evolution of C10(t ) becomes

C10(t ) ≈
[

C10(0)+
√

N�N

2�m

(
iπF�=0+

∫ ∞

−∞

P
�

F�d�

)]
ep0t .

(B8)

The second term in the brackets on the right-hand side of
Eqs. (B8) is due to the dynamics at short times t < �−1

m �
μ−1, i.e., before the exponential decay kicks in. If qubits are
not initially excited, this term is exactly zero. Furthermore, it
can be neglected if the initial probability of finding the photon
mode excited, Pph = |C10(0)|2, is at least as large as the initial
excitation of the qubits, Pqub = ∑N

j=1 |C0 j (0)|2, whereas the
distribution of excitation probabilities of individual qubits is
“uniform”: |F�| ∼ |C0 j (0)| ∼ 1√

N
|C10(0)|.

It is important to keep in mind that despite Eq. (48), dissi-
pation of the cavity field can be faster than the energy transfer
to resonant qubits, as long as

1 � μ

4�m
> π

�2
N

4�2
m

.

2. “Weak” inhomogeneous broadening

Now consider a relatively narrow frequency spectrum,
when

�2
N

2�2
m

� 1,

while still �m � μ. In this case the transition to continuous
spectrum is always valid and the roots of Eq. (B5) satisfy
|p| ∼ �N � �m. Since the typical width of the spectrum is
2�m, we always have D|�|∼�N ��m � 1, or even D|�|>�m = 0
for a limited spread of transition frequencies. Keeping only the
leading nonzero terms with respect to a small parameter �m

�N

and using
∫∞
−∞ D�d� = 2�m, Eq. (B5) can be transformed

013721-19



MIKHAIL TOKMAN et al. PHYSICAL REVIEW A 107, 013721 (2023)

to

p2 + �2
N ≈ −

[
μ

2
+ �2

N

2�m

(
D�=Im[p] − i

p2

∫ ∞

−∞
�D�d�

+ 1

p3

∫ ∞

−∞
�2D�d�

)]
p, (B9)

which has the solution

p0 = ±i(�N − δ�s ) − iδ�as − κ± + o

(
(δ�s,as)2

�N
,

κ2
±

�N

)
,

(B10)

where

δ�s = 1

4�m�N

∫ ∞

−∞
�2D�d�, δ�as

= − 1

2�m

∫ ∞

−∞
�D�d�, κ± = μ

4
+ π�2

N

4�m
D�=±�N .

In particular, for Gaussian distribution D� = 2√
π

e−�2/�2
m ,

δ�s = �2
m

2
√

π�N
, δ�as = 0,

κ+ = κ− = μ

4
+

√
π�2

N

2�m
e−�2

N /�2
m .

Note that the contribution to photon absorption κ± originated
from light-qubit coupling (the second term) cannot be ex-
panded in powers of a small parameter �m

�N
.

Comparing this solution with the one obtained without
any inhomogeneous broadening, it is easy to see that the

frequency shift due to inhomogeneous broadening, ∼�2
m

�N
, is

always greater than the one due to finite cavity field decay,

∼ μ2

�N
, as long as Eq. (48) is satisfied. At the same time, photon

absorption κ± is dominated by the cavity field dissipation μ.
This is obvious when the spread of frequencies is limited
and D�=±�N = 0, but it remains true also for a Gaussian
distribution D� as long as

1 � μ

4�m
>

√
π

2

�2
N

�2
m

e−�2
N /�2

m .

To get simpler algebra, let us consider a symmetric distribu-
tion D� when κ+ = κ− and δ�as = 0. A general case leads
to more cumbersome expressions but the same qualitative

result. Neglecting the terms of the order of
∫∞
−∞ �F�d�

�N
∫∞
−∞ F�d�

∼ �m
�N

,∫∞
−∞ �2F�d�

�2
N

∫∞
−∞ F�d�

∼ �2
m

�2
N

, μ

�N
, etc., we obtain a result similar to the

one for identical qubits without detunings. Indeed, in this case
Eq. (B4) gives the following the solution for C10(t ):

C10(t ) ≈
(

C10(0) cos [(�N − δ�s)t]

+ i
F (0)

�N
sin [(�N − δ�s)t]

)
e−κτ , (B11)

where we used
√

N�N

2�m

∫ ∞

−∞
F�d� =

N∑
j=1

�∗
R jC0 j (0) = F (0).

Substituting Eq. (B11) into Eq. (49) yields

C0 j (t ) = C0 j (0) + i�R j

∫ t

0

(
C10(0) cos [(�N − δ�s)t]

+ i
F (0)

�N
sin [(�N − δ�s )t]

)
e(i� j−κ )τ dτ. (B12)
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