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We propose a streamlined method of fast enantiomer-specific state transfer (ESST) of chiral molecules
in cyclic three-level systems. Such three-level enantiomers are chirality-dependent systems driven by one of
the three Rabi frequencies differing with a sign for the left- and right-handed chiral molecules. When the
Hamiltonian of the three-level chiral molecules possesses the specific SU(2) algebraic structure, the populations
transferred to the two excited states are shown to be exchanged between the left- and right-handed chiral
molecules if they are initially prepared in their ground states. By employing unitary SU(2) transformation
and inversely engineering time-dependent Hamiltonians with designed Rabi frequencies, we can make the left-
and right-handed chiral molecules evolve respectively to different excited states from their initial ground states
simultaneously. Thus a fast ESST is achieved.
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I. INTRODUCTION

A molecule is chiral when it cannot be superposed on its
mirror image via translations and rotations. Chiral molecules
contain two types, e.g., left- and right-handed chiral molecules
[1] (often called enantiomers). They play important roles in
contemporary science, such as chemistry [2], biotechnologies
[3], and pharmaceutics [4]. Enantiodiscrimination [5] (as well
as enantioseparation [6,7] and enantioconversion [8]) of chiral
molecules is a significant and difficult challenge in the studies
of chiral molecules. The traditional methods of enantiodis-
crimination include circular dichroism [9], vibrational circular
dichroism [10], optical rotation [11], and Raman optical ac-
tivity [12], where the interference between magnetic-dipole
(or electrical-quadrupole) and electronic-dipole interactions is
used. The principle is to break the mirror symmetry of the
enantiomers by using circularly polarized light.

About 20 years ago, cyclic three-level systems of chi-
ral molecules [13,14] were proposed with applying three
electromagnetic fields (optical or microwave fields) to cou-
ple with the three electronic-dipole transitions, respectively.
Such cyclic three-level systems of chiral molecules are sim-
ilar for both left- and right-handed chiral molecules with
only a sign difference in one of the Rabi frequencies (cou-
pling strengths). Based on the cyclic three-level systems, the
enantiomer-specific state transfer (ESST) of chiral molecules
has been achieved with an adiabatical passage [13]. For the
left- and right-handed chiral molecules in the initial ground
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states, they will evolve finally to different-energy states. Af-
ter the achievement of ESST, one can further realize the
spatial enantioseparation by a variety of energy-dependent
processes [15] or the enantiodiscrimination for the chiral
molecules. In the previous works of enantiodiscrimination
[9–12], the magnetic-dipole or electrical-quadrupole interac-
tions (which are weak usually) are involved and thus the chiral
signal is weak. In contrast, the ESST based on cyclic three-
level systems, where only the electric-dipole interactions are
involved, provides an alternative method for enantiodiscrim-
ination. Moreover, based on the similar cyclic three-level
(sub-)systems, the direct enantiodiscrimination [16–27] and
spatial enantioseparation [15,28–31] (together with enantio-
conversion [14,32–35]) have also been proposed.

In the original method of ESST [13], the ESST process
is slow and complicated due to the requirement of adiabatic
passage (together with diabatic passage). In order to obtain the
faster ESST process, a dynamic method of ESST [36,37] was
proposed by using several short resonant pulses in the similar
cyclic three-level systems. Experimentally, ESST of chiral
molecules were demonstrated in cyclic three-level systems
by applying three microwave fields dynamically [38–43]. Re-
cently, the fast method of shortcuts to adiabaticity to achieve
the ESST [44] was proposed by using dynamic short-pulse op-
erations. Several interesting theoretical methods of ESST with
other problems were also proposed and developed [45–54].

In this paper we propose a streamlined and efficient method
to realize the fast ESST of chiral molecules in cyclic three-
level systems. The basic strategy of our method is to inversely
engineer the Hamiltonian of the cyclic three-level system
to achieve desired state transfer. When the Hamiltonian of
the three-level chiral molecules possesses the specific SU(2)
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FIG. 1. (a) Left- and (b) right-handed chiral molecules of cyclic
three-level systems. Three electromagnetic fields couple, respec-
tively, to the three electric-dipole transitions with �x , ±�y, and �zeiφ

the corresponding Rabi frequencies.

algebraic structure, the populations occupying the two excited
states are shown to be exchanged between the left- and right-
handed chiral molecules if they are initially in their ground
states. This will facilitate a streamlined physical mechanism
to implement the fast ESST. Here we focus on designing
a neat process of population transfer to the target excited
state for only one type of enantiomers (e.g., left-handed
chiral molecules). Correspondingly, the specific SU(2) alge-
braic structures of the system enable the right-handed chiral
molecules to automatically access a population transfer to the
other excited state from their ground states, simultaneously.
By utilizing a SU(2) transformation [55,56], the fast ESST
is achieved with choosing suitable parameters to make the
left-handed (right-handed) chiral molecules ultimately evolve
to one (the other one) of the excited states.

II. CYCLIC THREE-LEVEL SYSTEMS
WITH SU(2) STRUCTURES

The two enantiomers can be modeled simultaneously as
cyclic three-level systems (see Fig. 1) based on electric-dipole
transitions [13,57]. Here we only consider the case that all the
three electromagnetic fields couple resonantly to the electric-
dipole transitions, respectively. Hence the Hamiltonians of the
cyclic three-level systems for the two enantiomers in the basis
|m〉L and |m〉R (m = 1, 2, 3) can be described in the interac-
tion picture as (h̄ = 1) [44]

ĤL,R(t ) =
⎛
⎝ 0 �x(t ) �z(t )e−iφ

�x(t ) 0 ±�y(t )
�z(t )eiφ ±�y(t ) 0

⎞
⎠, (1)

where the indices L and R denote, respectively, the left- and
right-handed chiral molecules. Here � j ( j = x, y, z) are the
Rabi frequencies, which can be controlled by varying the am-
plitudes of the applied electromagnetic fields. Without loss of
generality, we have assumed � j are real. φ is the overall phase
of the three Rabi frequencies. The only difference between the
two enantiomers is the sign before the Rabi frequency �y. As
seen in Eq. (1), the + (−) sign corresponds to left- (right-)
handed chiral molecules. This will inspire us to realize ESST
from a different perspective.

Now we consider a general cyclic three-level system with
its Hamiltonian being the same form as that for the left-handed
chiral molecules in Eq. (1). From now on we focus on the case

�x = �z ≡ �, φ = π/2. (2)

The related Hamiltonian can be expressed in the basis of
{|1〉, |2〉, |3〉} as

Ĥ (t ) = �(t )K̂x + �y(t )K̂y + �(t )K̂z, (3)

with |1〉 = (1, 0, 0)T , |2〉 = (0, 1, 0)T , |3〉 = (0, 0, 1)T .
Here, K̂x, K̂y, and K̂z are angular-momentum operators [58]:

K̂x =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, K̂y =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

K̂z =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠. (4)

They satisfy the commutation relations

[K̂x, K̂y] = iK̂z, [K̂y, K̂z] = iK̂x, [K̂z, K̂x] = iK̂y. (5)

Note that the Hamiltonian (3) is written as a sum of three
SU(2) operators. That means it addresses the SU(2) algebraic
structure [59]. Based on such a structure with the condition
(2), we will further investigate the ESST in following sections.
Note that the condition (2) is always possible to fulfill for
the single-loop cyclic three-level system of chiral molecules
in experiments by appropriately adjusting the amplitudes and
initial phases of the three electromagnetic fields, instead of
depending on specific molecular parameters. We would also
like to point out that an alternative condition �x = �z ≡ �

and φ = −π/2 would also work for the achievement of ESST,
similar to the case of condition (2). Here we only focus on
condition (2).

III. THE EXCHANGE SYMMETRY OF POPULATIONS
IN THE TWO EXCITED STATES

We consider the general Hamiltonian for the cyclic three-
level system with the SU(2) algebraic structure described by
the Hamiltonian (3), which can be expressed in the basis of
{|1〉, |2〉, |3〉} as

Ĥ (t ) =
⎛
⎝ 0 � −i�

� 0 �y

i� �y 0

⎞
⎠. (6)

By introducing a new basis {|1′〉, |2′〉, |3′〉} with |1′〉 =
|1〉, |2′〉 = i|3〉, and |3′〉 = −i|2〉, the Hamiltonian Ĥ (t ) can
be reexpressed as

Ĥ (t ) =
⎛
⎝ 0 � −i�

� 0 −�y

i� −�y 0

⎞
⎠

′

. (7)

Here the prime is used to emphasize the basis of
{|1′〉, |2′〉, |3′〉}.

The corresponding evolution states are |ψ (t )〉 =
C1(t )|1〉 + C2(t )|2〉 + C3(t )|3〉 for Eq. (6) and |ψ (t )〉 =
C′

1(t )|1′〉 + C′
2(t )|2′〉 + C′

3(t )|3′〉 for Eq. (7). Therefore we
obtain

C1(t ) = C′
1(t ), C2(t ) = −iC′

3(t ), C3(t ) = iC′
2(t ). (8)

That is, the related populations for the energy levels, defined
as Pm(t ) = |Cm(t )|2 and P′

m(t ) = |C′
m(t )|2, satisfy

P1(t ) = P′
1(t ), P2(t ) = P′

3(t ), P3(t ) = P′
2(t ). (9)
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Note that when the Hamiltonian of the left-handed chiral
molecules in the basis {|m〉L} has the same form as Eq. (6),
the corresponding Hamiltonian of the right-handed chiral
molecules in the basis {|m〉R} should have the same form as
Eq. (7). According to Eq. (9), for the left- and right-handed
chiral molecules with the similar initial states (e.g., |1〉L,R),
we have

PL
1 (t ) = PR

1 (t ), PL
2 (t ) = PR

3 (t ), PL
3 (t ) = PR

2 (t ), (10)

which mean the populations occupying the two excited states
are exchanged for the two enantiomers at all the evolution
times.

IV. GENERAL TIME EVOLUTION
BY THE SU(2) TRANSFORMATION

For the cyclic three-level system described by Eq. (3), the
corresponding Schrödinger equation is

i∂t |ψ (t )〉 = Ĥ (t )|ψ (t )〉, (11)

with the evolution state |ψ (t )〉 = Û (t )|ψ (0)〉 and the evolu-
tion operator

Û (t ) = T exp[−i
∫ t

0
Ĥ (t ′)dt ′]. (12)

In order to design the evolution path of the system, we
use the unitary SU(2) transformation defined by |ψS (t )〉 =
Ŝ†(t )|ψ (t )〉 with

Ŝ(t ) ≡ Ŝ(α, θ, β ) = eiα(t )K̂z e−iθ (t )K̂y eiβ(t )K̂z , (13)

where α, θ , and β are time-dependent real functions (which
will be further determined on demand).

After the transformation, we have the Schrödinger equation

i∂t |ψS (t )〉 = ĤS (t )|ψS (t )〉 (14)

with the transformed Hamiltonian

ĤS (t ) = Ŝ†(t )Ĥ (t )Ŝ(t ) + i[∂t Ŝ
†(t )]Ŝ(t ). (15)

The explicit form of ĤS (t ) is given as

ĤS (t ) = fx(t )K̂x + fy(t )K̂y + fz(t )K̂z, (16)

with the time-dependent coefficients

fx := � cos α cos β cos θ − � sin α sin β

−�y sin α cos β cos θ − �y cos α sin β

−� cos β sin θ + θ̇ sin β − α̇ cos β sin θ,

fy := � cos α sin β cos θ + � sin α cos β

−�y sin α sin β cos θ + �y cos α cos β

−� sin β sin θ − θ̇ cos β − α̇ sin β sin θ,

fz := � cos α sin θ − �y sin α sin θ + � cos θ

+β̇ + α̇ cos θ. (17)

And the corresponding time-evolution operator is

ÛS (t ) = T exp

[
−i

∫ t

0
ĤS (t ′)dt ′

]
. (18)

In order to remove the time-ordering operator T of ÛS (t ),
we can properly choose the parameters (i.e., α, θ , and β) to

design ĤS (t ) as the form ĤS (t ) = f j (t )K̂j ( j = x, y, z). In this
case, the time-evolution operator reduces to

ÛS (t ) = e−i
∫ t

0 ĤS (t ′ )dt ′ = e−iδ j (t )K̂ j , (19)

where δ j (t ) = ∫ t
0 f j (t ′)dt ′. Correspondingly, before the SU(2)

transformation, the time-evolution operator

Û (t ) = Ŝ(t )ÛS (t )Ŝ†(0) (20)

can be expressed as [60]

Û (t ) =
3∑

n=1

|φn(t )〉〈φn(0)|, (21)

where {|φn(t )〉} are a set of orthogonal time-dependent states
(their explicit forms depend on the detailed form of ĤS (t ) and
will be given below for the specific case under consideration).
According to Eq. (21), for an initial state |φn(0)〉, it will evolve
to |φn(t )〉 at any time t . This enables a dynamical passage with
no transitions among the three time-dependent states during
the time evolution.

By setting ĤS (t ) equal to one of f j (t )K̂j ( j = x, y, z), we
can obtain the explicit forms of �(t ) and �y(t ). Here we
choose the case of ĤS (t ) = fz(t )K̂z, which implies that the
coefficients of K̂x and K̂y in Eq. (16) are zero: fx(t ) = 0 and
fy(t ) = 0. For simplicity, hereafter we take β = 0 to illustrate
the specific design process. Then we can obtain the Rabi
frequencies

� = α̇ cos α sin θ + θ̇ cos θ sin α

cos θ − cos α sin θ
,

�y = − α̇ sin α sin θ − θ̇ (cos α cos θ − sin θ )

cos θ − cos α sin θ
, (22)

and the time-evolution operator after the transformation reads

ÛS (t ) = e−iδz (t )K̂z , (23)

where δz(t ) = ∫ t
0 fz(t ′)dt ′ is given as

δz(t ) =
∫ t

0

α̇(t ′) + θ̇ (t ′) sin α(t ′)
cos θ (t ′) − cos α(t ′) sin θ (t ′)

dt ′. (24)

Therefore, the time-evolution operator before the SU(2) trans-
formation is

Û (t ) = eiα(t )K̂z e−iθ (t )K̂y eiδz (t )K̂z eiθ (0)K̂y e−iα(0)K̂z . (25)

Combined with Eq. (21), the corresponding orthogonal time-
dependent states are obtained as

|φ1(t )〉 =
⎛
⎝ cos α(t ) cos δz(t )− sin α(t ) cos θ (t ) sin δz(t )

i sin θ (t ) sin δz(t )
− sin α(t ) cos δz(t ) − cos α(t ) cos θ (t ) sin δz(t )

⎞
⎠,

|φ2(t )〉 =
⎛
⎝−i sin α(t ) sin θ (t )

cos θ (t )
−i cos α(t ) sin θ (t )

⎞
⎠,

|φ3(t )〉 =
⎛
⎝sin α(t ) cos θ (t ) cos δz(t ) + cos α(t ) sin δz(t )

−i sin θ (t ) cos δz(t )
cos α(t ) cos θ (t ) cos δz(t ) − sin α(t ) sin δz(t )

⎞
⎠.

(26)
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V. INVERSELY ENGINEERING THE HAMILTONIAN TO
ACHIEVE ENANTIOMER-SPECIFIC STATE TRANSFER

We now specify an inversely engineered Ĥ (t ) for the
general cyclic three-level system to achieve the desired
population transfer. Suppose we aim to obtain the popu-
lation transfer from the initial state |1〉 to the final target
one |2〉. Then the time-evolution operator in Eq. (25)
with the orthogonal time-dependent states in Eq. (26) can
guarantee such a fast population transfer passage if we
take |φ2(0)〉 = −i(1, 0, 0)T = −i|1〉 as the initial state and
|φ2(τ )〉 = (0, 1, 0)T = |2〉 as the target state at a given final
time τ . Note that here a global phase 3π/2 appears before |1〉
for the initial state. In fact, such a global phase for the initial
state does not matter here and would not bring any effects
to the excitation process (e.g., under the same operation, if
we take |φ2(0)〉 = (1, 0, 0)T = |1〉 as the initial state, then
we will obtain the target state |φ2(τ )〉 = i(0, 1, 0)T = i|2〉).
Using these boundary conditions, we can purposely design
the time functions of the parameters α(t ) and θ (t ) to inversely
engineer the Rabi functions � and �y through Eq. (22). As
there are many sets of interpolation functions that are consis-
tent with the boundary conditions of the initial and final time
instants, now we are ready to apply two different protocols of
inverse engineering.

Protocol 1. In the first protocol, based on the require-
ments of |φ2(0)〉 = −i(1, 0, 0)T = −i|1〉 at the initial time
and |φ2(τ )〉 = (0, 1, 0)T = |2〉 at the final time τ , the bound-
ary conditions can be given as

α(0) = π

2
, θ (0) = π

2
, θ (τ ) = 0. (27)

With these boundary conditions, one can insert a polynomial
for α(t ) and θ (t ) to determine � and �y. Here we can simply
choose

α(t ) = π

2
, θ (t ) = π

2

(
1 − t

τ

)
. (28)

Thus the designed Rabi frequencies in Eq. (22) reduce to

� = θ̇ , �y = −θ̇
sin θ

cos(θ − ε)
, (29)

where the small value ε is set to avoid the infinite values of �y

at the initial time instant.
So far, we have shown how to achieve the population trans-

fer of the general cyclic three-level system from the initial
state −i|1〉 to the final one |2〉, following the designed Rabi
frequencies in Eq. (29). For the left-handed chiral molecule
whose Hamiltonian ĤL(t ) in Eq. (1) has the same form as the
general one Ĥ (t ) (3), it can also be transferred from the initial
state −i|1〉L to the final one |2〉L following the designed Rabi
frequencies in Eq. (29).

Figure 2(a) shows the corresponding designed Rabi fre-
quencies for the left-handed chiral molecule in protocol 1.
By following the designed Rabi frequencies in Eq. (29), the
populations in the initial state −i|1〉L with PL

1 (0) = 1 are ap-
proximately transferred to that in the state |2〉L with PL

2 (τ ) =
0.9946 with a small value ε = 0.04, as shown in Fig. 2(b).
Note that in Fig. 2, the time (the Rabi frequencies) is given
in the unit of τ (2π/τ ), and the evolved populations are inde-
pendent of the parameter τ .

FIG. 2. (a) The designed Rabi frequencies � (red solid line) and
�y (blue dashed line) in Eq. (29) with the conditions in Eq. (28).
(b) The corresponding time evolution of the populations for the left-
and right-handed chiral molecules: PL

1 (t ) = PR
1 (t ) (red solid line),

PL
2 (t ) = PR

3 (t ) (blue dashed line), and PL
3 (t ) = PR

2 (t ) (black dotted
line). Here ε = 0.04. The initial states are −i|1〉L,R.

On the other hand, the right-handed chiral molecule, whose
Hamiltonian is similar to that of the left-handed one with
only changing the sign before �y, will evolve simultaneously
following the same Rabi frequencies designed in Eq. (29).
According to Eq. (10), when the left- and right-handed chi-
ral molecules address the specific SU(2) algebraic structure,
that is, their Hamiltonians have the similar forms as Eq. (3),
their populations occupying the ground states are equal and
their populations occupying the two excited states are ex-
changed at all the evolution times (assuming the initial states
be the ground ones |1〉L,R). As also shown in Fig. 2(b), the
populations in the initial state −i|1〉R with PR

1 (0) = 1 are
finally transferred approximately to that in the state i|3〉R

with PR
3 (τ ) = 0.9946 for the right-handed chiral molecules,

following the designed Rabi frequencies in Eq. (29). There-
fore, for the same designed Rabi frequencies in Fig. 2(a), the
left- and right-handed chiral molecules staying initially in the
ground states −i|1〉L,R can evolve in a short time to the final
states |2〉L and i|3〉R, respectively, with high efficiencies. That
means the fast ESST is achieved.

For the designed Rabi frequencies in protocol 1, � cor-
responds to a square pulse and �y to a time-varying pulse
with large intensity. Using the square pulse means the abrupt
switching of the pulses, which would be harmful to the effi-
ciency of the ESST. At the same time, we do not expect to
use a pulse with too large intensity. Thus it is better to choose
suitable Rabi frequencies so that both the pulses can be turned
on and off smoothly (e.g., the pulses vanish smoothly at t = 0
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FIG. 3. (a) The designed Rabi frequencies � (red solid line)
and �y (blue dashed line) in Eq. (32) with the conditions (31).
(b) The corresponding time evolution of the populations for the left-
and right-handed chiral molecules: PL

1 (t ) = PR
1 (t ) (red solid line),

PL
2 (t ) = PR

3 (t ) (blue dashed line), and PL
3 (t ) = PR

2 (t ) (black dotted
line). Here ε ′ = 0.04. The initial states are −i|1〉L,R.

and t = τ ), and the intensities of pulses can be restricted to be
in a smaller range, as shown in the following protocol 2.

Protocol 2. First we still consider the general cyclic
three-level system and aim to obtain the evolution from the
initial state |φ2(0)〉 = −i(1, 0, 0)T = −i|1〉 to the final one
|φ2(τ )〉 = (0, 1, 0)T = |2〉. In protocol 2, we expect both the
pulses (also the Rabi frequencies) vanish smoothly at t = 0
and t = τ . Now the boundary conditions can be given as

α(0) = π

2
, θ (0) = π

2
, θ (τ ) = 0,

θ̇ (0) = 0, θ̇ (τ ) = 0. (30)

Consistent with these boundary conditions, here we can
choose

α(t ) = π

2
, θ (t ) = π

2
− 3π

2τ 2
t2 + π

τ 3
t3. (31)

Following Eq. (31), one can obtain the designed Rabi frequen-
cies,

� = θ̇ , �y = −θ̇
sin θ

cos(θ − ε′)
, (32)

where the small value ε′ is set to avoid the infinite values of
�y at the initial time instant. Note that the Rabi frequencies
designed in Eq. (32) have the similar form as those in Eq. (29).
But the explicit forms of θ (t ) in Eqs. (29) and (32) are differ-
ent [see, respectively, Eqs. (28) and (31)].

Figure 3 shows the designed Rabi frequencies and popula-
tion transfers for the left- and right-handed chiral molecules

in protocol 2. The corresponding populations in the initial
state −i|1〉L (−i|1〉R) with PL

1 (0) = 1 [PR
1 (0) = 1] are approx-

imately transferred to those of the final state |2〉L (−i|3〉R)
with PL

2 (τ ) = 0.9946 [PR
3 (τ ) = 0.9946] of the left- (right-)

handed chiral molecules with the small value ε′ = 0.04.
Compared with the case of protocol 1, there exist two ad-

vantages in protocol 2: (1) Both the Rabi frequencies �(t ) and
�y(t ) vanish in the initial and final time instants, which avoids
abrupt switching of the pulses. (2) The maximum value for the
designed Rabi frequencies in protocol 2 is smaller than that in
protocol 1 for the same evolution time and equal small values
ε = ε′, which makes it easier to apply in experiments. Note
that except for the above two protocols, there are a variety of
alternative protocols to realize the similar fast ESST of chiral
molecules by choosing different parameters (e.g., α and θ ).

Note that in our fast dynamical method of ESST, all
three optical fields are applied simultaneously. This is dif-
ferent from the previous fast dynamical method of ESST in
Refs. [36,42], where the optical pules are applied successively.
We would also like to point out that in the previous methods of
ESST [13,14,36,42,44], the specific optical pulses should be
designed to accomplish the complete population transfer from
the ground state to a particular final state (e.g., |1〉L → |2〉L)
for the left-handed molecule and at the same time accom-
plish the population transfer from the ground state to the
different-energy final state for the right-handed molecule (e.g.,
|1〉R → |3〉R). By contrast, in our work we focus on the case
that the cyclic three-level systems of two enantiomers possess
the specific SU(2) algebraic structures, which guarantees the
populations occupying the two excited states are exchanged
for the two enantiomers if they are initially prepared in their
ground states. Therefore we only need to design a simple pro-
cess for the optical fields aiming at obtaining the population
transfer, e.g., from states |1〉L to |2〉L for left-handed chiral
molecules, since such a process would make the right-handed
chiral molecules obtain automatically the population transfer
from states |1〉R to |3〉R simultaneously. In a nutshell, the
complete population transfer of one enantiomer guarantees a
successful population transfer of the other one in this case,
leading to an efficient ESST.

We would like to point out that in protocol 2, the final
populations of the target states are determined by the small
value ε′ and are independent of the parameter τ , similar to the
case in protocol 1. As shown in Fig. 4, the final populations
can be further improved by decreasing the small value ε′
[see Fig. 4(b)], but decreasing the small amount ε′ implies the
tradeoff of requiring larger Rabi frequencies and laser intensi-
ties [47,59] [see Fig. 4(a)]. Here the maximum absolute value
of the Rabi frequencies during the whole evolution process is
defined as �max = Max{|�|, |�y|}.

In experiments, the Rabi frequencies can be controlled
by varying the amplitudes of the applied electromagnetic
fields. Typical experimentally available Rabi frequencies for
the transitions of chiral molecules are about 2π × 10 MHz or
less [18,38–40]. Hence we can choose the small value ε′ in the
region (0.005, 0.05) so that the final populations in the target
states are larger than 0.990 with the maximum value of the
designed Rabi frequencies being less than 2π × 10 MHz in
protocol 2. This means our designed Rabi frequencies would
be applicable in current experiments of chiral molecules. On
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FIG. 4. (a) The maximum absolute value of the Rabi frequencies
�max vs the small value ε ′ in protocol 2 with τ = 0.5 µs. (b) The
corresponding populations of the target states at the final time vs the
small value ε ′. The initial states are −i|1〉L,R.

the other hand, in general, decoherence is one of the main
obstacles in quantum-state-transfer operations. In our method,
the evolution time can be shortened to 0.5 µs for the ex-
perimentally available Rabi frequencies 2π × 10 MHz. That
means the effect of the decoherence (typically about 5 ∼ 6 µs
[17,38]) is negligible in our method involving a fast dynamical
process. In addition, we have assumed the Rabi frequen-
cies (and equivalently, the amplitudes of the electromagnetic
fields) are uniform for all the molecules. This requires the
characteristic length of the molecular sample in experiments
should be much smaller than the beam radii of the electro-
magnetic fields (typically of the order of the wavelengths of
the electromagnetic fields) so that the Rabi frequencies are
approximately the same for all the molecules.

VI. CONCLUSION

In conclusion, we have proposed a streamlined method
to realize the fast ESST of chiral molecules based on the
cyclic three-level systems. When the Hamiltonians of the
three-level chiral molecules possess the specific SU(2) alge-

braic structures, the populations occupying the two excited
states are exchanged between the left- and right-handed chiral
molecules at all the evolution times if prepared initially in
their corresponding ground states. This means that the ESST
can be achieved by focusing on designing the desired popu-
lation transfer for only one enantiomer, instead of designing
simultaneously the processes of desired population transfer
for the two enantiomers, respectively. By means of the unitary
SU(2) transformation with large freedoms to design the ap-
propriate parameters, the related time-evolution operator (as
well as the evolved state) can be determined in a simple way
without involving the time-ordering calculation. Moreover,
by inversely engineering the Rabi frequencies, two protocols
are shown to make the two enantiomers ultimately evolve
to different excited states to achieve the fast ESST. After
the achievement of the fast ESST, it allows further spatial
separation of the chiral molecules with different chiralities or
discrimination of their chiralities.

We would like to point out that our ESST method is
performed in a nonadiabatic process and is thus faster than
the previous slow adiabatic processes [13,14]. Unlike the
case of nonadiabatic dynamic methods of ESST [36,42,49,52]
with sequential optical pulses, here we have applied all the
three electromagnetic fields simultaneously to realize fast
ESST. Therefore our method may be faster than these pre-
vious nonadiabatic dynamic methods due to fewer operation
steps and operation times. Moreover, in the fast shortcuts-to-
adiabaticity method of ESST [44] and nonadiabatic dynamic
method of ESST [46], three electromagnetic fields are also
applied simultaneously. But the desired population trans-
fer processes for both enantiomers should be designed in
Refs. [44,46]. By contrast, our method focuses on only design-
ing a neat process of population transfer for one enantiomer
with the specific SU(2) algebraic structure of the system,
enabling the other enantiomer to automatically access a de-
sired population transfer simultaneously to achieve the fast
ESST, which dramatically simplifies the control procedure.
Therefore our method of fast ESST has promising applica-
tions in discriminating molecular chirality and controlling the
dynamics of chiral molecules.
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