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Direction-dependent coupling between a nanofiber-guided light field and a two-level
atom with an electric quadrupole transition
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We study the directional dependence of the coupling between a nanofiber-guided light field and a two-level
atom with an electric quadrupole transition. We examine the situation where the nanofiber is aligned along the z
axis, the atom lies on the fiber transverse x axis, the quantization axis for the atomic internal states is the other
orthogonal transverse y axis, the atomic upper and lower levels are the magnetic sublevels M ′ and M of hyperfine-
structure levels of an alkali-metal atom, and the field is in a quasilinearly polarized fundamental guided mode
HE11 with the polarization ξ = x or y. We find that the absolute value of the quadrupole Rabi frequency depends
on the propagation direction of the light field in the cases of (M ′ − M = ±1, ξ = y) and (M ′ − M = ±2, ξ = x).
We show that the directional dependence of the coupling leads to the directional dependence of spontaneous
emission into guided modes. We find that the directional dependence of the atom-field coupling in the case
of quadrupole transitions is not entirely due to spin-orbit coupling of light: there are some other contributions
resulting from the gradient of the spatial phase factor of the field.

DOI: 10.1103/PhysRevA.107.013713

I. INTRODUCTION

It is known that when an atom with a rotating electric
dipole interacts with a light field confined in a mode of a
macroscopic body, such as a nanofiber [1–6], flat surface
[6–8], photonic topological material [9,10], photonic crystal
waveguide [11], and nonreciprocal medium [12], the strength
of the atom-field coupling may become asymmetric with re-
spect to opposite propagation directions of the field. This
chiral effect is due to the existence of a nonzero longitudinal
field component, which oscillates in phase quadrature with
respect to a nonzero transverse field component and hence
creates a local transverse spin angular momentum. Due to the
time-reversal symmetry, a reverse of the propagation direction
leads to a change in the sign of the local transverse spin,
that is, the local transverse spin is locked to the propagation
direction [13–19]. Thus, the directional dependence of the
coupling between a confined light field and an atom with a
rotating electric dipole is a result of spin-orbit coupling of
light carrying transverse spin angular momentum [13–19].

Electric quadrupole transitions have been studied for
atoms in free space [20–32], in evanescent fields [33–35],
near dielectric microspheres [36], near ideally conduct-
ing cylinders [37], near plasmonic nanostructures [38,39],
and near nanofibers [40,41]. Recently, excitations of elec-
tric quadrupole transitions of alkali-metal atoms using
nanofiber-guided light fields have been experimentally
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realized [41]. Unlike electric dipole transitions, electric
quadrupole transitions depend on the gradients of the field
components. Furthermore, the structure of the quadrupole
tensor is more complicated than that of the dipole vector. Con-
sequently, the directional dependence of the coupling between
a confined light field and an atom with a quadrupole transition
is not simple and deeper insight into the involved processes is
desirable.

The aim of this paper is to study the directional dependence
of the coupling between a nanofiber-guided light field and
a two-level atom with an electric quadrupole transition. We
investigate the situation where the nanofiber is aligned along
the z axis, the atom lies on the fiber transverse x axis, the
quantization axis for the atomic internal states is the other or-
thogonal transverse y axis, the atomic upper and lower levels
are the magnetic sublevels M ′ and M of hyperfine-structure
(hfs) levels of an alkali-metal atom, and the field is in a
quasilinearly polarized fundamental guided mode HE11 with
the polarization ξ = x or y. We find that the absolute value of
the quadrupole Rabi frequency depends on the propagation di-
rection of the field in the cases where the atomic internal states
and the polarization of the field are appropriate. We show that
the directional dependence of the atom-field coupling in the
case of quadrupole transitions is partly but not entirely due to
spin-orbit coupling of light.

The paper is organized as follows. In Sec. II, we describe
the model of a two-level atom with an electric quadrupole
transition driven by a guided light field of an optical nanofiber.
In Sec. III, we study the directional dependence of the cou-
pling between the atom and the nanofiber-guided light field.
In Sec. IV, we present the results of numerical calculations for
the quadrupole Rabi frequency and the asymmetry parameter.
Our conclusions are given in Sec. V.
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FIG. 1. (a) Atom with the local quantization coordinate system
{x1, x2, x3} in the vicinity of an optical nanofiber with the fiber-based
Cartesian coordinate system {x, y, z} and the corresponding cylindri-
cal coordinate system {r, ϕ, z}. (b) Schematic of a two-level atom
whose upper and lower levels are the magnetic sublevels |n′F ′M ′〉
and |nFM〉, respectively, of hfs levels of a realistic alkali-metal
atom. Under appropriate conditions, quadrupole coupling between
the atom and the nanofiber-guided light field depends on the propa-
gation direction.

II. MODEL

We consider a two-level atom with an electric quadrupole
transition interacting with a guided light field of a nearby
optical nanofiber (see Fig. 1). We review the descriptions of
the atomic electric quadrupole and the nanofiber-guided light
field below.

A. Electric quadrupole transition between two magnetic
levels of an alkali-metal atom

We assume that the atom under consideration has a single
valence electron. To describe the electric quadrupole and the
internal states of the atom, we use the local Cartesian coordi-
nate system {x1, x2, x3}, where the origin x = 0 is located at
the position of the center of mass of the atom [see Fig. 1(a)].
The electric quadrupole moment tensor of the atom is given
as [42]

Qi j = e(3xix j − R2δi j ), (1)

for i, j = 1, 2, 3, where xi and x j are the ith and jth coordi-

nates of the valence electron and R =
√

x2
1 + x2

2 + x2
3 is the

distance from the electron to the center of mass of the atom.
We assume that the optical driving field is near to res-

onance with a quadrupole transition between two atomic

internal states, namely, the upper state |e〉 with the energy
h̄ωe and the lower state |g〉 with the energy h̄ωg. We present
the electric component E of the optical field in the form E =
(Ee−iωt + E∗eiωt )/2, where E is the field amplitude and ω is
the field frequency. The interaction Hamiltonian of the system
in the interaction picture and the rotating-wave approximation
reads

HI = − h̄

2
�e−i(ω−ω0 )tσeg + H.c., (2)

where ω0 = ωe − ωg is the atomic transition frequency, σeg =
|e〉〈g| is the atomic transition operator, and

� = 1

6h̄

∑
i j

〈e|Qi j |g〉∂E j

∂xi
(0) (3)

is the Rabi frequency for the quadrupole transition between
the levels |e〉 and |g〉 [23]. In Eq. (3), the spatial derivatives of
the field components E j with respect to the coordinates xi are
calculated at the position x = 0 of the atom.

To be concrete, we consider the quadrupole transition
between the magnetic sublevels |e〉 = |n′F ′M ′〉 and |g〉 =
|nFM〉 of an alkali-metal atom [see Fig. 1(b)]. Here, n′
and n denote the principal quantum numbers and all addi-
tional quantum numbers not shown explicitly, F ′ and F are
the quantum numbers for the total angular momenta of the
atomic internal states, and M ′ and M are the magnetic quan-
tum numbers. The matrix elements 〈n′F ′M ′|Qi j |nFM〉 of the
quadrupole operators Qi j are given as [23,40]

〈n′F ′M ′|Qi j |nFM〉

= 3eu(M ′−M )
i j (−1)F ′−M ′

(
F ′ 2 F

−M ′ M ′ − M M

)

×〈n′F ′‖T (2)‖nF 〉, (4)

where the matrices u(q)
i j , with i, j = 1, 2, 3 and q = M ′ − M =

−2,−1, 0, 1, 2, characterize the structures of the spherical
components of the quadrupole tensor Qi j and are given as

u(0)
i j = 1√

6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠, u(±1)

i j = 1

2

⎛
⎝ 0 0 ∓1

0 0 i
∓1 i 0

⎞
⎠,

u(±2)
i j = 1

2

⎛
⎝ 1 ∓i 0

∓i −1 0
0 0 0

⎞
⎠. (5)

In Eq. (4), the array in the parentheses is a 3 j symbol and the
invariant factor 〈n′F ′‖T (2)‖nF 〉 is the reduced matrix element
of the tensor operators T (2)

q = 2(2π/15)1/2R2Y2q(ϑ, φ). Here,
Ylq is a spherical harmonic function of degree l and order
q, and ϑ and φ are spherical angles in the spherical coordi-
nates {R, ϑ, φ} associated with the local Cartesian coordinates
{x1, x2, x3}.

When we insert Eq. (4) into Eq. (3), we obtain [23]

� = CF ′M ′FMSM ′−M , (6)

where

CF ′M ′FM = e

2h̄
(−1)F ′−M ′

(
F ′ 2 F

−M ′ M ′ − M M

)

×〈n′F ′‖T (2)‖nF 〉 (7)
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is a proportionality coefficient and

SM ′−M =
∑

i j

u(M ′−M )
i j

∂E j

∂xi
(0) (8)

is a reduced coupling factor. Note that CF ′M ′FM depends on
the atom, but not on the field, and SM ′−M depends on the
difference M ′ − M, but not on M ′ and M separately.

The electric quadrupole transition selection rules for F
and F ′ and for M and M ′ are |F ′ − F | � 2 � F ′ + F and
|M ′ − M| � 2. For the quantum numbers J and J ′ of the
total electronic angular momenta, the selection rules are |J ′ −
J| � 2 � J ′ + J . For the quantum numbers L and L′ of the
orbital electronic angular momenta, the selection rules read
|L′ − L| = 0, 2 and L′ + L � 2.

For a plane-wave light field E = E0εeik·x with the am-
plitude E0, the polarization vector ε, and the wave vector
k in free space, the reduced coupling factor is found to be
Sq = iE0(k · u(q) · ε). For such a field, |Sq| and hence |�| do
not change when the direction of the wave vector k is reversed.
Thus, the strength of the coupling between a plane-wave light
field and an atom with a quadrupole transition is symmetric
with respect to the opposite propagation directions. We will
show in the next section that the directional symmetry of
coupling is not valid in the case of quasilinearly polarized
nanofiber-guided light fields.

B. Quasilinearly polarized nanofiber-guided field

We assume that the external field interacting with the atom
is the guided light field of a nearby optical nanofiber [see
Fig. 1(a)] [43–46]. The fiber is a dielectric cylinder of radius
a and refractive index n1 and is surrounded by an infinite
background medium of refractive index n2, where n2 < n1.
To describe the guided field, we use Cartesian coordinates
{x, y, z}, where z lies along the fiber axis, and also cylindrical
coordinates {r, ϕ, z}, where r and ϕ are the polar coordinates
in the cross-sectional xy plane.

We study the case of a single-mode vacuum-clad nanofiber
where n2 = 1 and the fiber radius is small enough so that it can
support only the fundamental guided mode HE11 in a finite
bandwidth around the central frequency ω0 = ωe − ωg of the
atom [43–46]. The single-mode condition for the fiber reads

ka
√

n2
1 − n2

2 < 2.405, where k = ω/c is the wave number of
the light field in free space [47]. The theory of guided modes
of cylindrical fibers is described in Ref. [47] and is summa-
rized and analyzed in detail for nanofibers in Ref. [48].

We assume that the field is prepared in a quasilinearly
polarized fundamental guided mode HE11 [47,48]. The am-
plitude of the electric part of the field in the mode is [47,48]

E = A[r̂er cos(ϕ − ϕ0) + iϕ̂eϕ sin(ϕ − ϕ0)

+ f ẑez cos(ϕ − ϕ0)]ei f βz. (9)

Here, β > 0 is the longitudinal propagation constant, f = +1
or −1 denotes the forward- or backward-propagation direction
along the fiber z axis, and ϕ0 is the azimuthal orientation
angle for the principal polarization axis in the fiber transverse
xy plane. The profile functions er = er (r), eϕ = eϕ (r), and
ez = ez(r) are the cylindrical components of the fundamental
guided mode with the forward-propagation direction and the

counterclockwise quasicircular polarization. These functions
depend on r but not on ϕ and z, and are given in Refs. [47,48].
The constant A depends on the mode power. The relative
phases between er and eϕ and between er and ez are ±π/2
[47,48]. For an appropriate choice of a common phase factor
for the mode profile functions, we have [47,48]

e∗
r = −er, e∗

ϕ = eϕ, e∗
z = ez, (10)

that is, er is purely imaginary and eϕ and ez are purely real.
It follows from Eqs. (9) and (10) that E| f =+1 ∝ E∗| f =−1.
This relation indicates that the quasilinearly polarized modes
having the opposite propagation directions f = ±1 and the
same polarization orientation angle ϕ0 are the time reversal
of each other. For ϕ0 = 0 or π/2, the mode is quasilinearly
polarized along the x or y direction, respectively.

In Eq. (9), the mode profile function ez for the lon-
gitudinal component of the field is accompanied by the
factor f = +1 or −1, which corresponds to the forward or
backward propagation direction of light, respectively. This
directional dependence is a consequence of the time-reversal
symmetry and leads to the spin-orbit coupling of light car-
rying transverse spin angular momentum [13–17]. Indeed,
the spin angular momentum density of light in the Abraham
formulation is given by j(sp) = (ε0/2ω)Im(E∗ × E ). From
Eqs. (9) and (10), we find j(sp) = j (sp)

r r̂ + j (sp)
ϕ ϕ̂, where j (sp)

r =
−(ε0|A|2/ω) f sin(ϕ − ϕ0) cos(ϕ − ϕ0)Re(eϕe∗

z ) and j (sp)
ϕ =

(ε0|A|2/ω) f cos2(ϕ − ϕ0)Im(ere∗
z ). It is clear that the local

spin vector j(sp) lies in the transverse xy plane and flips with
the reversion of the field propagation direction f .

Note that the basis unit vectors r̂ = cos ϕ x̂ + sin ϕ ŷ and
ϕ̂ = − sin ϕ x̂ + cos ϕ ŷ depend on the azimuthal angle ϕ. In
the cylindrical coordinates {r, ϕ, z}, the Cartesian components
Ex, Ey, and Ez of the field in a quasilinearly polarized funda-
mental guided mode are found from Eq. (9) to be

Ex = A[er cos(ϕ − ϕ0) cos ϕ − ieϕ sin(ϕ − ϕ0) sin ϕ]

× ei f βz,

Ey = A[er cos(ϕ − ϕ0) sin ϕ + ieϕ sin(ϕ − ϕ0) cos ϕ]

× ei f βz,

Ez = A f ez cos(ϕ − ϕ0)ei f βz. (11)

When we set ϕ0 = 0, we find from Eqs. (11) the following
expressions for the Cartesian components of the x-polarized
guided field E ( f x):

E ( f x)
x = A(er cos2 ϕ − ieϕ sin2 ϕ)ei f βz,

E ( f x)
y = A(er + ieϕ ) sin ϕ cos ϕ ei f βz,

E ( f x)
z = A f ez cos ϕ ei f βz. (12)

For ϕ0 = π/2, Eqs. (11) yield the following expressions for
the Cartesian components of the y-polarized guided field
E ( f y):

E ( f y)
x = A(er + ieϕ ) sin ϕ cos ϕ ei f βz,

E ( f y)
y = A(er sin2 ϕ − ieϕ cos2 ϕ)ei f βz,

E ( f y)
z = A f ez sin ϕ ei f βz. (13)
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III. DIRECTIONAL DEPENDENCE
OF THE ATOM-FIELD COUPLING

We show in this section that the interaction between a
quasilinearly polarized nanofiber-guided light field and an
atom with a quadrupole transition may depend on the prop-
agation direction f . We demonstrate analytically that the
directional dependence of coupling occurs when the po-
larization of the field and the internal states of the atom,
characterized by the quantum numbers and the orientation of
the quantization axis, are appropriate.

Before we proceed, we note that in the presence of the
nanofiber, the orientation of the quantization axis relative
to the geometrical configuration of the fiber-atom system
plays an important role. It determines the orientation of the
dipole, quadrupole, or multipole of the transition between
the two selected magnetic sublevels |n′F ′M ′〉 and |nFM〉,
relative to the fiber-atom system. It has been shown for
alkali-metal atoms with dipole transitions between selected
magnetic sublevels [2,3] that the directional effects depend on
the orientation of the quantization axis relative to the fiber-
atom system. We study the case of quadrupole transitions
below.

First, we show that in the case where the quantization axis
is the fiber z axis, that is, x3 ‖ z, the absolute value |�| of the
Rabi frequency of the quadrupole transition does not depend
on the propagation direction f . Indeed, for x1 ‖ x, x2 ‖ y, and
x3 ‖ z, Eq. (8) for the reduced coupling factors Sq with q =
M ′ − M = 0,±1,±2 yields the following expressions:

S0 = 1√
6

(
− ∂Ex

∂x
− ∂Ey

∂y
+ 2

∂Ez

∂z

)
,

S±1 = 1

2

(
∓ ∂Ez

∂x
∓ ∂Ex

∂z
+ i

∂Ez

∂y
+ i

∂Ey

∂z

)
,

S±2 = 1

2

(
∂Ex

∂x
− ∂Ey

∂y
∓ i

∂Ey

∂x
∓ i

∂Ex

∂y

)
. (14)

According to Eqs. (11), Ex and Ey depend on f through the
spatial phase factor ei f βz, and Ez depends on f through the
combined factor f ei f βz, which is the product of f and ei f βz.
Then, it follows from Eqs. (14) that S0 and S±2 depend on f
through the phase factor ei f βz, and S±1 depends on f through
the factor f ei f βz. Hence, it follows from Eq. (6) that the
absolute value |�| of the Rabi frequency for the quadrupole
transition between the magnetic sublevels does not depend
on f in the case where the quantization axis is the fiber
axis z.

Next, we show that |�| depends on f in the general case
of interaction between a quasilinearly polarized nanofiber-
guided light field and an atom with a quadrupole transition.
We demonstrate the f dependence of |�| in a particular case
where the quantization axis is a fiber transverse axis. We
choose such a quantization axis for consideration because it
has led to direction-dependent spontaneous emission from an
atom with a dipole transition [2,3]. To be concrete, we use
the fiber transverse y axis as the quantization axis, that is,
we take x3 ‖ y. In addition, we take x1 ‖ z and x2 ‖ x. Then,
Eq. (8) for the reduced coupling factors Sq yields the following

expressions:

S0 = 1√
6

(
− ∂Ez

∂z
− ∂Ex

∂x
+ 2

∂Ey

∂y

)
,

S±1 = 1

2

(
∓ ∂Ey

∂z
∓ ∂Ez

∂y
+ i

∂Ey

∂x
+ i

∂Ex

∂y

)
,

S±2 = 1

2

(
∂Ez

∂z
− ∂Ex

∂x
∓ i

∂Ex

∂z
∓ i

∂Ez

∂x

)
. (15)

We assume that the atom is located outside the fiber and
on the positive side of the x axis, which corresponds to the az-
imuthal angle ϕ = 0 and is perpendicular to the quantization y
axis. In this case, we find the explicit expressions (A5) for the
coupling factors Sq. In these expressions, the angle ϕ0, which
specified the orientation of the principal polarization axis of
the field, is arbitrary. When the guided field is polarized along
the x or y direction, we have ϕ0 = 0 or π/2, respectively.
For convenience and clarity, we use the notation S( f ξ )

q = Sq to
explicitly indicate that this coupling factor corresponds to the
field with the propagation direction f and the polarization ξ =
x, y. Similarly, we use the notation �

( f ξ )
q = � for the Rabi

frequency to indicate that it corresponds to the case where
the field propagation direction is f , the field polarization is
ξ = x, y, and the difference between the magnetic quantum
numbers of the upper and lower states is M ′ − M = q. From
Eqs. (A5), we get the expressions

S( f x)
0 = − A√

6

[
iβez + e′

r − 2

r
(er + ieϕ )

]
ei f βz,

S( f y)
0 = 0, (16)

S( f x)
±1 = 0,

S( f y)
±1 = A

2

[
∓ f

(
βeϕ + 1

r
ez

)
+ e′

ϕ + i

r
(er + ieϕ )

]
ei f βz,

(17)

and

S( f x)
±2 = A

2
[iβez − e′

r ∓ f (ie′
z − βer )]ei f βz,

S( f y)
±2 = 0. (18)

Note that S( f ξ )
q = S(− f ,ξ )

−q .
It is clear from Eqs. (17) and (18) and the relations (10)

that the absolute values of the coupling factors S( f y)
±1 and S( f x)

±2
have different values for the different propagation directions
f = +1,−1. Due to the directional dependencies of |S( f y)

±1 |
and |S( f x)

±2 |, the absolute values |�( f y)
±1 | and |�( f x)

±2 | of the cor-
responding Rabi frequencies are asymmetric with respect to
f , that is, the atom-field coupling is chiral (nonreciprocal).
Meanwhile, |S( f x)

0 | and hence |�( f x)
0 | do not depend on f .

Furthermore, S( f y)
0 , S( f x)

±1 , and S( f y)
±2 are vanishing and so are

�
( f y)
0 , �

( f x)
±1 , and �

( f y)
±2 .

The asymmetry of the absolute values of the Rabi frequen-
cies for the opposite propagation directions of the field is
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characterized by the parameter

η(ξ )
q ≡

∣∣�(+,ξ )
q

∣∣2 − ∣∣�(−,ξ )
q

∣∣2

∣∣�(+,ξ )
q

∣∣2 + ∣∣�(−,ξ )
q

∣∣2 =
∣∣S(+,ξ )

q

∣∣2 − ∣∣S(−,ξ )
q

∣∣2

∣∣S(+,ξ )
q

∣∣2 + ∣∣S(−,ξ )
q

∣∣2 . (19)

Note that |η(ξ )
q | � 1. We have η(ξ )

q = 0 for symmetric cou-
pling, η(ξ )

q �= 0 for asymmetric coupling, and η(ξ )
q = ±1 for

unidirectional coupling. Like the coupling factor S( f ξ )
q , the

asymmetry parameter η(ξ )
q depends on q = M ′ − M, but not

on M ′ and M separately.
In the cases of (q = 0, ξ = y), (q = ±1, ξ = x), or (q =

±2, ξ = y), there is no coupling between the atom and the
guided light field and, therefore, the asymmetry parameter η(ξ )

q
is undefined. Meanwhile, for the cases of (q = 0, ξ = x), (q =
±1, ξ = y), or (q = ±2, ξ = x), we find

η
(x)
0 = 0,

η
(y)
±1 = ∓2 Re

{ (
βeϕ + 1

r ez
)[

e′
ϕ + i

r (er + ieϕ )
]∗

∣∣βeϕ + 1
r ez

∣∣2 + ∣∣e′
ϕ + i

r (er + ieϕ )
∣∣2

}
,

η
(x)
±2 = ∓2 Re

{
(e′

z + iβer )(βez + ie′
r )∗

|e′
z + iβer |2 + |βez + ie′

r |2
}

. (20)

Note that η(ξ )
q = −η

(ξ )
−q. Equations (20) show that the asym-

metry parameter η(ξ )
q has not only contributions from the

longitudinal component ez, but also contributions from the
transverse components er and eϕ of the mode profile function.

Like the case of dipole transitions [1–3], the atom-field
interaction via quadrupole transitions can be asymmetric with
respect to the opposite propagation directions due to the pres-
ence of the longitudinal field component Ez ∝ f ez cos(ϕ −
ϕ0)ei f βz. The chiral effect caused by this field component
is a signature of the spin-orbit coupling of light carrying
transverse spin angular momentum [13–17]. In the case
of quadrupole transitions, the effects of Ez on the direc-
tional dependence of the atom-field coupling appear through
the transverse (radial and azimuthal) gradients of this field
component.

It is interesting to note that the asymmetry of the coupling
with respect to the opposite propagation directions may ap-
pear for quadrupole transitions even when the function ez and
hence the longitudinal field component Ez are vanishing. This
feature is absent in the case of atoms with dipole transitions.
It appears in atoms with quadrupole transitions because the
corresponding interaction between the field and the atom is
proportional to a superposition of the terms associated with
the gradients of the field components. Among them is the
contribution of the longitudinal (axial) gradient of the spatial
phase factor ei f βz of the field. This phase gradient leads to
the terms accompanied by the direction-dependent coefficient
f β in front of the phase factor ei f βz. The interference be-
tween these terms and the terms with direction-independent
coefficients contribute to the directional asymmetry of the
absolute value of the Rabi frequency. It is clear that the direc-
tional dependence of the coefficient f β in the phase gradient
i f βei f βz is due to the directional dependence of the wave
vector and is hence related to that of the linear momentum
of light. The physics of the directional dependence of the
linear momentum of light is different from spin-orbit coupling

of light. Thus, the directional dependence of the atom-field
coupling in the case of quadrupole transitions is produced
by both momentum-orbit coupling and spin-orbit coupling of
light. This is in contrast to the case of dipole transitions, where
the chiral interaction between the atom and the confined field
is caused by just spin-orbit coupling of light.

It follows from the last two expressions in Eqs. (20) that in
the limit of large radial distances r, we have

η
(y)
±1(∞) ≡ lim

r→∞ η
(y)
±1 = ± 2βκ

β2 + κ2
,

η
(x)
±2(∞) ≡ lim

r→∞ η
(x)
±2 = ± 4βκ (β2 + κ2)

4β2κ2 + (β2 + κ2)2
. (21)

Here we have introduced the parameter κ =
√

β2 − n2
2k2. In

deriving Eqs. (21), we have used the explicit expressions for
the components er , eϕ , and ez of the mode profile function
given in Refs. [47,48]. It is clear that the limiting values
η

(y)
±1(∞) and η

(x)
±2(∞) of the asymmetry factors η

(y)
±1 and η

(x)
±2,

respectively, are not zero, although the Rabi frequency �

reduces to zero with increasing r.
Note that in the limit of large fiber radii, we have β → kn1

and κ → k
√

n2
1 − n2

2. In this limit, the asymmetry parameters

η
(y)
±1(∞) and η

(x)
±2(∞) tend to the values

lim
a→∞ η

(y)
±1(∞) = ±

2n1

√
n2

1 − n2
2

2n2
1 − n2

2

,

lim
a→∞ η

(x)
±2(∞) = ±

4n1

√
n2

1 − n2
2

(
2n2

1 − n2
2

)
4n2

1

(
n2

1 − n2
2

) + (
2n2

1 − n2
2

)2 . (22)

The above limiting values are also nonzero.
We now show that the directional dependence of the abso-

lute value |�| of the Rabi frequency leads to the directional
dependence of spontaneous emission into guided modes. Let
γ

( f ξ )
g be the rate of quadrupole spontaneous emission from the

atom into the guided modes with the propagation direction f
and the polarization ξ . We show in Appendix B that the rate
γ

( f ξ )
g is proportional to |S(μ0 )

q |2, where S(μ)
q = Sq|E=e(μ) is the

reduced coupling factor for the normalized field in the guided
mode μ = (ω f ξ ) and μ0 = (ω0 f ξ ) is the label for the guided
mode at the resonant frequency. Here, the notation e(μ) stands
for the normalized mode profile function, which is given by
Eqs. (B2) under the normalization condition (B3).

We again assume that the quantization axis is the fiber
transverse y axis and the atom lies on the fiber transverse x
axis. In this case, Eqs. (16)–(18) are valid. It follows from
these equations that the absolute value |S(μ0 )

q | of the coupling
factor for the normalized field in the mode μ0 = (ω0 f ξ ) may
depend on f . It is obvious that the f dependence of |S(μ0 )

q |
leads to the f dependence of the rate γ

( f ξ )
g .

The rate of spontaneous emission into the guided modes
propagating in the f direction regardless of polarization is
given by

γ ( f )
g = γ ( f x)

g + γ ( f y)
g . (23)
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The asymmetry parameter for the directional dependence of
the spontaneous emission rate into the nanofiber is defined as

ηg ≡ γ (+)
g − γ (−)

g

γ
(+)

g + γ
(−)

g

. (24)

According to Eqs. (16)–(18), the spontaneous emission rate
γ

( f ξ )
g is vanishing for the y-polarized mode in the cases of

q = 0 or ±2 and for the x-polarized mode in the cases of
q = ±1. Due to this fact, we have γ

( f )
g = γ

( f x)
g for q = 0 or

±2 and γ
( f )

g = γ
( f y)

g for q = ±1. Hence, the asymmetry pa-
rameter ηq for the directional dependence of the spontaneous
emission rate into the nanofiber is found to be

ηg|q=0 = 0, ηg|q=±1 = η
(y)
±1, ηg|q=±2 = η

(x)
±2, (25)

where η
(y)
±1 and η

(x)
±2 are given by Eqs. (20) with the mode

profile functions er , eϕ , and ez being evaluated at ω = ω0.
We emphasize that the above result for the quadrupole spon-
taneous emission is valid only for the channel of emission
into nanofiber-guided modes and only in the framework of the
model of a two-level atom. A full treatment must include the
channel of emission into radiation modes and the multilevel
structure of the atom.

We note that in the case where the atom lies on the quanti-
zation y axis, the absolute values of the coupling factors S( f ξ )

q

and, hence, the absolute values of the Rabi frequencies �
( f ξ )
q

for the x- and y-polarized guided light fields do not depend on
the field propagation direction f (see Appendix A).

IV. NUMERICAL RESULTS

In this section, we present the results of numerical cal-
culations for the direction-dependent coupling between a
nanofiber-guided light field and a two-level atom with an
electric quadrupole transition. As an example, we study the
electric quadrupole transition between the ground state 5S1/2

and the excited state 4D5/2 of a 87Rb atom. For this transition,
we have L = 0, J = 1/2, L′ = 2, J ′ = 5/2, and I = 3/2. The
wavelength of the transition is λ0 = 516.5 nm [49]. The re-
duced quadrupole matrix element 〈n′J ′‖T (2)‖nJ〉 is deducted
from the experimentally measured oscillator strength f (0)

JJ ′ =
8.06 × 10−7 in free space [21,23,35]. In our numerical calcu-
lations, we assume that the driving field is at exact resonance
with the atom (ω = ω0). For most of our numerical calcu-
lations (except for Figs. 6 and 7), we take the fiber radius
a = 180 nm, which is small enough that only the fundamental
guided mode is supported. We assume that the atom is located
on the positive side of the axis x and outside the fiber.

First, we examine the case where the fiber z axis is used as
the quantization axis to specify the atomic internal states. We
calculate numerically the absolute value |�( f ξ )

q | of the Rabi
frequency for the quadrupole transition between the sublevel
M = 2 of the hfs level 5S1/2F = 2 and the sublevel M ′ =
M + q of the hfs level 4D5/2F ′ = 4 of a 87Rb atom, specified
with respect to the quantization x3 ‖ z axis. We plot in Fig. 2
the radial-distance dependence of |�( f ξ )

q |. In the calculations
for this figure, we have assumed that the field in the funda-
mental guided mode HE11 is quasilinearly polarized along the
x axis (solid lines) or the y axis (dashed lines) and propagates

r/a

�= x and f = +1,-1

�= y and f = +1,-1
q = -2 (a)

q = -1 (b)

q = 1 (d)

q = 2 (e)

q = 0 (c)

x
3 
|| z

��
�(f

 �
) |/ 

2
� 

 (k
H

z)
q

FIG. 2. Radial-distance dependence of the absolute value |�( f ξ )
q |

of the Rabi frequency for the quadrupole transition between the
sublevel M = 2 of the hfs level 5S1/2F = 2 and the sublevel M ′ =
M + q of the hfs level 4D5/2F ′ = 4 of a 87Rb atom in the case where
the quantization axis is x3 ‖ z. The fiber radius is a = 180 nm. The
wavelength of the atomic transition is λ0 = 516.5 nm. The refractive
indices of the fiber and the vacuum cladding are n1 = 1.4615 and
n2 = 1, respectively. The field in the fundamental guided mode HE11

is quasilinearly polarized along the x axis (solid lines) or the y axis
(dashed lines) and propagates in the direction f = +1 or −1 of the
fiber z axis. The power of the guided light field is 1 nW. The atom is
located on the positive side of the x axis and outside the fiber.

in the positive direction f = +1 or the negative direction
f = −1 of the fiber z axis. We observe that |�( f ξ )

q | reduces
almost exponentially with increasing r. The steep slope in
the radial-distance dependence of |�( f ξ )

q | is a signature of
the evanescent-wave behavior of the guided field outside the
fiber.

Figure 2 shows that the absolute value |�( f ξ )
q | of the Rabi

frequency does not depend on the propagation direction f
of the field. In other words, the magnitude of the coupling
between the field and the atom is symmetric with respect to
the opposite propagation directions along the fiber axis. We
observe from the dashed curve of Fig. 2(c) that �

( f y)
0 = 0,

that is, the atom-field coupling is vanishing in the case where
q = 0 and ξ = y.

Next, we examine the case where the fiber transverse y axis
is used as the quantization axis to specify the atomic internal
states. We calculate numerically the absolute value |�( f ξ )

q | of
the Rabi frequency for the quadrupole transition between the
sublevel M = 2 of the hfs level 5S1/2F = 2 and the sublevel

013713-6
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r/a

f = +1

f = -1

q = -2

� = x
(a)

q = -1

� = y
(b)

q = 0

� = x
(c)

q = 1

� = y
(d)

q = 2

� = x
(e)

x
3 
|| y

��
�(f

 �
) |/ 

2
� 

 (k
H

z)
q

FIG. 3. Radial-distance dependence of the absolute value |�( f ξ )
q |

of the Rabi frequency for the quadrupole transition between the
sublevel M = 2 of the hfs level 5S1/2F = 2 and the sublevel M ′ =
M + q of the hfs level 4D5/2F ′ = 4 of a 87Rb atom in the case
where the quantization axis is x3 ‖ y. The guided field is quasilinearly
polarized along the (a),(c),(e) ξ = x axis and along the (b),(d) ξ = y
axis, and propagates in the positive direction f = +1 (solid red lines)
or the negative direction f = −1 (dashed blue lines) of the fiber z
axis. Other parameters are as for Fig. 2. The Rabi frequencies for
ξ = y and q = 0, ±2 and for ξ = x and q = ±1 are vanishing and
are therefore not plotted.

M ′ = M + q of the hfs level 4D5/2F ′ = 4 of a 87Rb atom,
specified with respect to the quantization axis x3 ‖ y. We plot
in Fig. 3 the radial-distance dependence of |�( f ξ )

q |. In the cal-
culations for this figure, we have assumed that the guided field
is quasilinearly polarized along the ξ = x axis in Figs. 3(a),
3(c), and 3(e) and along the ξ = y axis in Figs. 3(b) and 3(d),
and propagates in the positive direction f = +1 (solid red
lines) or the negative direction f = −1 (dashed blue lines) of
the fiber z axis. The Rabi frequencies for ξ = y and q = 0,±2
and for ξ = x and q = ±1 are vanishing and are therefore not
plotted. The difference between the solid red lines ( f = 1)
and the dashed blue lines ( f = −1) of Fig. 3 shows that the
absolute value |�( f ξ )

q | of the Rabi frequency depends on the
propagation direction f of the field in the cases of (ξ = x,
q = ±2) [see Figs. 3(a) and 3(e)] and (ξ = y, q = ±1) [see
Figs. 3(b) and 3(d)]. We observe from Figs. 3(a) and 3(b)
that in the cases of q = −2 and −1, the value of |�( f ξ )

q |
for f = +1 (solid red lines) is much smaller than that for
f = −1 (dashed blue lines). Meanwhile, Figs. 3(d) and 3(e)
show that in the cases of q = 1 and 2, the value of |�( f ξ )

q | for
f = +1 (solid red lines) is much larger than that for f = −1

r/a

q = -2

� = x
(a)

q = -1

� = y
(b)

q = 0

� = x
(c)

q = 1

� = y
(d)

q = 2

� = x
(e)

�(�
) q

FIG. 4. Asymmetry parameter η(ξ )
q for the directional depen-

dence of the absolute value of the Rabi frequency as a function of
the radial distance r. The parameters used are as for Fig. 3.

(dashed blue lines). It is clear that the asymmetry of |�( f ξ )
q |

with respect to the opposite field propagation directions for
q = ±2 is stronger than that for q = ±1. We observe from
Fig. 3(c) that |�( f ξ )

q | does not depend on the field propagation
direction f in the case of q = 0. Comparison between the
curves of Fig. 3 shows that the magnitude of |�( f ξ )

q | for the
case of ( f = +1, q = 2, ξ = x) [see the solid red curve of
Fig. 3(e)] is substantially larger than the corresponding values
for the other cases of ( f , q, ξ ).

The dependence of the absolute value |�( f ξ )
q | of the Rabi

frequency on the field propagation direction f is characterized
by the asymmetry parameter η(ξ )

q [see Eq. (19)]. We plot in
Fig. 4 the dependence of η(ξ )

q on the radial distance r for the
parameters of Fig. 3. Comparisons between Figs. 4(a) and 4(e)
and between Figs. 4(b) and 4(d) confirm that η(ξ )

q = −η
(ξ )
−q.

We observe that the asymmetry is vanishing for (q = 0, ξ =
x) [see Fig. 4(c)], but is strong (|η(ξ )

q | > 0.85) for (q = ±1,
ξ = y) [see Figs. 4(b) and 4(d)] and very strong (|η(ξ )

q | >

0.99) for (q = ±2, ξ = x) [see Figs. 4(a) and 4(e)]. We also
see from Figs. 4(b) and 4(d) that the absolute value of the
factors η

(y)
±1 has a peak max |η(y)

±1| ∼= 0.92 at the radial dis-

tance r ∼= 1.6a. The peak value of the ratio |�(+,y)
1 |/|�(−,y)

1 | =
|�(−,y)

−1 |/|�(+,y)
−1 | is about 4.97. This value is comparable to the

corresponding results for the coupling between an atom with
the σ± dipole transitions and an x-polarized guided light field
[2,3].

According to Eqs. (21), the asymmetry parameter η(ξ )
q for

q = ±1 or ±2 tends to a nonzero value in the limit of large
distances r. To see this asymptotic behavior, we plot in Fig. 5
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LE KIEN, NIC CHORMAIC, AND BUSCH PHYSICAL REVIEW A 107, 013713 (2023)

r/a

(a)

(b)

�(x) 2
�(y) 1

FIG. 5. Asymmetry parameters η
(y)
1 and η

(x)
2 (solid lines) for the

radial distance r in the region 10 � r/a � 30. The parameters used
are as for Fig. 3. The dotted lines indicate the limiting values η

(y)
1 (∞)

and η
(x)
2 (∞), calculated from Eqs. (21).

the radial-distance dependencies of the factors η
(y)
1 and η

(x)
2

(solid lines) in the region 10 � r/a � 30. The theoretical lim-
iting values η

(y)
1 (∞) and η

(x)
2 (∞) [see Eqs. (21)] are indicated

by the horizontal dotted lines. Comparison between the solid
and dotted lines shows that the asymptotic behavior of η

(y)
1 and

η
(x)
2 agrees very well with the theoretical estimates (21) for the

limiting values.
In order to see the effects of the magnitude of the fiber

radius on the direction-dependent coupling between the atom
and the guided light field, we plot in Figs. 6 and 7 the abso-
lute value |�( f ξ )

q | of the Rabi frequency and the asymmetry
parameter η(ξ )

q as functions of the fiber radius a. We observe

from Fig. 6 that the magnitude of |�( f ξ )
q | for a fixed power has

a number of peaks at appropriate values of a. Figures 6(a),
6(e), 7(a), and 7(e) show that for the quadrupole transitions
with q = ±2, the asymmetry between the magnitudes |�( f ξ )

q |
of the Rabi frequencies for the opposite propagation directions
f = ±1 is very strong, namely, |η(ξ )

q | > 0.988. It is seen from
Figs. 6(b), 6(d), 7(b), and 7(d) that for the quadrupole tran-
sitions with q = ±1, the directional asymmetry between the
Rabi frequencies |�( f ξ )

q | varies in a wide range 1 � |η(ξ )
q | � 0.

In the region of large fiber radii, the asymmetry parameters
η

(y)
±1 and η

(x)
±2 approach the limiting values (22).

Note that the dashed blue curve in Fig. 6(b) and the
solid red curve in Fig. 6(d) reach the zero value at a ∼=
123.5 nm. This means that the Rabi frequencies �

( f =−1,ξ=y)
q=−1

and �
( f =1,ξ=y)
q=1 become zero when a ∼= 123.5 nm and r = a.

For these parameters, the quadrupole transition with q = −1
(or q = +1) with respect to the quantization y axis is cou-
pled to the forward-propagating (or backward-propagating)
y-polarized guided light field, but not to the correspond-
ing counterpropagating field. Hence, we obtain |η(y)

±1| = 1 for
a ∼= 123.5 nm [see Figs. 7(b) and 7(d)]. This result indicates
that the corresponding quadrupole spontaneous emission into
nanofiber-guided modes is unidirectional. The vanishing of
�

( f =−1,ξ=y)
q=−1 and �

( f =1,ξ=y)
q=1 at a ∼= 123.5 nm and r = a in the

case of Fig. 6 is a consequence of the interference between

a (nm)

f = +1
f = -1 q = -2

� = x
(a)

q = -1

� = y
(b)

q = 0

� = x
(c)

q = 1

� = y
(d)

q = 2

� = x
(e)

��
�(f

 �
) |/ 

2
� 

 (k
H

z)
q

FIG. 6. Absolute value |�( f ξ )
q | of the Rabi frequency for the

quadrupole transition between the sublevel M = 2 of the hfs level
5S1/2F = 2 and the sublevel M ′ = M + q of the hfs level 4D5/2F ′ =
4 of a 87Rb atom with the quantization x3 ‖ y axis as a function of
the fiber radius a. The atom is located on the fiber surface (r = a).
Other parameters are as for Fig. 3. The vertical dashed lines indicate
the single-mode cutoff value acutoff

∼= 185.5 nm of the fiber radius.

different contributions from the gradients of different field
components to the quadrupole Rabi frequency.

The vertical dashed lines in Figs. 6 and 7 indicate the cutoff
value acutoff

∼= 185.5 nm of the fiber radius determined by

the single-mode condition ka
√

n2
1 − n2

2 < 2.405 [47]. When
a > acutoff , the nanofiber can support higher-order modes,
which may interact more efficiently with the atom than the
fundamental mode [40].

The asymmetry of the atom-field coupling depends on the
azimuthal position of the atom [see Eqs. (A3) and (A4)].
To illustrate this fact, we plot in Fig. 8 the asymmetry pa-
rameters η

(ξ )
1 and η

(ξ )
2 as functions of the azimuthal angle ϕ

for the position of the atom in the fiber transverse xy plane.
We again use the x3 ‖ y axis as the quantization axis. We
observe from the figure that the asymmetry is very strong,
namely, |η(ξ )

1 |, |η(ξ )
2 | ∼= 1, for the positions at ϕ = 0, π . These

azimuthal angles correspond to the case of the atom on the
x axis, considered in Figs. 3–7. Meanwhile, the asymmetry
is vanishing, that is, |η(ξ )

1 |, |η(ξ )
2 | = 0, for the positions at

ϕ = π/2, 3π/2, which correspond to the atom on the y axis.
Thus, the asymmetry of the atom-field coupling disappears
when the radial axis for the atomic position is parallel to the
quantization axis, in agreement with Eqs. (A9) and (A10).
The solid curve (for x-polarized guided light) in Fig. 8(a) and
the dashed curve (for y-polarized guided light) in Fig. 8(b)
show that in the limit ϕ → 0 or π , the asymmetry parameters
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a (nm)

q = -2

� = x
(a)

q = -1

� = y
(b)

q = 0

� = x
(c)

q = 1

� = y
(d)

q = 2

� = x
(e)

�(�
) q

FIG. 7. Asymmetry parameter η(ξ )
q for the directional depen-

dence of the absolute value of the Rabi frequency as a function of
the fiber radius a. The parameters used are as for Fig. 6. The vertical
dashed lines indicate the single-mode cutoff value acutoff

∼= 185.5 nm
of the fiber radius.

η
(x)
1 and η

(y)
2 approach nonzero limiting values, although the

coupling factors S( f x)
1 and S( f y)

2 and, hence, the Rabi frequen-
cies �

( f x)
1 and �

( f y)
2 tend to zero [see the first expression in

Eqs. (17) and the second expression in Eqs. (18)].

�

(a)

(b)

�	
 ��	
� 
��

�(�
) 1

�(�
) 2

�= x
�= y

FIG. 8. Asymmetry parameters (a) η
(ξ )
1 and (b) η

(ξ )
2 as functions

of the azimuthal angle ϕ for the position of the atom in the fiber
transverse xy plane. The quantization axis is x3 ‖ y and the guided
field is quasilinearly polarized along the ξ = x axis (solid lines) or
the ξ = y axis (dashed lines). The radial distance from the atom to
the fiber surface is r − a = 50 nm. Other parameters are as for Fig. 3.

V. SUMMARY

In this paper, we have studied the directional dependence
of the coupling between a nanofiber-guided light field and
a two-level atom with an electric quadrupole transition. We
have considered the situation where the nanofiber is aligned
along the z axis, the atom lies on the fiber transverse x axis,
the quantization axis for the atomic internal states is the other
orthogonal transverse y axis, the atomic upper and lower
levels are the magnetic sublevels M ′ and M of hfs levels
of an alkali-metal atom, and the field is in a quasilinearly
polarized fundamental guided mode HE11 with the polariza-
tion x or the y. We have found that the absolute value of
the quadrupole Rabi frequency depends on the propagation
direction of the light field in the cases of (M ′ − M = ±1,
ξ = y) and (M ′ − M = ±2, ξ = x). This chiral effect occurs
as a result of the fact that the strength of the interaction is
proportional to a superposition of the gradients of the ampli-
tudes and phases of the components of the nanofiber-guided
field. The directional dependence of the quadrupole Rabi fre-
quency is caused by the contributions originating from either
the transverse gradients of the longitudinal field component
or the longitudinal gradient of the spatial phase factor. Thus,
the directional dependence of the atom-field coupling in the
case of quadrupole transitions is not entirely due to spin-orbit
coupling of light. This is in contrast to the case of dipole
transitions, where the locking of the local transverse spin of
confined light to the propagation direction is responsible for
the chiral atom-field interaction. We have also found that the
directional dependence of the coupling leads to the directional
dependence of spontaneous emission into guided modes. Our
results may open a new way to control and manipulate the
interaction between nanofiber-guided light fields and atoms
with quadrupole transitions.
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APPENDIX A: REDUCED COUPLING FACTORS
FOR THE ATOM WITH THE QUANTIZATION y AXIS

We consider the particular case where the quantization axis
is the fiber transverse y axis. To be concrete, we take x1 ‖ z,
x2 ‖ x, and x3 ‖ y. In this case, the reduced coupling factors
SM ′−M are given by Eqs. (15). We use the relations

∂

∂x
= cos ϕ

∂

∂r
− sin ϕ

∂

r∂ϕ
,

∂

∂y
= sin ϕ

∂

∂r
+ cos ϕ

∂

r∂ϕ
.

(A1)

Then, for a quasilinearly polarized guided field E given by
Eqs. (9) and (11), we obtain

S0 = − A√
6

{
iβez cos(ϕ − ϕ0)

+ [e′
r cos(ϕ − ϕ0) cos ϕ − ie′

ϕ sin(ϕ − ϕ0) sin ϕ] cos ϕ
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+ 1

r
(er + ieϕ ) sin(2ϕ − ϕ0) sin ϕ

− 2[e′
r cos(ϕ − ϕ0) sin ϕ + ie′

ϕ sin(ϕ − ϕ0) cos ϕ] sin ϕ

− 2

r
(er + ieϕ ) cos(2ϕ − ϕ0) cos ϕ

}
ei f βz, (A2)

S±1 = ∓ fA
2

{
iβ[er cos(ϕ − ϕ0) sin ϕ

+ ieϕ sin(ϕ − ϕ0) cos ϕ] + e′
z cos(ϕ − ϕ0) sin ϕ

− 1

r
ez sin(ϕ − ϕ0) cos ϕ

}
ei f βz

+ iA
2

{
[e′

r cos(ϕ − ϕ0) sin ϕ

+ ie′
ϕ sin(ϕ − ϕ0) cos ϕ] cos ϕ

− 1

r
(er + ieϕ ) cos(2ϕ − ϕ0) sin ϕ

+ [e′
r cos(ϕ − ϕ0) cos ϕ − ie′

ϕ sin(ϕ − ϕ0) sin ϕ] sin ϕ

− 1

r
(er + ieϕ ) sin(2ϕ − ϕ0) cos ϕ

}
ei f βz, (A3)

and

S±2 = A
2

{
iβez cos(ϕ − ϕ0) − [e′

r cos(ϕ − ϕ0) cos ϕ

− ie′
ϕ sin(ϕ − ϕ0) sin ϕ] cos ϕ

− 1

r
(er + ieϕ ) sin(2ϕ − ϕ0) sin ϕ

}
ei f βz

∓ i fA
2

{
iβ[er cos(ϕ − ϕ0) cos ϕ

−ieϕ sin(ϕ − ϕ0) sin ϕ]

+ e′
z cos(ϕ − ϕ0) cos ϕ

+1

r
ez sin(ϕ − ϕ0) sin ϕ

}
ei f βz. (A4)

1. Atom on the x axis

We assume that the atom is located on the positive side of
the x axis, that is, ϕ = 0. In this case, we have

S0 = − A√
6

[
iβez + e′

r − 2

r
(er + ieϕ )

]
cos ϕ0 ei f βz,

S±1 = A
2

[
∓ f

(
βeϕ + 1

r
ez

)
+ e′

ϕ + i

r
(er + ieϕ )

]

× sin ϕ0 ei f βz,

S±2 = A
2

[iβez − e′
r ∓ f (ie′

z − βer )] cos ϕ0 ei f βz. (A5)

When the guided field is polarized along the x direction,
we have ϕ0 = 0. In this case, Eqs. (A5) yield

S0 = − A√
6

[
iβez + e′

r − 2

r
(er + ieϕ )

]
ei f βz,

S±1 = 0,

S±2 = A
2

[iβez − e′
r ∓ f (ie′

z − βer )]ei f βz. (A6)

With the help of Eqs. (10), we can show that |S±2| has different
values for different f .

When the guided field is polarized along the y direction,
we have ϕ0 = π/2. In this case, Eqs. (A5) yield

S0 = 0,

S±1 = A
2

[
∓ f

(
βeϕ + 1

r
ez

)
+ e′

ϕ + i

r
(er + ieϕ )

]
ei f βz,

S±2 = 0. (A7)

With the help of Eqs. (10), we can show that |S±1| depends
on f .

2. Atom on the y axis

We now assume that the atom is located on the positive side
of the y axis, that is, ϕ = π/2. In this case, we have

S0 = − A√
6

[
iβez + 1

r
(er + ieϕ ) − 2e′

r

]
sin ϕ0 ei f βz,

S±1 = A
2

{
∓ f (iβer + e′

z ) sin ϕ0

+
[

i

r
(er + ieϕ ) + e′

ϕ

]
cos ϕ0

}
ei f βz,

S±2 = A
2

{[
iβez − 1

r
(er + ieϕ )

]
sin ϕ0

∓ i f

(
βeϕ + 1

r
ez

)
cos ϕ0

}
ei f βz. (A8)

For the x-polarized guided field (with ϕ0 = 0), we obtain

S0 = 0,

S±1 = A
2

[
i

r
(er + ieϕ ) + e′

ϕ

]
ei f βz,

S±2 = ∓ i fA
2

(
βeϕ + 1

r
ez

)
ei f βz. (A9)

For the y-polarized guided field (with ϕ0 = π/2), we get

S0 = − A√
6

[
iβez + 1

r
(er + ieϕ ) − 2e′

r

]
ei f βz,

S±1 = ∓ fA
2

(iβer + e′
z )ei f βz,

S±2 = A
2

[
iβez − 1

r
(er + ieϕ )

]
ei f βz. (A10)

It is clear that for both x- and y-polarized guided light fields,
the absolute values of the coupling factors Sq do not depend
on the propagation direction f .

APPENDIX B: QUADRUPOLE SPONTANEOUS EMISSION
OF THE ATOM INTO NANOFIBER-GUIDED MODES

We consider the electric quadrupole interaction between
the atom and the quantum nanofiber-guided field. We assume
that the fiber supports only the fundamental guided mode
HE11 [47] in a finite bandwidth around the central frequency
ω0 of the atom. We label each guided mode in this bandwidth
by an index μ = (ω, f , ξ ). Here, ω is the mode frequency,
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f = +1 or −1 denotes the forward- or backward-propagation
direction along the fiber z axis, and ξ = x or y is the x or y
quasilinear polarization. We neglect the effects of the radiation
modes [47].

In the interaction picture, the quantum expression for the
positive-frequency part E(+)

g of the electric component of the
field in the guided modes is [50]

E(+)
g = i

∑
μ

√
h̄ωβ ′

4πε0
aμe(μ)e−iωt . (B1)

Here, e(μ) = e(μ)(r, ϕ, z) is the normalized profile function of
the guided mode μ in the classical problem, aμ is the corre-
sponding photon annihilation operator,

∑
μ = ∑

f ξ

∫ ∞
0 dω is

the generalized summation over the guided modes, β is the
longitudinal propagation constant, and β ′ is the derivative of
β with respect to ω. The mode profile functions e(ω f ξ ) for the
quasilinear polarizations ξ = x and y are given as

e(ω f x) = A(r̂er cos ϕ + iϕ̂eϕ sin ϕ + f ẑez cos ϕ)ei f βz,

e(ω f y) = A(r̂er sin ϕ − iϕ̂eϕ cos ϕ + f ẑez sin ϕ)ei f βz. (B2)

The normalization condition∫ 2π

0
dϕ

∫ ∞

0
n2

ref |e(μ)|2r dr = 1 (B3)

is required, where nref (r) = n1 for r < a and n2 for r > a.
The operators aμ and a†

μ satisfy the continuous-mode bosonic

commutation rules [aμ, a†
μ′ ] = δ(ω − ω′)δ f f ′δξξ ′ .

Assume that the atom is positioned at a point (r, ϕ, z)
outside the fiber. In the interaction picture, the Hamiltonian
for the electric quadrupole interaction between the atom and

the quantum guided field in the rotating-wave approximation
is given by

Hint = −ih̄
∑

μ

Gμσegaμe−i(ω−ω0 )t + H.c., (B4)

where the coefficients

Gμ = 1

12

√
ωβ ′

πε0h̄

∑
i j

〈e|Qi j |g〉
∂e(μ)

j

∂xi
(0) (B5)

characterize the coupling between the atom and the guided
mode μ. Inserting Eq. (4) into Eq. (B5) yields

Gμ =
√

h̄ωβ ′

4πε0
CF ′M ′FMS(μ)

M ′−M , (B6)

where

S(μ)
M ′−M = SM ′−M |E=e(μ) =

∑
i j

u(M ′−M )
i j

∂e(μ)
j

∂xi
(0) (B7)

is the reduced coupling factor for the normalized field e(μ).
The coefficient CF ′M ′FM in Eq. (B6) is given by Eq. (7).

We use the Fermi golden rule [51] to calculate the rate γ
( f ξ )

g

of spontaneous emission from the atom into the nanofiber-
guided modes with the propagation direction f and the
polarization ξ . We find

γ ( f ξ )
g = 2π |Gω0 f ξ |2 = h̄ω0β

′
0

2ε0
|CF ′M ′FM |2∣∣S(μ0 )

M ′−M

∣∣2
, (B8)

where μ0 = (ω0 f ξ ) and β ′
0 = β ′(ω0). It is clear that γ

( f ξ )
g is

proportional to |S(μ0 )
M ′−M |2.
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