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Validation of classical modeling of single-photon pulse propagation
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“It is well-known to those who know it” that single-photon interference experiments can be modeled classi-
cally [S. Barnett, Phys. Scr. 97, 114004 (2022)]. When a single-photon light pulse was split by a biprism, good
agreement with a classical fit was obtained and the photon was counted only once, consistent with a probabilistic
interpretation [V. Jacques et al., Eur. Phys. J. D 35, 561 (2002)]. A justification for this “well know result of
quantum optics” is implicit in the work by Hawton [Phys. Rev A 104, 052211 (2021)] where a real covariant field
describing a single photon is first quantized. Here the theoretical basis of this result is reviewed and the theory is
extended to multiphoton states. The crucial role of the charge-parity-time theorem in coupling to charged matter
and resolution of the photon localization problem is discussed.
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I. INTRODUCTION

Since classical electromagnetic (EM) fields are real and
covariant, precise justification of their surprising success in
the interpretation of single-photon experiments [1–3] requires
quantized fields that are also real and covariant. In Ref. [4] the
real classical EM field was first quantized to give a quantum
mechanical (QM) description of one-photon states in which
their state space is augmented with a scalar product and oper-
ators describing the momentum, energy, position, and angular
momentum observables.

The initial work on photon wave mechanics was based on
positive energy fields [5], but restriction to positive energy
is inconsistent with causal pulse propagation. According to
the Hegerfeldt theorem, a positive energy field localized in
a finite region for an instant spreads immediately throughout
space [6]. A technique that allows inclusion of negative en-
ergy fields was devised by Mostafazadeh and co-workers [7].
They defined an operator that multiplies the negative energy
antiphoton terms by −1. This operator performs the same

function as the 4 × 4 matrix β = (̂12 0
0 −̂12

) in the Dirac theory

of electrons and positrons. (Here 1̂2 is a 2 × 2 unit matrix.)
Number density cannot be derived directly from a Lagrangian
since it is not a conserved quantity, but modification of the
sign of the antiparticle term in the conjugate momentum
converts the conserved quantity that is generated by a phase
change to photon number.

Real fields are, in fact, required for consistency with
the charge-parity-time (CPT) theorem of quantum field the-
ory (QFT). Charge conjugation C exchanges all particles
with their antiparticles. The fermion four-current is odd un-
der charge conjugation since electrons are exchanged with
positrons. To maintain invariance of the current-field interac-
tion and the Dirac equation, the photon four-potential should

*Corresponding author: mhawton@lakeheadu.ca

also be odd under charge conjugation. If A+
j is a positive

energy photon four-potential and A−
j = A+∗

j is a negative en-
ergy antiphoton four-potential, QFT requires that Aj = (A+

j −
A−

j )/
√

2i [8].
To maintain the classical form that we seek, a covariant ap-

proach to first and second quantization will be used here. The
usual textbook choice in quantum electrodynamics (QED) and
quantum optics includes a factor ω

−1/2
k in Â where ωk is the

angular frequency at wave vector k, but here we will follow
the covariant treatment in Refs. [9,10].

In the next section the fields in Ref. [4] will be generalized
to include circularly polarized (CP) light for which rotation of
the field vectors mixes sine and cosine terms. For complete-
ness, descriptions of the covariant notation, scalar product,
and momentum and position eigenvectors will be included.
It will be verified that only the odd field is coupled to charged
matter and localizable in a finite region. The probability am-
plitude to find a photon at x on the t hyperplane will be
calculated and it will be verified that the Born rule is satisfied.
In Sec. III, multiphoton states and the classical large photon
number limit will be discussed, and in Sec. IV we conclude.

II. ONE-PHOTON FIELDS, SCALAR PRODUCT,
AND OBSERVABLES

SI units will be used. The contravariant space-time,
wave vector, and momentum four-vectors are x = xμ =
(ct, x), k = (ωk/c, k), and p = h̄k, where kx = ωkt − k · x
is invariant, the matter four-current is Jm, the four-gradient
is ∂ = (∂ct ,−∇ ), � ≡ ∂μ∂μ = ∂2

ct − ∇2, the four-potential
is A(t, x) = Aμ = ( φ

c , A) or a(t, k) = (a0, a), and aλ(k) de-
notes a Lorentz invariant scalar describing a state with definite
helicity λ. When not written explicitly, the space-time de-
pendence of A and wave vector dependence a is implied.
The covariant four-vector corresponding to U μ = (U0, U) is
Uμ = gμνU ν = (U0,−U), where gμν = gμν is a 4 × 4 diago-
nal matrix with diagonal (1,−1,−1,−1). With the mutually
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orthogonal polarization unit vectors eμ defined such that 0
is time-like, 1 and 2 are transverse, and 3 is longitudinal,
e0 = nμ = (1, 0, 0, 0), e3(k) = ek = k/|k|, and the definite
helicity transverse unit vectors are

eλ(k) = 1√
2

(eθ + iλeφ ) (1)

for λ = ±1, where eθ , eφ , and ek are orthonormal k-space
spherical polar unit vectors on the t hyperplane.

The four-potential describing single photons and antipho-
tons in position space will be written as

A(x) =
√

h̄

2ε0

∫
t

dk

(2π )3ωk
{[(a1x′ (k) + a−1x′ (k))]

× e−ikx + [a∗
1x′ (k) − a∗

−1x′ (k)]eikx}, (2)

where

arx′ (k) = ar (k)e(k)eikx′
, (3)

the subscript −1 denotes a series that is odd under exchange
of photons and antiphotons so that A → −A, the subscript 1
denotes an even series so A → A, and ar (k) for r = ±1, a real
Lorentz scalar. If a1 = 0 this is an odd series, if a−1 = 0 it is
an even series, so

A(x) = A1(x) + iA−1(x), (4)

where A1 and A−1 are real. If a1 = a−1, A(x) is a positive en-
ergy photon term, while if a−1 = −a1, it is a negative energy
antiphoton term. The four-vector x′ defines the space-time
origin. The real four-vectors A1 and A−1 in (4) replace Ac and
As in Ref. [4] to allow for rotation of CP light that mixes
the sine and cosine terms. The subscript t on the integral
denotes evaluation at a fixed time t , and dk ≡ d3k is an
infinitesimal volume in k space. The above form was selected
because limV →∞�n/V = dk/(2π )3, where �n is the number
of states and

∫
d4kδ(ω2

k/c2 − |k|2) = ∫
t

dk
2ωk/c is invariant. The

electric and magnetic fields are

E(x) = −∂t A(x) − ∇φ(x), B(x) = ∇ × A(x). (5)

The Mostafazadeh sign of energy operator that is useful for
application to linear combinations of positive and negative
energy fields is [7]

ε̂ ≡ i(−∇2)−1/2∂ct . (6)

In this expression the operator (−∇2)−1/2 extracts a fac-
tor |k2|−1/2 from the plane wave e−iεkx, while i∂t e−iεkx =
εωke−iεkx so that the operator ε̂ gives the sign of energy,
ε = ±.

The Lagrangian describing the real fields A1 and A−1 can
be written in the complex form (4) provided that this field
and its complex conjugate are treated as formally indepen-
dent [11]. The standard Lagrangian density L = ε0(E · E∗ −
c2B · B∗)−Jμ∗

m Aμ − Jμ
m A∗

μ, with matter four-current Jm purely
imaginary since it is odd, gives the classical Maxwell equa-
tions and conservation laws for energy, momentum, and total
angular momentum. In the Coulomb gauge in which A = A⊥
is transverse, the canonical momentum conjugate to A⊥ is
−ε0E∗

⊥, the momentum conjugate to A∗
⊥ is −ε0E⊥, and the

conserved density generated by a global phase change is

−ε0(E∗
⊥·A⊥−E⊥·A∗

⊥) = 2ε0E⊥·A∗
⊥. If the Coulomb gauge is

specified, the subscript ⊥ is redundant, but it is retained here
since the transverse part of A is gauge independent. Writing
the transverse part of (2) as

A⊥(x) =
√

h̄

2ε0

∑
λ=±1

∫
t

dk

(2π )3ωk

× [aλ+(k)e−ikx + aλ−(k)eikx] (7)

for brevity and evaluating E⊥(x) = −∂t A⊥(x), the gauge-
invariant conserved quantity becomes

2ε0

∫
dxE⊥·A∗

⊥ =
∑
λ=±1

∫
t

dk

(2π )3 [|aλ+(k)|2 − |aλ−(k)|2].

(8)
For the real potentials A1(x) and A−1(x) this equals zero. Cre-
ation or annihilation of photon/antiphoton pairs is consistent
with this conservation law, while creation or annihilation of
unaccompanied positive frequency photons or negative fre-
quency antiphotons violates it.

The interpretation of (8) as a conservation law is new, but
its form motivated the definition of scalar product used in
Ref. [4] and previous work. If E⊥ is replaced with ε̂E⊥ ≡Ẽ⊥
so that the sign of the antiphoton terms is changed, the positive
definite number density

ρ(x) = ε0

h̄
Ẽ∗

⊥(x)·A⊥(x) (9)

is obtained. Details of the contribution of the longitudinal and
scalar components to the number density and scalar product
will not be presented here, but in Ref. [12] it was found that in
the Coulomb gauge only transverse waves propagate, while in
the Lorenz gauge the contributions of longitudinal and scalar
photons to number density cancel. As in Ref. [4], the scalar
product of states A1 and A2 will be defined as

(A1, A2)t = ε0

h̄

∑
λ=±

∫
t
dxẼ∗

1λ(x) · A2λ(x). (10)

In bra-ket notation with substitution of (2) and use of the
Parseval-Plancherel identity, the r = ±1, λ = ±1 terms of
(10) can be written as

〈Ẽ1rλ · A2r′λ′ 〉 = 〈Ẽ1rλ|A2r′λ〉δλλ′δrr′ (11)

=
∫

dk

(2π )3ωk
a1rλ(k)a2r′λ′ (k)eik(x1−x2 )δλλ′δrr′ , (12)

where Ajrλ ≡ |A jrλ| and Ẽ jrλ ≡ |Ẽ jrλ|. Inspection of (10)–
(12) shows that these expressions for the scalar product
involve both the vector potential and the electric field rather
than a single function. QM based on scalar products of this
form can be described within the formalism of biorthogonal
QM [13–15].

The one-photon Hilbert space will be defined as the space
of all four-potentials of the form (2) with scalar product (10)–
(12). Eigenvectors of observables will be written in positive
energy form in real space so that the basis includes both even
and odd fields. It can be verified by substitution in (12) that the
transverse plane waves with definite momenta h̄k′ and helicity
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λ′, defined covariantly as

ar′λ′k′ (k) = (2π )3ωkδ(k − k′)eλ′ (k) (13)

for r′ = ±1 with ωk = c|k|, are biorthogonal in the sense that
(Arλk, Ar′λ′k′ ) = δrr′δλλ′ (2π )3ωkδ(k − k′). In position space

substitution in (2) gives Aλ′k′ (x) =
√

2h̄
ε0

eik′ ·xeλ′ (k′). Position

is also an observable. The Fourier transform of the localized
state δ(x − x′) at x′ is the plane wave exp(−ik · x′), so the
photon position eigenvectors in the Schrödinger picture (SP)
should be of the form (3) with

arλ′x′ (k) = eλ′ (k)e−ik·x′
, arλ′x′ (k) = 1 (14)

for r = ±1 [16].
Pulse propagation takes place in real space. The projection

of an arbitrary physical state of the form (3) onto the Axλ basis,
evaluated using (12),

φrλ(x) = (Axλ, Ar ) =
∫

t

dk

(2π )3ωk
arλ(k)e−ikx, (15)

is the probability amplitude for the photon in state |Ar〉 to be
at x at time t . Setting arλ(k) in (15) equal to arλx′ (k), with
�t ≡ t − t ′ and R ≡ |x − x′|, an explicit expression for its
time evolution can be obtained by taking sums and differences
of ∫

t

dk

(2π )3ωk
e−ik(x−x′ )

= 1

4π2r

∑
γ=±

[
iγπδ(R − γ c�t ) + P

(
1

R − γ c�t

)]
,

(16)

where P is the principal value and the sum over γ comes
from integration over the k-space polar angle and represents
a sum over incoming and outgoing spherical waves. For the
even field A1, φ1λ(x) = (Axλ, A1x′λ) is nonlocal and since Jm is
odd and hence purely imaginary, there is no source term in its
equation of motion. It is completely decoupled from charge
matter and thus, if it exists at all, cannot be detected. Only the
imaginary odd term in (16),

φ−1λx′ (x) = (Axλ, A−1x′λ)

= 1

4πr
[δ(R + c�t ) − δ(R − c�t )], (17)

couples to charged matter. In a source-free region there is no
absorption or emission and the photon just passes through x′
at time t ′.

Expression (17) satisfies the homogeneous Klein Gordon
(KG) equation and equals the advanced minus the retarded
potential. The retarded potential is important in classical EM,
and (17) shows that it can be calculated for one-photon states.
In the presence of a source such as an atom or a quantum dot,
the wave equation describing propagating transverse photons
is

�φ−1λ(x) = Jmλ(x), (18)

where Jmλ is the λ component of the matter four-current. The
general solution to this wave equation is a particular solution
determined by Jmλ plus a general solution to the homogeneous
wave equation �φ−1λ(x) = 0. Schweber [17] inverted � and

found that the unique Green’s function solving �Gλx′ (x) =
δ(x − x′)δ(t − t ′) is

Gλx′ (x) = 1

4πR
[δ(R + c�t ) + δ(R − c�t )], (19)

where t ′ = t − R/c < t is the retarded time and t ′ = t +
R/c > t is the advanced time. He concluded that the retarded
potential is determined by boundary conditions. The particular
solution to (18) for a source of helicity λ is [17]

φ
(p)
−1λ

(x) =
∫

dx′

4πr
[H (�t − R/c)Jmλ(x′,�t − R/c)

+ H (−�t − R/c)Jmλ(x′,�t + R/c)], (20)

where H (s) = 0 for s < 0 and 1 for s � 0 is the Heav-
iside step function. The one-photon probability amplitude
emitted instantaneously at t ′ by a localized source at x′
is 1

2 [Gλx′ (x) − φ−1λx′ (x)], given by (17) and (19), while
1
2 [Gλx′ (x) + φ−1λx′ (x)] describes absorption. Equation (20) in
combination with a generalization of (17) based on (15) can
be used to describe emission or absorption by a more realistic
one-photon source.

The potential φ−1λx′ (x) given by (17) is a Lorentz scalar
whose time derivative, i∂tφ−1λx′ (x), is a density. At t = t ′,

ψ−1λx′ (t, x) =
∫

t

dk

(2π )3 e−ik·(x−x′ ) = δ(x − x′) (21)

forms a localized basis. The Born rule gives a probability
interpretation of the state vector. Expanding ψ−1λ in the δ

basis at time t as

ψ−1λ(t, x) =
∫

t
dx′δ(x − x′)ψ−1λ(t, x′), (22)

it can be seen that ψ−1λ(x) is the probability amplitude for a
photon to be in the state δ(x − x′) on the t hyperplane. The
λ-helicity x-space and k-space probability densities are

ρ−1λ(t, x) = |ψ−1λ(t, x)|2, (23)

ρ−1λ(k) = |a−1λ(k)|2. (24)

where∑
λ=±1

∫
dx|ψ−1λ(t, x)|2 =

∑
λ=±1

∫
dk

(2π )3 |a−1λ(k)|2 = 1

(25)
for normalized physical states.

III. QED FOCK SPACE AND MULTIPHOTON STATES

The complete photon state space is determined by QED.
Photons are bosons, so there is no exclusion principle and
n-photon states are allowed for n = 0 or any positive integral
value of n. In a plane wave basis the covariant photon com-
mutation relations are

[̂aλ(k), âλ′ (k′)] = 0, [̂a†
λ
(k), â†

λ′ (k′)] = 0,

[̂aλ(k), â†
λ′ (k′)] = δλ,λ′ (2π )3ωkδ(k − k′). (26)

where the operator âλ(k) annihilates a photon with wave
vector k and helicity λ and â†

λ(k) creates one. Using these
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commutation relations, it can be verified that

|aλkn〉 = [̂a†
λn(k)]n

√
n!

|0〉 (27)

are normalized n-photon states where |0〉 is the zero-photon
(vacuum) state.

The field operators can be obtained by second quantization
of any real field, so we choose the odd field,

Â(x) = −i

√
h̄

ε0

∑
λ=±1

∫
t

dk

(2π )3ωk
[̂aλ(k)eλ′ (k)e−ikx

− â†
λ
(k)e∗

λ′ (k)eikx]. (28)

The transverse electric and magnetic field operators can then
be obtained by differentiation as

Ê⊥(x) = −∂t Â(x), B̂(x) = ∇ × Â(x). (29)

In QED causality is enforced by the commutation relations.
Defining

Ĉλ(x, x′) ≡ i
ε0

h̄
[Âλ(t, x) · Êλ(t ′, x′)

− Êλ(t ′, x′) · Âλ(t, x)], (30)

it can be verified by substitution at t = t ′ that Ĉλ(t, x; t, x′) =
δ(x − x′) and

〈0|Ĉλ(x, x′)|0〉 = φ−1λ(x). (31)

Thus, the causal propagation described by (17) is consistent
with QED, where in QED the sign change of the antiphoton
term is a consequence of the bosonic commutation relations.

The QED positive and negative energy annihilation and
creation operators define the plane wave and localized bases,
but they do no extend to the description of real photon fields
in an obvious way. I found first quantization to be more
convenient for this purpose. First quantized one-photon states
were the subject of the previous section and, following the
rules of QM for bosons, multiphoton states can be written
as symmetrized products of one-photon states. For photons
at x1 and x2 in odd states A−1 j and A−1k , the symmetrized
two-photon state is

Ajk (x1, x2, t ) = 1√
2

[A−1 j (x1, t )A−1k (x2, t )

+ A−1 j (x2, t )A−1k (x1, t )] (32)

at time t . This ensures that the scalar product (A4A3, A2A1) =
(A4, A2)(A3, A1) + (A4, A1)(A3, A2) does not depend on pho-
ton order in the two-photon state (32). If both photons are in
the same state, Aj j (x1, x2, t ) = A− j (x1, t )A− j (x2, t ) is sym-
metric.

As an example, we consider photon pulses traveling in the
+ or − direction in a one-dimensional wave guide, A−1λ(x ±
ct ). For a photon propagating in one dimension, states with
definite helicity λ are just circularly polarized. A single pho-
ton passed through a beam splitter at x = 0 described by

A−1λ(x, t ) = 1√
2

[A−1λ(x − ct ) + A−1λ(x + ct )] (33)

is equally likely to be counted on the positive or negative
x axis. For entangled photons with total linear and angular
momentum zero, perhaps created by position annihilation at
x = 0, the two-photon state

A(x1, x2, t ) = 1√
2

∑
λ=±1

[A−1λ(x1 − ct )A−1−λ(x2 + ct )

+ A−1−λ(x1 − ct )A−1λ(x2 + ct )] (34)

is symmetrized under exchange of photons at x1 and x2

by the sum over λ. Detection of a photon with helic-
ity λ at x1 = ct collapses the entangled state (34) to
A−1−λ(x1 + ct ).

A coherent state with helicity λ, wave vector k, and
average photon number α∗

λαλ is |αλk〉 = ∑∞
n=0 αn

kλ|aλkn〉,
where âλ(k)|αkλ〉 = αλk|αλk〉 and 〈αλk |̂a†

λ(k) = α∗
λk〈αλk|. If

the plane waves (13) are in coherent states |{αkλ}〉 for all
basis states (k, λ), the expectation value of the vector potential
operator is

Acl ≡ 〈{αλk}|Â(x)|{αλk}〉

= i

√
h̄

ε0

∑
λ=±1

∫
t

dk

(2π )3ωk
[αλkeλ′e−ikx−α∗

λk(k)e∗
λ′ (k)eikx].

(35)

After taking expectation values of the operator (28) to
get (35), detailed information about the distribution over
photon number is lost and only its average value is re-
tained. The averaging process just counts transitions between
states that differ by a photon number of 1. For states
containing a definite number of photons, in particular for
one-photon states, expectation values of the field operators
are 0.

IV. SUMMARY AND CONCLUSION

Photon quantum mechanics as described here preserves
the classical form of the EM potential and fields when
first and second quantized. Only the interpretation need be
changed—from real observable classical fields, to probability
amplitudes, and then to operators that create and annihilate
photons. The real potentials are even and odd under QFT
charge conjugation, but only those that are odd couple to
charged matter and can be localized in a finite region. Here
even and odd fields were written as the real and imaginary
parts of a complex field whose use simplifies the mathematics
and facilitates use of the standard Lagrangian and relativis-
tic scalar product. The number density if (ε0/h̄)Ẽ(x) · A(x),
where in Ẽ the sign of the antiphoton term, is changed
analogous to the effect of the β matrix in the Dirac the-
ory of electrons and positrons, and the scalar product is
based on its spatial integral. Equations (17)–(35) provide a
new scalar description of single-photon states with a well-
defined physical interpretation that may prove to be useful in
applications.

In conclusion, one-photon fields of the classical form
combined with a probabilistic interpretation can be used in
quantum optics, quantum computing, and quantum informa-
tion without loss of rigor. This can be extended to multiphoton
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states, possibly entangled, by construction of a symmetrized
product of one-photon states. In the opinion of this author, this

conclusion has important practical and fundamental implica-
tions.
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