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Fluorescence profile of a nitrogen-vacancy center in a nanodiamond
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Nanodiamonds containing luminescent point defects are widely explored for applications in quantum biosens-
ing such as nanoscale magnetometry, thermometry, and electrometry. A key challenge in the development of such
applications is the large variation in fluorescence properties observed between particles, even when obtained
from the same batch or nominally identical fabrication processes. By theoretically modeling the emission of
nitrogen-vacancy color centers in spherical nanoparticles, we are able to show that the fluorescence spectrum
varies with the exact position of the emitter within the nanoparticle, with noticeable effects seen when the
diamond radius, a, is larger than around 100 nm, and significantly modified fluorescence profiles found for
larger particles when a = 200 and 300 nm, with negligible effects below a = 100 nm. These results show that the
reproducible geometry of point defect position within a narrowly sized batch of diamond crystals is necessary for
controlling the emission properties. Our results are useful for understanding the extent to which nanodiamonds
can be optimized for biosensing applications.
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I. INTRODUCTION

Understanding nanoscale effects is one of the most exciting
scientific endeavors. It underpins very diverse research areas
such as the mechanisms of life [1–5], quantum information
[6–8], and fundamental phenomena in condensed-matter sys-
tems [9–11]. Research in these areas requires nanoscale quan-
tum sensors, and one of the most mature room-temperature
quantum nanoscale sensors is nanodiamond containing the
negatively charged nitrogen-vacancy (NV) center [12–14].
Such doped nanodiamonds are a superb system for quantum
sensing. They are highly biocompatible [15,16] and photo-
stable [17,18], and therefore are ideal for minimally invasive
biological experiments.

When using NV centers, readout is typically achieved
via optically detected magnetic resonance, where the reso-
nances in the interaction of the electronic spin of NV centers
and a radio-frequency electromagnetic field are detected by
measuring the photoluminescence intensity of the centers. In
this way, NV centers have been used for nanoscale magne-
tometry [19,20], electrometery [21,22], thermometry [23,24],
and pressure measurements [25]. Alternatively, accurate
measurements of the photon luminescence spectrum (in
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particular its zero-phonon line) allow for all optical measure-
ments [26].

A drawback of fluorescent nanodiamonds, in comparison
to quantum dots and organic molecules, is their intrinsic het-
erogeneity. Large variations in fluorescence intensities and
lifetimes are observed between NV centers in similar nanodi-
amonds [27–30]. Understanding the origins of such variations
and the ways of reducing the heterogeneity is important for
developing a reliable technological platform.

Deliberate modification of the NV fluorescence spectrum
can be achieved by quantum electrodynamics processes.
When a quantum system is placed in a node of a resonance
mode of an optical cavity, the emission of photons at the
wavelength of the resonance increases. In such a case, the
overall emission spectrum will be different from that in free
space (that is in a bulk crystal). In principle, this enhancement
can be very significant and the resonance can be fine tuned
to enhance zero-phonon emission and suppress emission at
other wavelengths by changing particle size [31], or locat-
ing nanodiamonds on a substrate [32,33] or in a microcavity
[34–36]. Structural resonances, also called whispering-gallery
modes, in a small regularly shaped particle such as a sphere
are examples of such modes. A strong effect can be achieved
if there is a control over the position of the center inside the
particle and the size of the particle. These conditions are hard
to satisfy for NV centers in diamond. In this paper, we will not
specifically address the problem of the structural resonances
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TABLE I. Probabilities (relative intensity R) to emit photons and phonons of a NV center in bulk diamond as a function of the number of
phonons at low temperature calculated in [37]. The zero-phonon line is indicated by ZPL, and the phononic sideband arises from the summation
from 1 to 11 phonons.

Wavelength λ Emission probabilities Dipole moment strength (arb. u.)
No. of phonons (nm) (Relative intensity R) (|p| = λ2

√
R)

0 (ZPL) 637 0.0270 66674.65
1 659 0.0951 133924.83
2 683 0.173 194028.02
3 708 0.209 229160.45
4 736 0.191 236740.36
5 765 0.140 218971.14
6 797 0.0856 185846.13
7 832 0.0441 145367.04
8 870 0.0211 109946.08
9 912 0.00931 80253.60
10 957 0.00343 53637.80
11 1008 0.000980 31807.83

and assume a random position of the center. The effect is
also reduced because the size of the crystals considered is
comparable to or smaller than the wavelength of emitted light.
In this case, the quality factor of the resonances is quite small.
However, the fluctuations of the spectra demonstrated here
are direct consequences of weak coupling to broad structural
resonances of the sphere.

We show and analyze statistically the NV fluorescence by
modeling the emission of a point defect in spherical nanodia-
monds as a function of nanodiamond size, the defect position
within the crystal, and the orientation of NV relative to the
plane of light collecting aperture. We treat the NV coupled
to phonons of the crystal lattice as a set of electric dipoles
with different oscillation frequencies and emission probabil-
ities [37,38]. The electromagnetic fields within and outside
the diamond are calculated using Mie theory [39–42] and
validated numerically [43]. In our calculations, modification
of the density of states close to the crystal surface [44] is
not considered. Our results show that noticeable variations in
the shapes of NV emission spectra are negligible when a, the
radius of the particle, is below 100 nm but are significantly
modified if a ≈ 200 nm and larger. Although our systems are
idealized for computational tractability, the results highlight
the sensitivity of fluorescence to the precise location of the
NV with diamond crystal, and are therefore important for
understanding the experimentally observed variations in flu-
orescence.

II. MODEL

To investigate how the NV center location within a nanodi-
amond particle affects the far-field fluorescence, we consider
a single NV in a spherical particle with a refractive index
of n2 = 2.4 in air with a refractive index of n1 = 1.0. The
broad NV emission spectrum is represented by emission by
12 point dipoles p ≡ pi (i = 0, 1, 2, . . . , 11) corresponding to
the NV emitting a single photon and multiple phonons. This
gives rise to a broad emission spectrum with components at
different wavelengths, as listed in Table I. We use the low-
temperature emission probabilities from [37,38] as the relative

intensity, R, emitted from the NV center at different numbers
of deexciting phonons, but we expect similar results for the
room-temperature case. Since intensity R is proportional to
the field power, it is then proportional to the square of the
strength of the represented electric dipole for the NV center.
To match the dimension, we have (c|p|2)/(4πε0εrλ

4) ∼ R
where c is the speed of light, ε0 is the vacuum permittivity,
εr is the relative permittivity, and λ is the wavelength of emis-
sion light. Since c, ε0, and εr are constant in a homogeneous
diamond, for simplicity, we set |p|2 = λ4R. In Figs. 2(c) and
2(d), the square symbols display the relative intensity R at the
corresponding wavelengths.

To monitor the emission, we model a detector with circular
entrance aperture (NA=0.9). The axis of the point dipole is
assumed either parallel or perpendicular to the plane of the
aperture, as sketched in Fig. 1. In a homogeneous medium,
the intensity of each wavelength would be proportional to
the photon emission probability in the actual spectrum at the
same wavelength, which in turn is derived from the emission
probabilities. However, the electromagnetic fields transmitted
to the surrounding medium (air in this paper) are modified due
to the boundary conditions on the surface of the particle and
can be obtained by solving Maxwell’s equations which are
solved using the Mie theory (see Appendices A and B). After
obtaining the electromagnetic fields, we can calculate the ob-
served far-field intensity for each dipole as measured through
the aperture located either at the top view position or the side
view position. This is done by integrating the time-averaged
Poynting vector over the corresponding aperture area:

Ind(λi ) =
∫

Sobj

1

2
[E1 × (H1)∗]⊥ dS (1)

with i = 0, 1, 2, . . . , 11. The above formulations give the pho-
ton count rates relative to the intensities of a NV center in
bulk diamond listed in Table I in which λi is the wavelength
of the corresponding dipole, the superscript asterisk indicates
the complex conjugate, and ⊥ in the subscript shows the
component of the vector product perpendicular to the plane
of the aperture.
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FIG. 1. Four cases under consideration for the photon collections
by a circular optical objective with NA=0.9 emitted from a single
NV center, which is represented by an electric dipole with moment
p, implemented in a spherical nanodiamond when the NV center is
located at different position along the x axis: (a) case A, p = (p, 0, 0)
and side view; (b) case B, p = (p, 0, 0) and top view; (c) case C,
p = (0, 0, p) and side view; and (d) case D, p = (0, 0, p) and side
view.

We also calculated

In
nd(λi ) = I (λi)∑11

i=0 I (λi )
(2)

for the normalized spectra which emphasize changes in the
shape of the spectra rather than emission strength of the entire
spectral band.

FIG. 2. The normalized photon counts at xd/a = 0 for (a) case A
and (b) case D, which almost fully represent the relative intensities of
a NV center in bulk diamond at the low-temperature condition listed
in Table I.

III. RESULTS

To demonstrate how the position of the NV center in a
spherical nanodiamond can affect the photon collections at
the far field, we locate the NV center at varying positions
along the x axis, xd = (xd , 0, 0) and |xd | = d . The equivalent
electric dipole moment, p, can be either along x axis or z axis.
Together with two observation spots, the top view and the side
view, as shown in Fig. 1, we studied four cases: (i) case A,
p = (p, 0, 0) and side view; (ii) case B, p = (p, 0, 0) and top
view; (iii) case C, p = (0, 0, p) and side view; and (iv) case
D, p = (0, 0, p) and side view. Corresponding to cases A–D,
the animations of the overall and normalized photon counts
for a = 10 to 300 nm when the NV center is located from the
left to the right of the particle are presented; see Supplemental
Material [45] for overall and normalized photon counts. Also,
the detailed analysis for different size of particles is demon-
strated below.

We start with the case of a small nanodiamond with a radius
of a = 10 nm. When the particle size is small compared to the
wavelength of the emitted light from the NV center, the rela-
tive position of the NV center to the surface of the diamond
particle has insignificant effects on the photon collection by
the optical objective (the pin hole) [46], as displayed in Fig. 2.
One main reason for that is that as the particle size is small,
the field inside the particle is dominated by the near field
of the represented electric dipole, and the particle surface is
polarized nearly uniformly by such near-field profile of the
electric dipole. As such, the relative position of the NV cen-
ter has negligible effects on photon collection by the optical
objective. In Fig. 2, we only show the overall and normalized
electromagnetic intensity profiles for case A and case D as a
function of the number of deexciting phonons, which almost
fully represent the relative intensities of a NV center in bulk
diamond at the low-temperature condition listed in Table I.
For case B and case C, the profiles are the same as what are
presented in Fig. 2, and hence are not repeated here.

When the radius of the diamond particle is 100 nm, the
effects on the photon counts emitted from the NV center
due to its location relative to the nanodiamond surface start
to present. As the particle size increases, the near-field phe-
nomenon from the electric dipole becomes a local effect,
and the coupling between the radiation wave from the dipole
and particle cavity starts to merge. For example, when the
equivalent electric dipole moment direction is along the x axis,
the overall electromagnetic-field intensity collected by the
objective from side (case A) and top (case B) view is stronger
when the dipole is located in the center of the diamond par-
ticle relative to when it is close to the diamond surface, as
shown in Figs. 3(a) and 3(b). However, if the dipole moment
direction is along the z axis, the overall electromagnetic-field
intensity is stronger when the dipole is close to the diamond
particle surface on the left for the side view, as shown in
Fig. 3(c). With the top view for z-oriented NV center, the
overall electromagnetic-field intensity profile is symmetric
with respect to the center of the diamond center. The emission
is weaker when the dipole is near the center of the particle
relative to when it is close to the particle surface, as displayed
in Fig. 3(d).

When the radius of the diamond particle is 200 nm, the
subtle effects that were predicted for the 100-nm particles
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FIG. 3. The overall photon counts emitted from a NV center
embedded in a nanodiamond with radius of a = 100 nm at selected
NV center locations for (a) case A, (b) case B, (c) case C, and (d) case
D. For the x-oriented dipole [(a) side view and (b) top view] the
emission is higher when xd/a ≈ 0. For the z-oriented dipole, the
emission is higher when the dipole is close to the diamond particle
surface on the left for the side view (case C) while for the top view
(case D), the emission is weaker when xd/a ≈ 0.

become far more pronounced. Large changes in both
the overall and relative (normalized) spectra are observed.
The spectra for the overall electromagnetic-field intensity for
the four cases are shown in Fig. 4. If the equivalent elec-
tric dipole moment direction is along the x axis, the overall
electromagnetic-field intensities collected from both the top
and side views indicate that, when the NV center is deep in
the nanodiamond particle, the fluorescence signals are much
stronger than those when it is close to the particle surface,
as shown in Figs. 4(a) and 4(b). Unlike the symmetric fluo-
rescence profile from the top view, the nanodiamond is much
brighter when the NV center locates in the left part of the par-
ticle (xd/a < 0) from the comparison between xd/a = −0.3
and 0.5 in Fig. 4(a), whereas if the dipole moment direction
is in the z direction, for example, case C and D in Figs. 4(c)
and 4(d), emission signals from the NV center are significant
when it is either close to the particle surface or near the center
of the diamond particle.

The normalized electromagnetic-field intensity profiles of
a single NV center implemented in a nanodiamond with radius
of 200 nm are shown in Fig. 5. For case A when the dipole
moment is along the x axis and the photon collection is along
the side view, the normalized electromagnetic-field intensity
almost represents the relative intensities of a NV center in
bulk diamond when the NV center is located in the left part
of the nanodiamond particle (xd/a < 0). Nevertheless, if the
NV center is placed to the right part in the nanodiamond when
xd/a > 0, compared to the relative intensities of a NV center

FIG. 4. The overall photon counts emitted from a NV center
embedded in a nanodiamond with radius of a = 200 nm at selected
NV color center locations for (a) case A, (b) case B, (c) case C,
and (d) case D. From the side view (case A and C), the emission
is stronger as xd/a < 0 with both x- and z-oriented dipoles. From
the top view, the emission is much enhanced when xd/a ≈ 0 for the
x-oriented dipole (case B).

FIG. 5. The normalized photon counts emitted from a NV center
embedded in a nanodiamond with radius of a = 200 nm at selected
NV color center location for (a) case A, (b) case B, (c) case C, and
(d) case D. For the x-oriented dipole from the side view (case A),
when xd/a = 0.6, the original emission peak at 709 nm disappears
while two peaks appear at 659 and 765 nm.
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in bulk diamond, dominant wavelength of the normalized
electromagnetic-field intensity collected from the side view
first changes from λ = 708 to 736 nm at around xd/a = 0.5
and then changes again to λ = 659 nm at around xd/a = 0.6,
as shown in Fig. 5(a). Also, at xd/a = 0.6, there is a second
peak of the normalized electromagnetic-field intensity at λ =
765 nm, while the signal at 708 nm is significantly reduced.
Regarding the top view as presented in Fig. 5(b) for case B, the
normalized electromagnetic-field intensity profile is similar to
that of a NV center in bulk diamond when the NV center is
located from side to side in the particle. If the dipole moment
direction is z oriented, both the side and top views show that
the emission signal is enhanced significantly when the NV
center is close to the surface of the particle (|xd |/a > 0.5) for
the wavelength at λ = 708 nm, as shown in Figs. 5(c) and 5(d).
When the z-oriented NV center is deep in the particle, from
the side view, the dominant number of deexciting phonons
changes from 3 (λ = 708 nm) to 5 (λ = 765 nm) around
xd/a = 0.4, as shown in Fig. 5(c).

As the diamond radius increases to 300 nm, the spectra
become richer. This is because there are numerous oppor-
tunities for resonances over the various wavelengths. For a
diamond particle with radius of 300 nm, if the equivalent
electric dipole moment direction is in the x direction, the
overall electromagnetic-field intensity at λ = 708 nm is much
stronger when the NV center is around xd/a = −0.5 in the
particle from the side view, as shown in Fig. 6(a) for case A.
From the top view, the symmetric profile of the field intensity
with respect to the particle center is obtained when the NV
center is located from one side to the other of the particle,
and the strongest fluorescence signal happens at |xd |/a = 0.55
for λ = 708 nm, as shown in Fig. 6(b) for case B. When
the dipole moment direction is pointing along the z axis, the
highest fluorescence signal happens at xd/a = −0.4 for λ =
708 nm from the side view, as shown in Fig. 6(c), while
from the top view, the electromagnetic-field intensity profile
is symmetric to the particle center and the strongest appears
at around |xd |/a = 0.4 for λ = 708 and 736 nm. Also, for
these two cases, when xd/a = −0.75 from the side view and
|xd |/a = 0.85 from the top view, there are two peaks of the
fluorescence signals at λ = 683 and 832 nm while the original
peak signal at λ = 708 nm for a NV center in bulk diamond is
significantly reduced.

On the normalized fluorescence signals when a NV center
is located at different position in a diamond particle with
radius of 300 nm, for case A and B when the electric dipole
moment direction is along the x axis, the dominant emission
fluorescence is the same as a NV center in bulk diamond at
λ = 708 nm when the NV center locates close to the surface
of the diamond particle, as shown in Figs. 7(a) and 7(b). When
the NV center locates at xd/a = 0.3, the dominant emission
wavelength changes to λ = 736 nm, as shown in Fig. 7(a).
For case C and D as the dipole moment direction is in the
z direction, when the position of the NV center is close to
the surface of the diamond particle, the strongest emission
happens at λ = 683 nm relative to a NV center in bulk dia-
mond at λ = 708 nm, as shown in Figs. 7(c) and 7(d). If the
NV center location locates deeper in the diamond particle at
around xd/a = 0.45, the dominant emission is changed to λ =
736 nm. Also, when xd/a = −0.75 from the side view and at

FIG. 6. The overall photon counts emitted from a NV center
embedded in a nanodiamond with radius of a = 300 nm at selected
NV color center locations for (a) case A, (b) case B, (c) case C,
and (d) case D. For the x-oriented dipole, the emission is strongly
enhanced when xd/a = −0.5 from the side view (case A) and when
xd/a = 0.55 from the top view (case B). For the z-oriented dipole,
the emission is highly enhanced when xd/a = −0.4 from the side
view (case C) and when xd/a = 0.4 from the top view (case D).
Also, the emission spectrum profiles are changed significantly when
xd/a = −0.75 from the side view and when xd/a = 0.85 from the
top view.

|xd |/a = 0.8 from the top view for a z-oriented NV center,
there are the two peaks of the normalized fluorescence signals
at λ = 683 and 832 nm while the original peak signal at
λ = 708 nm for a NV center in bulk diamond is significantly
reduced.

When comparing the fluorescence profiles from a 300-nm
diamond to those from the smaller diamonds, the emissions
from longer wavelengths are enhanced in the 300-nm case.
This is because the particle size at radius of 300 nm is com-
parable to the longer wavelengths when the high refractive
index of diamond is taken into consideration, which leads to
the enhanced cavity effects of the diamond particle for the
emission at the higher-order lines [47].

IV. DISCUSSION

There are basically two effects on the emission spectra.
One of them is the change of the integrated intensity, repre-
sented in Eq. (1), and the other is the change of the normalized
spectra, represented in Eq. (2). Both effects depend on the
position of the NV center within the crystal defined by xd ,
on the orientation of its transition dipole moment, and on
the crystal particle size a. Qualitatively, the variation of the
overall intensity is negligible if 2πaλ � 1 and the variation of
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FIG. 7. The normalized photon counts emitted from a NV center
embedded in a nanodiamond with radius of a = 300 nm at selected
NV color center locations for (a) case A, (b) case B, (c) case C, and
(d) case D. For the z-oriented dipole, the emission spectrum profiles
are changed significantly relative to that of a NV center in a bulk
diamond, for example when xd/a = −0.75 from the side view (case
C) and when xd/a = 0.85 from the top view (case D).

the normalized spectra is negligible if 2πaδλ/λ2 � 1 where
δλ is the width of the luminescence spectrum of the center. For
NV centers, the value δλ/λ ≈ 1/7 and therefore the change
in the normalized spectra are observed for significantly larger
crystals.

It would be worth monitoring how the normalized emission
spectra of a NV center in a diamond particle differ from those
in a bulk diamond crystal. To characterize the difference, we
calculate a value D defined as follows:

D(xd , a) ≡
11∑

i=0

∣∣In
nd(λi, xd , a) − In

bulk(λi )
∣∣, (3)

in which In
nd(λi, xd ) is defined in Eq. (2), and the values of

In
bulk(λi ) are the relative intensity R listed in Table I. In the

simulation, we assume that no NV centers are found within
2-nm distance from the surface of the particle [48] and the
concentration of the centers is uniform in the remaining vol-
ume (that is, the probability of a particular value of rd is
proportional to r2

d ). For each particle with radius of a, we
compute the mean value and the standard derivation of D
using a random set of xd to characterize how different the
normalized emission spectrum is from that of a bulk diamond.

As shown in Fig. 8, the mean value of D starts to deviate
from zero at xd of about 50 nm. The relative deviation reaches
0.15 at 100 nm and oscillates significantly along with particle
size for cases C and D (the dipole moment is perpendicular
to the radial line of the sphere). In case B the mean relative
deviation is below 0.05 up to 250 nm. The geometry of case B
generates spectra which are least sensitive to the size of the

FIG. 8. Comparisons of the normalized emission spectra of a NV
center in diamond particles to that in a bulk diamond: (a) the mean
value and (b) the standard derivation of D defined in Eq. (3). As the
diamond particle size increases, the overall trend of the mean value
of D grows indicating that the normalized emission spectra of a NV
center are more likely different in larger particles than smaller ones
relative to the emission spectrum of a NV center in bulk.

crystal and the position of the center. The standard deriva-
tion of D correlates to and has a similar trend as its mean
value. In practice, the photoluminescence of the NV centers
is associated with two orthogonal dipoles arranged in a plane
perpendicular to the NV defect symmetry axis. This means
that the cases A–C and B–D cannot be completely separated
in an experiment. By reducing the numerical aperture of the
detector, we can reduce the contribution of case A and D.
Photoexcitation through the same optics also favors case B
and C because the excitation beam is polarized in a transverse
direction.

V. CONCLUSION

We performed theoretical modeling of the fluorescence
profiles of a NV color center in a spherical nanodiamond,
exploring the effects of the center location, orientation of
its transition dipole moment, and nanodiamond size on the
emission probabilities of NV center together. Changes in the
emission probabilities lead to variations in the expected fluo-
rescence profile. Our calculations indicate that the deviation
of the fluorescence spectra from the spectra in the bulk is
less than 1% for crystals with radii smaller than 50 nm but
sharply increases to about 10% when the radius increases from
about 75 to about 150 nm. When the particle radius changes
between 150 and 300 nm, the deviation of the spectra from
the bulk case averaged over center location tends to increase
slowly from about 10 to about 15%. For a single center, this
deviation strongly depends on the location of the center and
orientation of its dipole moment. The spectra corresponding
to the geometry when the transition dipole is perpendicular to
the radial line of the sphere and the emission are collected in
the direction perpendicular to the dipole that is least dependent
on the size of the crystal and the position of the center. Our
results indicate that the information of the exact geometry of
the NV-diamond system is critical to understand and control
the fluorescence profile, which is of importance to optimize
such systems for quantum biosensing applications.
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APPENDIX A: THEORETICAL MODEL

In our model, we represent a single NV in a spherical
particle with a refractive index of n2 = 2.4 by an electric
dipole. The broad NV emission spectrum is represented by
emission by 12 point dipoles p ≡ pi (i = 0, 1, 2, . . . , 11) cor-
responding to the NV deexciting via a single photon and
multiple phonons as listed in Table I. All electric dipoles
are colocated at xd but each of them oscillates at a specific
angular frequency ω ≡ ωi (i = 0, 1, 2, . . . , 11) as exp (−iωt ).
The emitted electric and magnetic fields from such a dipole
are, respectively,

Ed = 1

4πε0ε2

exp(ik2rd )

r3
d

{(−k2
2r2

d − 3ik2rd + 3
) rd · p

r2
d

rd

+ (
k2

2r2
d + ik2rd − 1

)
p
}
, (A1a)

Hd = ωk2

4π
[rd × p]

(
1

rd
− 1

ik2r2
d

)
exp(ik2rd )

rd
(A1b)

where rd = x − xd with x being the field location of interest
and rd = |rd |, k2 is the wave number, ε0 is the permittivity in
vacuum, and ε2 = n2

2 is the relative permittivity of diamond
with n2 = 2.4 the refractive index of diamond.

In a homogeneous medium, the intensity of each wave-
length would be proportional to the photon emission proba-
bility in the actual spectrum at the same wavelength, which in
turn is derived from the emission probabilities. However, the
electromagnetic fields transmitted to the surrounding medium
(air in this paper) are modified due to the boundary conditions
on the surface of the particle and can be obtained by solving
Maxwell’s equations. In the frequency domain, Maxwell’s
equations in the internal domain of the nanodiamond and the
external domain are

∇ × E j = iωμ0μ jH j, (A2a)

∇ · E j = 0, (A2b)

∇ × H j = −iωε0ε jE j, (A2c)

∇ · H j = 0 (A2d)

where μ0 is the permeability in vacuum, j refers to the ex-
ternal domain and the nanodiamond domain with j = 1 and
2, respectively, and μ j is the relative permeability of each
domain which is set as μ1 = μ2 = 1 in this paper.

FIG. 9. Sketch of the calculation model for the internal and exter-
nal electromagnetic fields driven by (a) a vertical or (b) a horizontal
electric dipole embedded in a dielectric sphere.

Together with the boundary conditions,

t1 · (E2 + Ed ) = t1 · E1, t2 · (E2 + Ed ) = t2 · E1, (A3a)

t1 · (H2 + Hd ) = t1 · H1, t2 · (H2 + Hd ) = t2 · H1

(A3b)

where t1 and t2 are the two independent unit tangential direc-
tions on the diamond surface, Maxwell’s equations (A2) are
solved using the Mie theory, which is detailed in Appendix B.

APPENDIX B: SOLUTION FOR THE
ELECTROMAGNETIC FIELDS EMITTED FROM A NV

CENTER IN A SPHERICAL DIAMOND PARTICLE

The solution procedure to calculate the electromagnetic
fields emitted from a NV center in a spherical diamond par-
ticle is given. It is worth noting that to easily and clearly
show the calculation procedure and apply the usual setup of
a spherical coordinate system, the equivalent electric dipole
for the NV center is chosen to locate along the the axis of
symmetry (z axis) from which the polar angle is measured in
this Appendix. It is straightforward to use the solution given
here to get the results presented in the main text via simple
coordinate transform and rotation.

To obtain the electromagnetic field radiated from a single
NV center in a spherical diamond particle to the external do-
main, it is convenient to use the spherical coordinate system,
(r, θ, ϕ), the origin of which is at the center of the diamond
particle. As shown in Fig. 9, we assign the symmetric axis to
be along the z axis which is the polar angle θ measured from.
The equivalent electric dipole for the NV center is positioned
along the axis of symmetry at dez = d cos θer − d sin θeθ .
Two situations are considered separately: (i) the vertical
dipole when the dipole moment direction is along the symmet-
ric axis (z axis) as p = pez = p cos θer − p sin θeθ as shown
in Fig. 9(a) and detailed in Appendix B1 and (ii) the horizontal
dipole when the dipole moment direction is perpendicular
to the z axis as p = pex = p sin θ cos ϕer + p cos θ cos ϕeθ −
p sin ϕeϕ as shown in Fig. 9(b) and detailed in Appendix B2.
Here, er, eθ , and eϕ are the unit vectors along r, θ, and ϕ

directions in the spherical coordinate system, respectively. All
the other dipole location and polarization scenarios, such as
the cases presented in the main text, can be easily obtained
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through coordinate rotation and linear superposition from the
above two basic cases.

In the spherical coordinate system, Maxwell’s equations in
Eq. (A2) are in the form of

1

r sin θ

[
∂

∂θ

(
E j

ϕ sin θ
) − ∂E j

θ

∂ϕ

]
= iωμ0μ jH

j
r , (B1a)

1

r

[
1

sin θ

∂E j
r

∂ϕ
− ∂

∂r

(
rE j

ϕ

)] = iωμ0μ jH
j
θ , (B1b)

1

r

[
∂

∂r

(
rE j

θ

) − ∂E j
r

∂θ

]
= iωμ0μ jH

j
ϕ , (B1c)

1

r sin θ

[
∂

∂θ

(
H j

ϕ sin θ
) − ∂H j

θ

∂ϕ

]
= −iωε0ε jE

j
r , (B2a)

1

r

[
1

sin θ

∂H j
r

∂ϕ
− ∂

∂r

(
rH j

ϕ

)] = −iωε0ε jE
j
θ , (B2b)

1

r

[
∂

∂r

(
rH j

θ

) − ∂H j
r

∂θ

]
= −iωε0ε jE

j
ϕ. (B2c)

In the above equation, the continuity equations of the elec-
tric and magnetic fields are not given as they are satisfied
straightforwardly when the Mie solution procedure is used,
as demonstrated below.

Before we solve for the reflection and radiation electro-
magnetic fields in domain 1 and 2, we need to write the fields
due to the electric dipole in the spherical coordinate system.
From Eq. (A1), we have

Ed = 1

4πε0ε2

exp(ik2rd )

r3
d

{(−k2
2r2

d − 3ik2rd + 3
) rd · p

r2
d

rd

+ (
k2

2r2
d + ik2rd − 1

)
p
}

= 1

4πε0ε2
[p∇2G(x, xd ) − (p · ∇)∇G(x, xd )], (B3a)

Hd = ωk2

4π
[rd × p]

(
1

rd
− 1

ik2r2
d

)
exp(ik2rd )

rd

= − iω

4π
[∇G(x, xd ) × p] (B3b)

where G(x, xd ) is the Green’s function for the Helmholtz
equation as

G(x, xd ) = exp (ik2|x − xd |)
|x − xd | . (B4)

As shown in Fig. 9, rd ≡ |x − xd | = √
r2 + d2 − 2rd cos θ

based on the cosine theorem. In this case, the free-space
Green’s function for the Helmholtz equation can be rewritten
in terms of (r, d, θ ) and asymptotically represented in terms
of free spherical multipolar waves, respectively, as

G(x, xd ) ≡ G(r, θ ; d )

= exp (ik2

√
r2 + d2 − 2rd cos θ )√

r2 + d2 − 2rd cos θ
(B5)

= ik2

N∑
n=0

(2n + 1)h(1)
n (k2r>) jn(k2r<)Pn(cos θ )

(B6)

where r> ≡ max(|x|, d ), r< ≡ min(|x|, d ), and N = k1a +
4(k1a)1/3 + 2 is the transacted number for the summation
[41]. Introducing Eq. (B5) or Eq. (B6) into Eq. (B3) and
using the vector calculus formulas in the spherical coordinate
system, the fields due to the electric dipole in the spherical
coordinate system are obtained.

1. Vertical electric dipole

Let us first solve for the electromagnetic fields as the case
illustrated in Fig. 9(a). Introducing Eq. (B5) into Eq. (B3) and
using the vector calculus formulas in the spherical coordinate
system, the electric and magnetic fields induced by a vertical
electric dipole, when p = p cos θer − p sin θeθ , are

Ed
r = 1

4πε0ε2

p

d

{
∂2[r G(r, θ ; d )]

∂r2
+ k2

2 r G(r, θ ; d )

}
, (B7a)

Ed
θ = 1

4πε0ε2

p

rd

∂2[r G(r, θ ; d )]

∂r∂θ
, (B7b)

Ed
ϕ = 0, (B7c)

Hd
r = 0, (B7d)

Hd
θ = 0, (B7e)

Hd
ϕ = − iω

4π

p

d

∂G(r, θ ; d )

∂θ
. (B7f)

Based on the Mie theory [39] by using Debye potentials u and
v that satisfy the Helmholtz equation [40,41], we can write the
electric and magnetic fields as

E = E0(Mv − iNu), (B8a)

H = E0

√
ε0εr

μ0μr
(−iNv − Mu) (B8b)

where E0 = p/(4πε0a3),

Mu = ∇ × (ru), Mv = ∇ × (rv),

∇ × Mu = ω(ε0εrμ0μr )
1
2 Nu,

∇ × Mv = ω(ε0εrμ0μr )
1
2 Nv,

∇ × Nu = ω(ε0εrμ0μr )
1
2 Mu,

∇ × Nv = ω(ε0εrμ0μr )
1
2 Mv,

∇ × E = iωμ0μrH, ∇ × H = −iωε0εrE. (B9)

The full components of Mu and Nu are, respectively,

Mur = 0, Muθ
= 1

r sin θ

∂ (ru)

∂ϕ
, Muϕ

= −1

r

∂ (ru)

∂θ
,

(B10a)

Nur = 1

k

∂2(ru)

∂r2
+ kru, Nuθ

= 1

kr

∂2(ru)

∂r∂θ
,

Nuϕ
= 1

kr sin θ

∂2(ru)

∂r∂ϕ
. (B10b)

The above formulations can also be used to get the com-
ponents of Mv and Nv when potential u is replaced by
potential v.

As Debye potentials u and v satisfy the Helmholtz equa-
tion, let us consider a scalar wave equation for function φ with
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wave number k:

∇2φ + k2φ = 0 (B11)

where φ represents either potential u or v. Equation (B11) is
variable separable in the spherical coordinate system, and its
elementary solutions are

φ(l,n) =
∞∑

n=0

l=n∑
l=−n

Cl,n cos (lϕ)Pl
n(cos θ )zn(kr), (B12a)

φ(l,n) =
∞∑

n=0

l=n∑
l=−n

Dl,n sin (lϕ)Pl
n(cos θ )zn(kr) (B12b)

where l and n are integers (n � l � 0), Pl
n (cos θ ) is an associ-

ated Legendre polynomial, and zn(kr) is the spherical Bessel
function of any kind. The following rules are applied to de-
termine the choice of function zn(kr). In the bounded domain
with origin within it, jn(kr), the spherical Bessel function of
the first kind is used as jn(kr) is finite at the origin. In the
bounded domain excluding origin, both jn(kr) and yn(kr), the
spherical Bessel functions of the first and second kinds, are
needed. In the unbounded external domain, for the scattered
or radiation field, h(1)

n = jn(kr) + iyn(kr) is used as ikh(1)
n ∼

in exp (ikr)/r.
It is worth noting that the two Debye potentials, u and v,

correspond to cos(lϕ) and sin(lϕ) formulations in Eq. (B12),
respectively. Nevertheless, according to Eq. (B7), the fields
driven by a vertical electric dipole in a sphere do not depend
on ϕ. As such, only terms with l = 0 in Eq. (B12) are needed,
which means only one potential is needed for each domain.
Let us use potential u:

u1
(0,n) =

N∑
n=0

C1
(0,n)Pn(cos θ )h(1)

n (k1r), (B13a)

u2
(0,n) =

N∑
n=0

C2
(0,n)Pn(cos θ ) jn(k2r) (B13b)

for the external and internal domain, respectively, where the
C1

(0,n) and C2
(0,n) are determined by the boundary conditions.

Introducing Eq. (B13) into Eq. (B8) and using Eq. (B10), we
obtain

E1
r = E0

N∑
n=0

C1
(0,n)(−i)

n(n + 1)

k1r
h(1)

n (k1r)Pn(cos θ ), (B14a)

E1
θ = E0

N∑
n=0

C1
(0,n)(−i)

1

k1r

[
(n + 1)h(1)

n (k1r)

− k1rh(1)
n+1(k1r)

]
P1

n (cos θ ), (B14b)

H1
ϕ = E0

ωμ0

N∑
n=0

C1
(0,n)

k1

μ1
h(1)

n (k1r)P1
n (cos θ ), (B14c)

and E1
ϕ = H1

r = H1
θ = 0. Also,

E2
r = E0

N∑
n=0

C2
(0,n)(−i)

n(n + 1)

k2r
jn(k2r)Pn(cos θ ), (B15a)

E2
θ = E0

N∑
n=0

C2
(0,n)(−i)

1

k2r
[(n + 1) jn(k2r)

− k2r jn+1(k2r)]P1
n (cos θ ), (B15b)

H2
ϕ = E0

ωμ0

N∑
n=0

C2
(0,n)

k2

μ2
jn(k2r)P1

n (cos θ ), (B15c)

and E2
ϕ = H2

r = H2
θ = 0.

To get C1
(0,n) and C2

(0,n), the boundary conditions across the
sphere surface

E1
θ = E2

θ + Ed
θ when r = a, (B16a)

H1
ϕ = H2

ϕ + Hd
ϕ when r = a (B16b)

are used. Introducing Eq. (B6) into Eq. (B7) and setting r = a,
we have

Ed
θ

∣∣∣
r=a

= 1

4πε0ε2

p

ad
ik2

N∑
n=0

(2n + 1) jn(k2d )P1
n (cos θ )

× d
[
rh(1)

n (k2r)
]

dr

∣∣∣∣∣
r=a

, (B17a)

Hd
ϕ

∣∣∣
r=a

= − iω

4π

p

d
ik2

N∑
n=0

(2n + 1)h(1)
n (k2a) jn(k2d )

× P1
n (cos θ ). (B17b)

Letting r = a in Eqs. (B14) and (B15), and introducing the
results and Eq. (B17) into Eq. (B16), we obtain a 2 × 2 linear
system to solve for the unknown coefficients C1

(0,n) and C2
(0,n)

which can be then introduced into Eqs. (B14) and (B15) to
calculate the fields inside, outside the sphere and on the sphere
surface.

2. Horizontal electric dipole

Let us turn to solve for the electromagnetic fields as
the case illustrated in Fig. 9(b). Introducing Eq. (B5) into
Eq. (B3) and using the vector calculus formulas in the
spherical coordinate system, the radial components of the
electric and magnetic fields induced by a horizontal electric
dipole when p = p sin θ cos ϕer + p cos θ cos ϕeθ − p sin ϕeϕ

are

Ed
r = − 1

4πε0ε2

p

r

∂

∂θ

{
∂[G(r, θ ; d )]

∂d
+ 1

d
G(r, θ ; d )

}

× cos ϕ, (B18a)

Hd
r = iω

4π

p

r

∂G(r, θ ; d )

∂θ
sin ϕ. (B18b)
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Following the same solution procedure shown in the previous
section and considering that the electromagnetic fields given
in Eq. (B18) are functions of sin ϕ and cos(ϕ), only the terms
when l = 1 from the elementary solutions in Eq. (B12) are
needed for the Debye potentials. As such, the following Debye
potentials

u1
(1,n) = cos ϕ

N∑
n=1

C1
(1,n)h

(1)
n (k1r)P1

n (cos θ ), (B19a)

v1
(1,n) = − sin ϕ

N∑
n=1

D1
(1,n)h

(1)
n (k1r)P1

n (cos θ ), (B19b)

u2
(1,n) = cos ϕ

N∑
n=1

C2
(1,n) jn(k1r)P1

n (cos θ ), (B19c)

v2
(1,n) = − sin ϕ

N∑
n=1

D2
(1,n) jn(k1r)P1

n (cos θ ) (B19d)

for the external (with superscript 1) and internal do-
main (with superscript 2), respectively, are used where
C1

(1,n), D1
(1,n), C2

(1,n), and D2
(1,n) are unknowns to be deter-

mined via boundary conditions.
Introducing Eq. (B19) into Eq. (B8) and using Eq. (B10),

we obtain

E1
r = E0 cos ϕ

N∑
n=1

C1
(1,n)(−i)

n(n + 1)

k1r
h(1)

n (k1r)P1
n (cos θ ), (B20a)

E1
θ = E0 cos ϕ

N∑
n=1

C1
(1,n)(−i)

1

k1r

[
(n + 1)h(1)

n (k1r) − k1rh(1)
n+1(k1r)

]dP1
n (cos θ )

dθ

+ E0 cos ϕ

N∑
n=1

D1
(1,n)(−1)h(1)

n (k1r)
P1

n (cos θ )

sin θ
, (B20b)

E1
ϕ = E0 sin ϕ

N∑
n=1

C1
(1,n)(i)

1

k1r

[
(n + 1)h(1)

n (k1r) − k1rh(1)
n+1(k1r)

]P1
n (cos θ )

sin θ

+ E0 sin ϕ

N∑
n=1

D1
(1,n)h

(1)
n (k1r)

dP1
n (cos θ )

dθ
, (B20c)

H1
r = E0

ωμ0
sin ϕ

N∑
n=1

D1
(1,n)(i)

k1

μ1

n(n + 1)

k1r
h(1)

n (k1r)P1
n (cos θ ), (B21a)

H1
θ = E0

ωμ0
sin ϕ

N∑
n=1

C1
(1,n)

k1

μ1
h(1)

n (k1r)
P1

n (cos θ )

sin θ

+ E0

ωμ0
sin ϕ

N∑
n=1

D1
(1,n)(i)

k1

μ1

1

k1r

[
(n + 1)h(1)

n (k1r) − k1rh(1)
n+1(k1r)

]dP1
n (cos θ )

dθ
, (B21b)

H1
ϕ = E0

ωμ0
cos ϕ

N∑
n=1

C1
(1,n)

k1

μ1
h(1)

n (k1r)
dP1

n (cos θ )

dθ

+ E0

ωμ0
cos ϕ

N∑
n=1

D1
(1,n)(i)

k1

μ1

1

k1r

[
(n + 1)h(1)

n (k1r) − k1rh(1)
n+1(k1r)

]P1
n (cos θ )

sin θ
. (B21c)

Also

E2
r = E0 cos ϕ

N∑
n=1

C2
(1,n)(−i)

n(n + 1)

k2r
jn(k2r)P1

n (cos θ ), (B22a)

E2
θ = E0 cos ϕ

N∑
n=1

C2
(1,n)(−i)

1

k2r
[(n + 1) jn(k2r) − k2r jn+1(k2r)]

dP1
n (cos θ )

dθ

+ E0 cos ϕ

N∑
n=1

D2
(1,n)(−1) jn(k2r)

P1
n (cos θ )

sin θ
, (B22b)

E2
ϕ = E0 sin ϕ

N∑
n=1

C2
(1,n)(i)

1

k2r
[(n + 1) jn(k2r) − k2r jn+1(k2r)]

P1
n (cos θ )

sin θ
+ E0 sin ϕ

N∑
n=1

D2
(1,n) jn(k2r)

dP1
n (cos θ )

dθ
, (B22c)
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H1
r = E0

ωμ0
sin ϕ

N∑
n=1

D2
(1,n)(i)

k2

μ2

n(n + 1)

k2r
jn(k2r)P1

n (cos θ ), (B23a)

H1
θ = E0

ωμ0
sin ϕ

N∑
n=1

C2
(1,n)

k2

μ2
jn(k2r)

P1
n (cos θ )

sin θ

+ E0

ωμ0
sin ϕ

N∑
n=1

D2
(1,n)(i)

k2

μ2

1

k2r
[(n + 1) jn(k2r) − k2r jn+1(k2r)]

dP1
n (cos θ )

dθ
, (B23b)

H1
ϕ = E0

ωμ0
cos ϕ

N∑
n=1

C2
(1,n)

k2

μ2
jn(k2r)

dP1
n (cos θ )

dθ

+ E0

ωμ0
cos ϕ

N∑
n=1

D2
(1,n)(i)

k2

μ2

1

k2r
[(n + 1) jn(k2r) − k2r jn+1(k2r)]

P1
n (cos θ )

sin θ
. (B23c)

Once the coefficients C1
(1,n), D1

(1,n), C2
(1,n), and D2

(1,n) are
found, the electromagnetic fields in both domains are de-
termined. To get those coefficients, the boundary conditions
for the tangential components of the electric and magnetic
fields due to the electric dipole on the sphere surface when
r = a are needed, which can be found by using Maxwell’s
equations and the radial components in Eq. (B18) [42]. In-
troducing Eq. (B1b) in Eq. (B2c), for the sphere domain,
we get

∂2

∂r2

(
rEd

ϕ

) + k2
2

(
rEd

ϕ

) = 1

sin θ

∂

∂r

(
∂Ed

r

∂ϕ

)
− iωμ0μ2

∂Hd
r

∂θ
.

(B24)

The right-hand side of Eq. (B24) can be obtained by using the
results from introducing Eq. (B6) into Eq. (B18):

1

sin θ

∂

∂r

(
∂Ed

r

∂ϕ

)

= p sin ϕ

4πε0ε2

ik2

d

N∑
n=1

(2n + 1)
d

dr

[
h(1)

n (k2r)

r

]

× [(n + 1) jn(k2d ) − k2d jn+1(k2d )]
P1

n (cos θ )

sin θ
, (B25)

and

−iωμ0μ2
∂Hd

r

∂θ
= ipk3

2 sin ϕ

4πε0ε2

N∑
n=1

(2n + 1)
h(1)

n (k2r)

r
jn(k2d )

× dP1
n (cos θ )

dθ
, (B26)

in which the situation for the fields on the sphere surface when
r → a > d is implied. When comparing the left-hand side of
Eq. (B24) and Eqs. (B25) and (B26), we notice that we can
get the tangential component, Ed

ϕ , by solving the following
two ordinary differential equations:

d2g1(r)

∂r2
+ k2

2g1(r) = d

dr

[
h(1)

n (k2r)

r

]
, (B27)

d2g2(r)

∂r2
+ k2

2g2(r) = h(1)
n (k2r)

r
. (B28)

The solutions to the above two equations are, respectively,

g1(r) = 1

n(n + 1)

d

dr

[
rh(1)

n (k2r)
]

= 1

n(n + 1)

[
(n + 1)h(1)

n (k2r) − k2r h(1)
n+1(k2r)

]
, (B29)

g2(r) = 1

n(n + 1)
rh(1)

n (k2r). (B30)

As such,

Ed
ϕ = p sin ϕ

4πε0ε2

ik2

rd

N∑
n=1

2n + 1

n(n + 1)

d

dr
[rh(1)

n (k2r)]

×[(n + 1) jn(k2d ) − k2d jn+1(k2d )]
P1

n (cos θ )

sin θ

+ p sin ϕ

4πε0ε2
ik3

2

N∑
n=1

2n + 1

n(n + 1)
h(1)

n (k2r) jn(k2d )
dP1

n (cos θ )

dθ
.

(B31)

Introducing Eq. (B6) into Eq. (B18) and substituting that
result and Eq. (B31) into Eq. (B1b), we have

Hd
θ = 1

iωμ0μ2

[
1

r sin θ

∂Ed
r

∂ϕ
− 1

r

∂
(
rEd

ϕ

)
∂r

]

= pω sin ϕ

4π

1

rd

N∑
n=1

2n + 1

n(n + 1)
k2rh(1)

n (k2r)

× [(n + 1) jn(k2d ) − k2d jn+1(k2d )]
P1

n (cos θ )

sin θ

− pω sin ϕ

4π

k2

r

N∑
n=1

2n + 1

n(n + 1)

d

dr

[
rh(1)

n (k2r)
]

× jn(k2d )
dP1

n (cos θ )

dθ
. (B32)
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As the tangential components of the electric and magnetic
fields are continuous across the sphere surface, we have

E1
ϕ = E2

ϕ + Ed
ϕ when r = a, (B33a)

H1
θ = H2

θ + Hd
θ when r = a. (B33b)

Comparing the expressions in Eqs. (B20c), (B21b), (B22c),
and (B23b) and those in Eqs. (B31) and (B32), we obtain
a 4 × 4 linear system to solve for the unknown coefficients
C1

(1,n), D1
(1,n), C2

(1,n), and D2
(1,n) that can be introduced back into

Eqs. (B20) and (B23) to calculate the fields inside the sphere,
outside the sphere, and on the sphere surface.

In Fig. 10, we showed the electromagnetic fields obtained
by the asymptotic approximations detailed in Appendix B,
and compared them with the results gotten by the in-house
built field only surface integral method [43,49–53]. Good
agreement has been found between the results obtained by the
different methods mentioned above.

FIG. 10. Good agreement has been found for the electromagnetic
fields between the results obtained by the asymptotic approximations
shown in Appendix B (solid lines), by the in-house built field only
surface integral method [43] (symbols) when a = 200 nm, d = 50
nm, n1 = 1, n2 = 2.4, E0 = p/(4πε0a3), and λ = 708 nm: (a) a
vertical electric dipole and (b) a horizontal electric dipole. The curves
plotted are the magnitudes of the electromagnetic fields along the
circle concentric with the spherical particle with radius as 4a on the
xz plane [as shown in the inset of Fig. 10(a)].
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