
PHYSICAL REVIEW A 107, 013712 (2023)

Role of chiral symmetry in a kicked Jaynes-Cummings model
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We have studied the role of chiral symmetry in a periodically kicked Jaynes–Cummings (KJC) model by
freezing an initial phase. We show that commensurate kicks (2πk periodicity with integer k) conserve the chiral
symmetry in the KJC model under the resonant condition, while incommensurate kicks break the symmetry. The
chiral symmetry preserves the phase of an initial state against phase fluctuations during the dynamical evolution,
but broken chiral symmetry erases the initial phase. The frozen phase is preserved within a finite evolution time
for slight deviations of the kick period from an integer multiple of 2π and small variations of detuning from the
resonant condition. The chiral symmetry-protected phase information is noteworthy as it provides various uses
in quantum computation and information.
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I. INTRODUCTION

For decades, the strong couplings between light and mat-
ter have been studied for implementing quantum information
across various intensities, such as strong coupling, ultrastrong
coupling, and deep-strong coupling in Jaynes–Cummings
(JC) models [1–4]. Although the JC model has been used to
examine the classical aspects of spontaneous emission and
reveal Rabi oscillation, the model has also been extended
to a quantum mechanical model of a two-level atom in a
single-mode bosonic field. The evolutionary version of the
quantum JC model—the driven JC model—has attracted a
lot of research attention and gives rise to interesting phe-
nomena such as electromagnetic squeezing [5], vacuum Rabi
splitting [6,7], photon blockade [8–10], symmetry breaking
[11], rich structures of multiphoton resonances [12,13], and
the readout of qubits [14,15]. The driven JC model belongs
to the periodically driven system called the Floquet system
[16–18]. The periodically driven system has garnered many
research efforts in quantum physics—for example, to treat
dynamical systems [19,20], extend the synthetic dimension
[21,22], and explore topological phases [23–26] and ther-
modynamics [27–29]. Typically, the commensurability of the
modulation function of the Floquet system offers not only
dynamical phenomena like quantum resonance and dynamical
localization [30,31] but also opto-electro-mechanics in hybrid
devices [32,33].

In addition, chiral symmetry [34], described as invariance
under parity transformation by a Dirac fermion, plays key
roles in quantum mechanics, such as conservation and topo-
logical classification [35,36]. Chiral symmetry can create a
class of topological phases in one-dimensional (1D) systems
without both time-reversal and particle-hole symmetries [37].
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The unitary operator � characterizes whether the system sat-
isfies chiral symmetry through the relation �U�† = U −1,
where � is unitary/Hermitian and obeys �2 = 1, and U =
e−iHt/h̄ is the Floquet operator describing the time evolution
of the Hamiltonian H [35]. Most recent research has focused
on Floquet topological phases in driven models, such as the
kicked Harper model [38–41], double kicked rotor [42–44],
and quantum walk [35,45–48], with chiral symmetry. The
interplay between time modulation and chiral symmetry in a
quantum system not only provides topological phases but also
offers more possibilities to develop quantum technology and
be applied to quantum devices.

In this work, we designed a quantum JC model com-
bined with time-periodic discrete potentials, called a kicked
Jaynes–Cummings (KJC) model. The KJC model under the
resonant condition shows that commensurate kicks, namely,
2πk periodicity with an integer k, conserve the chiral sym-
metry, while incommensurate kicks break the symmetry. The
chiral symmetry enforces symmetric pairs of eigenphases and
eigenstates of the Floquet operator, (−εα, εα ), indicated by
the states α. Moreover, the amplitude distribution coefficients
of paired eigenstates are complex conjugates with additional
global phases. But most interestingly, by a direct derivation,
the initial phase encoded in the initial state is protected from
phase fluctuations; more specifically, the chiral symmetry
freezes the initial phase in the KJC model concerning the time
evolution. On the other hand, breaking the chiral symmetry
washes out the initial phase. Notably, this frozen-phase effect
is preserved against small perturbations within a finite time
evolution.

This paper is organized as follows. In Sec. II, we introduce
the JC model with a periodically driven potential. In Sec. III,
we characterize the chiral symmetry of the KJC model. Then,
Sec. IV presents the eigenstates of the Floquet operator with
chiral symmetry, and Sec. V gives the results of the chiral
symmetry-protected frozen phase. Section VI summarizes our
results. Two appendices then follow for the derivations of the
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FIG. 1. Schematic diagrams of driven Jaynes–Cummings mod-
els. The upper panel shows a coupled system with a two-level atom
and an optical cavity, and the lower panel depicts a coupled system
with a circuit QED and transmission line. The external driving po-
tential K (t ) can be sinusoidal oscillation or discrete kicks.

amplitude distribution coefficients of the eigenstates and state
evolution.

II. JC MODEL WITH PERIODICALLY
DRIVEN POTENTIAL

The driven JC model can be manipulated in several ways,
e.g., as a two-level atom within an optical cavity, a cir-
cuit quantum electrodynamics (QED) with superconducting
transmission line resonators, and a superconducting quan-
tum interference device (SQUID) with resonators, two of
which are shown in Fig. 1. The JC Hamiltonian describes
interactions between a cavity and a two-level system, HJC =
Hc + Ha + Hg. The cavity Hamiltonian is defined by the
free electromagnetic field, Hc = h̄ωca†a, where ωc is the
electromagnetic field frequency of the cavity and a/a† is
the annihilation/creation operator of the field satisfied by
[a, a†] = 1. The two-level system is described by an atomic
Hamiltonian, Ha = h̄ωqσz/2, where ωq is the atomic tran-
sition frequency and σz is the Pauli matrix describing the
two states. The two subsystems H0 = Hc + Ha are coupled
by the interaction Hamiltonian, implying the conservation
of the number of excitations in the system concerning the
rotational wave approximation. The coupling Hamiltonian is
Hg = g(aσ+ + a†σ−), where g is the atom–cavity coupling
strength and σ± = (σx ± iσy)/2 is the raising/lowering atomic
operator (below h̄ = 1). The driven JC Hamiltonian reads

H = HJC + K (t/T, ξ ), (1)

where ξ and T are the strength and the period of the driven po-
tential, respectively. The time-dependent term is proportional
to the displacement operator (a + a†) and the time-periodic
function. Let us consider periodic kicks by using a delta func-
tion series as a discrete driving potential,

K (t/T, ξ ) = ξ (a + a†)
∑

n

δ(t/T − n). (2)

Here, we have two possible degrees of freedom: whether T is
commensurate to an integer multiple of 2π or not.

Experimentally, this system can be realized by replacing
the amplitude of the external drive with a sinusoidal function,
K (t ) = ξ cos(ωt )(a + a†), where ω = 2π/T , which we call a
sinusoidal Jaynes–Cummings (SJC) model. The SJC Hamil-
tonian is demonstrated by coupling a superconducting charge
qubit to a transmission line resonator [49]. The qubit can be

measured and coherently controlled by applying microwaves
K (t ) to the input port of the resonator. Technologically, this
external time-dependent driving amplitude can be replaced
by a train of pulses with short durations and a suppression
of T [50].

III. CHIRAL FLOQUET OPERATOR IN THE KJC MODEL

A periodic time-dependent Hamiltonian can be solved by
the Floquet theorem concerning the periodic wave function
and the quasi-energy. The wave function of the Schrödinger
equation is 
α (t ) = e−iEαt�α (t ), where the Floquet wave
function is periodic, �α (t ) = �α (t + T ), and Eα is the quasi-
energy [51–54]. When we define the time evolution operator
U (t ′, t ) with the Hamiltonian for the wave function, U (t ′, t ) =
C exp(−i

∫ t ′

t H (τ )dτ ), the Floquet wave function evolves by
U (t + T, t )�α (t ) = e−iEαT �α (t ), where we could get the
spectrum of the quasi-energy from the eigenphase of the Flo-
quet operator, εα = EαT .

The Floquet operator of the KJC model in the time inter-
val [0−, T−] has the following form under the commutation
relation:

U (T−, 0−) = e−iHJCT e−iKV T , (3)

where KV = ξ (a + a†) and the subscript of T and 0 and −
means a little less time. Further, the free Hamiltonian H0 and
the coupling Hamiltonian Hg commute each other under the
resonance condition ωq = ωc = 1. We can rewrite the Floquet
operator separately as

U (T−, 0−) = e−iH0T e−iHgT e−iKV T . (4)

When the period of the kicked potential is commensurate to
2kπ , the chiral symmetry operator can be defined as

� = eiπa†ae−i2kπξ (a+a† ), (5)

where k is an integer. In order to prove that the Floquet
operator satisfies the symmetry, let us separate the Floquet op-
erator into two parts: U (T−, 0−) = U0U1, where U0 = e−iH0T ,
and U1 = e−iHgT e−iKV T . The first part of the Floquet oper-
ator U0 gives the global constant for the eigenstate of H0

as the basis |n, η〉, so that it does not make any physical
difference as U (T−, 0−) = ∑

n,η=± |n, η〉〈n, η|U (T−, 0−) =
(−1)kU1, where n is the photon occupation number of the
cavity and η = ±1 indicates the ground or excited state of
the atom. The second part of the Floquet operator U1 satisfies
�U1�

† = U −1
1 with the chiral symmetry operator through the

relation eiπa†a e−i2kπg(aσ++a†σ− ) e−i2kπξ (a+a† ) = ei2kπg(aσ++a†σ− )

ei2kπξ (a+a† ) eiπa†a based on the anticommutation relation {(a +
a†), eiπa†a} = 0. Finally, the Floquet operator is satisfied by
the relation

�U (T−, 0−)�† = U −1(T−, 0−), (6)

which represents a conservation of the chiral symmetry.
Chiral symmetry guarantees that the eigenfunctions of the

Floquet operator U (T−, 0−) are |φα〉 and �|φα〉 for a pair of
eigenphases, (−εα, εα ), respectively, as follows:

U (T−, 0−)|φα〉 = e−iεα |φα〉, (7)

U (T−, 0−)�|φα〉 = eiεα�|φα〉. (8)
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FIG. 2. Eigenphases εα of the Floquet operator U (T−, 0−) vs
the atom–cavity coupling strength g with the strength of the driven
potential ξ = 1.5 and the period of the kicks, (a) T = 6 and (b)
T = 2π .

Since the Floquet operator is the multiplication of exponen-
tial functions of operators, it is straightforward to define the
corresponding matrix elements by inserting the eigenstate of
Hg and KV into Eq. (4). We can then directly obtain the
eigenphases after diagonalizing the Floquet operator. Com-
mensurately driven kicks provide symmetric eigenphases,
while incommensurately driven kicks offer irregular eigen-
phases without symmetry. As shown in Fig. 2(a), when the
kick period is T = 6, the eigenphases are not symmetric with
a messy distribution. On the other hand, when the kick period
is T = 2π , which is the commensurate time period, the eigen-
phases are perfectly symmetric according to the black dashed
line at εα = 0, as shown in Fig. 2(b).

IV. EIGENSTATES OF THE CHIRAL
FLOQUET OPERATOR

As previously mentioned, the KJC model conserves chiral
symmetry under the resonant condition and commensurate
kicks. As follows from Eqs. (7) and (8), the eigenstates |φα〉
and �|φα〉 are connected by the eigenphases (−εα, εα ), re-
spectively, due to the symmetry. This section will show a
unique property of these paired eigenstates, the coefficients
of which are based on the product states between the photon
number and two-level state, and complex conjugates with
additional global phases.

Let us construct the inner product between the Floquet
eigenstates and the product states for each chiral symmetry
partner as follows:

Cη
n (α) = 〈n, η|φα〉, (9)

Dη
n (α) = (−1)n〈n, η|�|φα〉

= 〈n, η|e−i2kπξ (a+a† )|φα〉, (10)
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FIG. 3. (a) Absolute value and (b) phase of amplitude dis-
tribution coefficients Cη

n and Dη
n with respect to the basis |n, η〉

with eigenstate index α = 6, atom–cavity coupling strength g = 1.7,
driven potential strength ξ = 1.5, and period T = 2π . In both panels,
the blue circle line and red star line indicate the absolute value and
phase of Cη

n and Dη
n , respectively. In (b), the yellow dotted line

indicates the summation of the phases of Cη
n and Dη

n , which gives
the stable global phase θg = −0.2605.

which are the amplitude distribution coefficients of Floquet
eigenstates on the unperturbed basis. For a compact descrip-
tion, we will omit the symbol α in Cη

n (α) and Dη
n (α). The

relation between the amplitude distribution coefficients of two
chiral states is shown by

D+
n = (−1)ke−iεα [C+

n cos βn + iC−
n+1 sin βn], (11)

D−
n+1 = (−1)ke−iεα [C−

n+1 cos βn + iC+
n sin βn], (12)

where βn = 2kπg
√

n + 1 (see Appendix A). Here, we use the
relation between the chiral operator � and coupling Hamilto-
nian Hg as follows:

〈φα|(a†σ− + aσ+)�|φα〉
= 〈φα|(a†σ− + aσ+)eiπa†ae−i2kπξ (a+a† )|φα〉
= 〈φα|ei2kπξ (a+a† )(a†σ− + aσ+)eiπa†a|φα〉. (13)

The above relation gives us
∑

n(−1)n
√

n + 1Pn = 0, where
Pn = D+

n (C−
n+1)∗ − D−

n+1(C+
n )∗ + C−

n+1(D+
n )∗ − C+

n (D−
n+1)∗.

By combining Eqs. (11) and (12), the relation between the
amplitude distribution coefficients is given by

D+
n

D−
n+1

= (C+
n )∗

(C−
n+1)∗

. (14)

The amplitude distribution coefficient Dη
n is the complex con-

jugate of Cη
n with a global phase θg, since Dη

n and Cη
n are

normalized—namely, Dη
n = eiθg (Cη

n )∗ = |Cη
n |ei(θg−θ

η
n ), where

θη
n is the phase of Cη

n .
We can see numerically through Fig. 3 that the ampli-

tude distribution coefficients of two states, |φα〉 and |ψα〉 =
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e−i2kπξ (a+a† )|φα〉, are a complex conjugate pair with a global
phase, which is independent on the basis |n, η〉. The yellow
dotted line in Fig. 3(b) indicates the summation of the phases
of all eigenstates, leading to the global phase.

V. CHIRAL SYMMETRY PROTECTED FROZEN PHASE

The time evolution of the chiral KJC model exhibits a
peculiar phenomenon through the eigenphases and eigenstates
of the Floquet operator. The chirality in this model tightens the
phase fluctuation of the initial phase, which encodes a single
state as an initial state by analyzing the time evolution of
the states. This means that a frozen-phase effect is observed
in the dynamical evolution of the KJC model under chiral
symmetry.

The time evolution during t = [0−, MT−] is defined by
|
(M )〉 = (U )M |
(0)〉, and the final state can be expanded
by the eigenstates of the Floquet operator |φα〉, where |
(0)〉
is the initial state and M is an integer. The final state after M
kicks forms as follows:

|
(M )〉 =
∑

α

e−iεαMT〈φα|
(0)〉|φα〉. (15)

Here, we take the initial state |
(0)〉 = eiθ0 |n0,+〉, which is
the n0 photon number state and excited atomic state with an
initial phase θ0. Considering the properties of chiral eigen-
phases and eigenstates, we change the basis,

|
(M )〉 =
∑

n,η=±
Pη

n (M )|n, η〉, (16)

where Pη
n (M ) is the distribution function. The amplitudes of

the distribution functions of the final state at the evolution
time MT are shown in Fig. 4. In the case of the T = 6 kick
period, the time evolution of the wave function is randomly
fluctuating due to the incommensurate kick period. Surpris-
ingly, in the case of the T = 2π kick period as well, the time
evolution of the wave function also presents fluctuating be-
havior. The amplitudes fluctuate randomly for the KJC model
whether the period of kicks is incommensurate or commen-
surate. Seemingly, the reason for this is that the eigenstates
of the Floquet operator are also randomly distributed due to
the quasi-periodicity of the overlap functions, as shown in
Fig. 3(a), even though the kick period is commensurate. In
stark contrast, the phases of the final state are distinguished
from the amplitudes of the distribution functions. For the
kick period 2π , the phases of the distribution function of the
state are unchanged over the dynamical evolution, as shown
in Figs. 4(c) and 4(d), while for the kick period T = 6, the
phases fluctuate. It turns out that the phases of the even-
numbered states, mod (n0 + n, 2) = 0, are fixed by the blueish
color θ = θ0 = 0.5 according to the dynamical evolution, and
the phases of the odd-numbered states, mod (n0 + n, 2) = 1,
are designated by the yellowish color, θ = θ0 + π/2 = 2.071
in Fig. 4(d), where mod (·, 2) is the modulo function for 2.

We can show a clear analytical derivation of the state evo-
lution by separating the Floquet eigenstates into two groups
of chiral states (see Appendix B). For the even n0 + n, the
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FIG. 4. (a) and (b) Amplitudes and (c) and (d) phases of the dis-
tribution function Pη

n (M ) of the final state with respect to evolution
time MT and the basis |n, η〉 with initial phase θ0 = 0.5 and initial
state n0 = 12. Other parameters are atom–cavity coupling strength
g = 1.7 and driven potential strength ξ = 1.5. The periods of the
kicks are T = 6 and T = 2π in (a), (c) and in (b), (d), respectively. In
(d), the blue color indicates the phase of the even state θ = θ0, while
the yellow color indicates the phase of the odd state θ = θ0 + π/2 =
2.071.

coefficients of the basis are calculated by

Pη
n (M ) = eiθ0

∑
α∈E

[
2
∣∣C+

n0
Cη

n

∣∣ cosQη
nα (M )

]
, (17)

and for the odd n0 + n,

Pη
n (M ) = ieiθ0

∑
α∈E

[−2
∣∣C+

n0
Cη

n

∣∣ sinQη
nα (M )

]
, (18)

where Qη
nα (M ) = εαMT + θ+

n0
− θη

n and E is a set of absolute
Floquet eigenvalues for grouping the states into bipartite parts,
E = {α|εα � 0}. Regardless of whether n0 + n is an even or
odd number, the summations in Eqs. (17) and (18) are real
numbers and the phase factors are θ0 and θ0 + π/2 as con-
stants. Thus, the evolved wave function keeps its initial phase.
The chiral KJC model preserves the phase of the initial state
during the dynamical evolution, i.e., freezes the initial phase.

Although we have attained that the frozen-phase effect
exists in the chiral KJC model, we should know the stabil-
ity of the frozen phase against deviations of the kick period
from the commensurate frequency and detuning. In order to
estimate the stability of the frozen phase, we define a quantity
called the standard deviation of the phase as a function of the
parameter ζ as follows:

σ (ζ ) =
√√√√ 1

M

M∑
m

[θm(ζ ) − θ0]2, (19)

where θm(ζ ) is the phase of P+
n0

(m) after m periods. In Fig. 5,
ζ = δ (a) and ζ = � (b) give the perturbation of the kick
period, T = 2kπ − δ, and the deviation of the atomic transi-
tion frequency as a detuning parameter, ωq + �, respectively.
The longer the time evolution, the greater the deviation of
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FIG. 5. Log-log plots of phase deviation σ (ζ ) for the initial state
as a function of perturbation ζ . (a) Plot with a deviation of kick
period, ζ = δ, with � = 0. (b) Plot with a variation of detuning
parameter, ζ = �, with δ = 0. Other parameters are initial phase
θ0 = 0.5, atom–cavity coupling strength g = 1.7, and driven poten-
tial strength ξ = 1.5. The blue dotted line takes the evolution period
M = 100, and the red circle line takes the evolution period M = 500.
The dark dashed line is given as (a) log10 σ (δ) = log10 δ + 3.6 and
(b) log10 σ (�) = log10 � + 1.5.

the evolutionary phase, as depicted by the blue dotted line
(M = 100) and the red circle line (M = 500). Figure 5 shows
that the standard deviation of the evolutionary phase increases
linearly with the deviation of the time period and the detuning,
and that the phase fluctuation becomes bigger as time goes
on. As a result, the deviation of the frozen phase is linearly
deviated according to the perturbation strength within a finite
time scale.

VI. SUMMARY

In summary, we have studied the dynamical properties of a
JC model with a periodically kicked potential under the reso-
nant condition. The KJC model has chiral symmetry when the
kick period is commensurate with 2π . We find that the corre-
sponding chiral operator is defined by � = eiπa†ae−i2kπξ (a+a† )

for the Floquet operator by the KJC Hamiltonian. Under chiral
symmetry, the eigenphases of the Floquet operator are always
a symmetric pair, (−εα, εα ). Furthermore, the amplitude dis-
tribution coefficients of the eigenstates corresponding to a
pair of the eigenphases are complex conjugates with an extra
global phase. These properties protect the initial phase of
the initial state from phase fluctuations, giving the frozen-
phase effect in the chiral KJC model. It is demonstrated that
the frozen phase is preserved within a finite evolution time,
even though the kick period and the detuning are slightly
deviated from the commensurate period and the resonant con-
dition, respectively. We expect that this frozen-phase effect
exists in other systems with chiral symmetry, which can be
proper candidates for phase information reservoirs in devel-
oping quantum technology such as quantum computation and
information.
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APPENDIX A: DERIVATION OF THE AMPLITUDE
DISTRIBUTION COEFFICIENTS OF EIGENSTATES

From the definition of the Floquet operator U (T−, 0−) and
the chiral operator �, Eq. (8) can be written as follows:

e−i(a†a+σz/2)2kπ ei2kπg(aσ++a†σ−)|φα〉
= eiεα e−i2kπξ (a†+a)|φα〉. (A1)

Let us consider the eigenstates |ψn〉 and eigenenergy En of
H ′

g = 2kπHg = 2kπg(aσ+ + a†σ−) for calculating the ampli-
tude distribution coefficients. The equation is written as

ei2kπg(a†σ−+aσ+ )|φα〉 =
∑

n

eiEn〈ψn|φα〉|ψn〉

=
∑

n

(C+
n cos βn + iC−

n+1 sin βn)|n,+〉

+
∑

n

(C−
n+1 cos βn + iC+

n sin βn)|n + 1,−〉, (A2)

where βn = 2kπg
√

n + 1. Using this equation and the def-
inition of D±

n , from Eq. (A1), we can get the amplitude
distribution coefficient of the chiral partner as follows:

D+
n = (−1)ke−iεα [C+

n cos βn + iC−
n+1 sin βn], (A3)

D−
n+1 = (−1)ke−iεα [C−

n+1 cos βn + iC+
n sin βn]. (A4)

Let us calculate the expectation values of the operators com-
posed of the chiral operator and the coupling Hamiltonian as
follows:

A = 〈φα|(aσ+ + a†σ−)eiπa†ae−i2kπξ (a†+a)|φα〉
=

∑
n

(−1)n
√

n + 1[D+
n (C−

n+1)∗ − D−
n+1(C+

n )∗], (A5)

B = 〈φα|ei2kπξ (a†+a)(aσ+ + a†σ−)eiπa†a|φα〉
=

∑
n

(−1)n
√

n + 1[C+
n (D−

n+1)∗ − C−
n+1(D+

n )∗]. (A6)

Since the expectation values are satisfied by A = B, we can
get the following equation:

D+
n (C−

n+1)∗ − D−
n+1(C+

n )∗ + C−
n+1(D+

n )∗ − C+
n (D−

n+1)∗ = 0.

(A7)
We can rewrite Eq. (A3) as

C−
n+1 = (−1)keiεα D+

n − C+
n cos βn

i sin βn
, (A8)

and then substitute it into Eq. (A4) to get the coefficient

D−
n+1 = D+

n cos βn − (−1)ke−iεαC+
n

i sin βn
. (A9)
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Substituting Eqs. (A8) and (A9) into Eq. (A7), the relation
between two coefficients is as follows:

(−1)k (|D+
n |2 − |C+

n |2)(eiεα − e−iεα )

i sin βn
= 0, (A10)

which implies the simple relation

|D+
n |2 = |C+

n |2. (A11)

From Eqs. (A3) and (A4), the relation between |D+
n |2 and

|D−
n+1|2 is written as

|D+
n |2 − |D−

n+1|2

= (cos2 βn − sin2 βn)(|C+
n |2 − |C−

n+1|2)

+ 2i sin βn cos βn[C−
n+1(C+

n )∗ − C+
n (C−

n+1)∗]. (A12)

Equation (A12) gives

(|C+
n |2 − |C−

n+1|2) sin βn

= i cos βn[C−
n+1(C+

n )∗ − C+
n (C−

n+1)∗]. (A13)

From Eq. (A13), we can rewrite

(−1)ke−iεα (C+
n )∗[cos βnC

−
n+1 + i sin βnC

+
n ]

= (−1)ke−iεα (C−
n+1)∗[cos βnC

+
n + i sin βnC

−
n+1]. (A14)

Using Eqs. (A3) and (A4), finally, we can get the relation
between the amplitude distribution coefficients of the chiral
partners as follows:

D+
n

D−
n+1

=
(

C+
n

C−
n+1

)∗
. (A15)

APPENDIX B: DERIVATION OF STATE EVOLUTION

Considering a pair of eigenphases under chiral symmetry,
Eq. (15) is rewritten as

|
(M )〉 =
∑
α∈E

(e−iεαMT 〈φα|
(0)〉|φα〉

+ eiεαMT 〈φα|�†|
(0)〉�|φα〉), (B1)

where E is defined by a set of index α having positive energies
including zero energy, E = {α|εα � 0}, and we separate the
eigenenergies as pairs under chiral symmetry. Let us take the
n0th and even state |
(0)〉 = eiθ0 |n0,+〉 as the initial state
with an initial phase θ0, and use the relations of the ampli-
tude distribution coefficients D±

n = |C±
n |ei(θg−θ±

n ) and C±
n =

|C±
n |eiθ±

n . The element of the summation is written by

e−iεαMT〈φα|
(0)〉|φα〉

=
∑

n,η=±

∣∣C+
n0

Cη
n

∣∣e−iεαMT+iθ0−iθ+
n0

+iθη
n |n, η〉, (B2)

eiεαMT〈φα|�†|
(0)〉�|φα〉
=

∑
n,η=±

∣∣C+
n0

Cη
n

∣∣eiεαMT+iθ0+iθ+
n0

−iθη
n +i(n0+n)π |n, η〉, (B3)

and then we can get the final wave function after MT ,

|
(M )〉 =
∑
n,±

Pη
n (M )|n, η〉, (B4)

where the amplitude function is as follows:

Pη
n (M ) =

∑
α∈E

[∣∣C+
n0

Cη
n

∣∣eiθ0 e−iQη
nα (M )

+ ∣∣C+
n0

Cη
n

∣∣eiθ0+i(n0+n)π eiQη
nα (M )

]
, (B5)

where Qη
nα (M ) = εαMT + θ+

n0
− θη

n and E is defined by a set
of index α having positive energies including zero energy,
E = {α|εα � 0}. Finally, we get

Pη
n (M ) = eiθ0

∑
α∈E

[
2
∣∣C+

n0
Cη

n

∣∣ cosQη
nα (M )

]
(B6)

when n0 + n is an even number, and

Pη
n (M ) = ei(θ0+π/2)

∑
α∈E

[−2
∣∣C+

n0
Cη

n

∣∣ sinQη
nα (M )

]
(B7)

when n0 + n is an odd number.
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