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In this paper, we propose a sensing mechanism to enhance the sensitivity of a quantum system to nonlinearities
by homodyning the amplitude quadrature of the cavity field. The system consists of two dissipatively coupled
cavity modes, one of which is subject to single- and two-photon drives. In the regime of low two-photon driving
strength, the spectrum of the system acquires a real spectral singularity. We find that this singularity is very
sensitive to the two-photon drive and nonlinearity of the system, and compared to the previous nonlinearity
sensor, the proposed sensor achieves an unprecedented sensitivity around the singularity point. Moreover, the
scheme is robust against fabrication imperfections. This work would open a different avenue for quantum
sensors, which could find applications in many fields, such as precise measurement and quantum metrology.
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I. INTRODUCTION

Hermiticity and real eigenvalues of the Hamiltonian in
closed systems are the key postulate in quantum mechanics. In
recent years, it was discovered that the axiom of Hermiticity
can be replaced by the condition of parity-time (PT ) sym-
metry, leading to the foundations of non-Hermitian quantum
mechanics [1,2]. Interestingly, non-Hermitian Hamiltoni-
ans also exhibit entirely real eigenvalues when satisfying
[H,PT ] = 0, where PT is the joint parity-time operator. A
more significant feature of such Hamiltonians is the breaking
of the PT symmetry, in which the eigenspectrum switches
from purely real to completely imaginary [3–25]. This sudden
PT phase transition is marked by the exceptional point (EP),
associated with level coalescence, in which the eigenvalues
and their corresponding eigenvectors simultaneously coalesce
and become degenerate. Recently, the PT phase transition
was experimentally observed in various PT -symmetric sys-
tems [26–29].

As a counterpart, the anti-parity-time symmetry, where
the Hamiltonian of the system is anticommutative with the
joint PT operator (mathematically, {H,PT } = 0), has re-
cently attracted great interest [30–46]. In contrast to the
PT -symmetric system, the anti-PT -symmetric system does
not require gain, but it can still exhibit an EP with purely
imaginary eigenvalues. This characteristic is of great signif-
icance for realizing non-Hermitian dynamics in the quantum
domain without Langevin noise [47]. To date, several relevant
experiments have been realized in different physical systems,
including cold atoms [37], optics [43], magnon-cavity hybrid
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systems [39], electrical circuit resonators [40], and integrated
photonics [41,42].

Sensitivity enhancement based on EPs has been demon-
strated both theoretically and experimentally [17–21,45–55]
in particle detectors [17], mass sensors [51], and gyroscopes
[54]. It has been shown that if an EP is subjected to the
strength ε of the linear perturbation, the frequency splitting
(the energy spacing of the two levels) scales as the square root
of the perturbation strength ε [17–21,45–55]. Recently, in the
context of dissipatively coupled anti-PT -symmetric systems,
a scheme was proposed to efficiently detect the nonlinear
perturbations [31]. This dissipatively coupled system has an
imaginary coupling strength [31], resulting from the fact that
the vacuum of the electromagnetic field can produce coher-
ence in the process of spontaneous emission [56]. Owing to
this coherence, the system acquires a real spectral singularity
which strongly suppresses the linewidth of a resonance spec-
trum, thereby drawing out a remarkable response. Particularly,
near the coherence-induced singularity (CIS), the response N
behaves as | dN

dU | ∝ |U |−5/3, where U quantifies the strength of
the Kerr nonlinearity [31]. Compared with EP-based sensors
[17–21,45–55], the sensitivity of the system to inherent non-
linearities has been greatly improved, and the protocol does
not require any gains [31].

To enhance the sensitivity of quantum sensors, in this pa-
per, we theoretically propose a sensing mechanism to improve
the sensitivity of a quantum system to nonlinearities. Our pro-
posal is based on two dissipatively coupled cavity modes, one
of which is subject to single- and two-photon drives. The key
point of our sensing protocol is that the spectrum of the dissi-
patively coupled system acquires a CIS at the low two-photon
driving strength. In the vicinity of the CIS, the current sensing
protocol exhibits a much larger sensitivity compared with the
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FIG. 1. Illustration of our setup. The cavity modes ã and b̃ are
dissipatively coupled through the shared dissipative environment. γã

and γb̃ denote the dissipation rates of systems ã and b̃, respectively.
σ stands for the cooperative interactions between the two modes and
the common reservoir. J is the direct coupling between the cavity
modes. The cavity mode b̃ is driven by a single-photon pump of
amplitude �. The cavity mode b̃ is also subject to a classical pump of
amplitude F . A parametric amplifier (PA) is inserted inside the cavity
b̃. By using a homodyne setup, the nonlinear parameter is estimated
via the amplitude quadrature of the cavity field b̃. See the text for
details.

previous work [31]. The proposed sensor differs from known
sensors in at least five points: (i) it operates at a CIS instead of
the EP, (ii) it can help to estimate two types of nonlinear pa-
rameters (Kerr nonlinearity coefficient and two-photon driv-
ing amplitude), (iii) the nonlinear parameters are estimated
via the amplitude quadrature of the cavity field and can reach
an unprecedented sensitivity around the CIS, (iv) we need
to increase the two-photon driving amplitude only slightly to
overcome the deleterious effects of fabrication imperfections,
and (v) it works without the requirement of anti-PT symme-
try, making such a configuration much more accessible.

The remainder of this paper is organized as follows. In
Sec. II, a physical model is introduced to describe the setup,
and the dynamical equations for the system are derived. In
Sec. III, we study the sensitivity of the system to nonlinear-
ities and discuss the effect of the fabrication imperfections
on the performance of the setup. In Sec. IV, we discuss the
experimental feasibility of the present scheme. Finally, the
conclusions are drawn in Sec. V. In the Appendix, we discuss
the validity of the mean-field approximation.

II. MODEL AND DYNAMICAL EQUATIONS

The schematic diagram is sketched in Fig. 1. We consider
a general situation where we have two dissipatively coupled
cavity modes, one of which is subject to single- and two-
photon drives. In the rotating frame with respect to frequency
ωp of the laser, the total Hamiltonian of the system reads
(h̄ = 1) [31,57]

H = Hf + Hk + Hi + Hl + Hs, (1)

with

Hf = �ãa†a + �b̃b†b, Hk = U (b†2b2),

Hi = J (ab† + a†b), Hl = �(b† + b),

Hs = G(e−iθpb†2 + eiθpb2). (2)

Here, Hf represents the free Hamiltonian of the uncoupled
cavity modes ã and b̃, and a† (b†) and a (b) are the cre-
ation and annihilation operators of mode ã (b̃), respectively.
� j = ω j − ωp/2 ( j = ã, b̃) represents the detuning of modes
ã and b̃ with respect to the laser field, and the frequencies of
modes ã and b̃ are ωã and ωb̃, respectively. The Hamiltonian
Hk describes the Kerr nonlinearity of mode b̃, and the strength
is denoted by U [58–63]. The Hamiltonian Hi describes the
direct coupling between the modes with coupling strength
J . The Hamiltonian Hl represents mode b̃ driven coherently
by a single-photon pump with amplitude � and frequency
ωl = ωp/2. The Hamiltonian Hs describes mode b̃ subjected
to a two-photon drive of amplitude G, frequency ωp, and phase
θp. We will demonstrate later how to adjust θp to enhance
the response of the system to Kerr nonlinearity. Physically,
a squeezed laser can be obtained by means of the degenerate
parametric down-converter [64]. A certain kind of nonlinear
medium is pumped by a field of frequency ωp, and the photons
of that field are converted into pairs of identical photons, of
frequency ωp/2 each, into the signal field. This process is
known as the degenerate parametric down-conversion, and it
can be implemented in a system described by the Hamiltonian

H = ωãa†a + ωb̃b†b + J (ab† + a†b) + Ub†b†bb

+ �(b†e−iωl t + beiωl t ) + ωpc†c + χ (2)(b2c† + b†2c),

where ωp is the frequency of the pump mode and χ (2) is a
second-order nonlinear susceptibility [65]. We now assume
that the pump field is classical, such that its photons remains
undepleted over the relevant timescale. Suppose that the field
is in coherent state |
e−iωpt 〉 (
 = Fe−iθp), and approximate
operators c and c† by 
e−iωpt and 
∗eiωpt , respectively; the
above Hamiltonian reduces to

H = ωãa†a + ωb̃b†b + J (ab† + a†b) + Ub†b†bb

+ �(b†e−iωl t + beiωl t ) + (G̃∗b2eiωpt + G̃b†2e−iωpt ),

where G̃ = χ (2)
 = Ge−iθp . In the rotating frame defined by
U = exp[(−i ωp

2 a†a − i ωp

2 b†b)t], the above Hamiltonian be-
comes

H = �ãa†a + �b̃b†b + J (ab† + a†b) + Ub†b†bb

+ �(b†e−i�l t + bei�l t ) + (G̃∗b2 + G̃b†2),

where �ã/b̃ = ωã/b̃ − ωp/2 and �l = ωl − ωp/2. Recently,
this two-photon drive was realized by coupling two super-
conducting resonators through a Josephson junction [66]. On
the other hand, the dissipative environment can be roughly
divided into two categories: one in which the modes are cou-
pled independently to their local reservoirs and one in which
a common reservoir interacts with both, as shown in Fig. 1.

A complete description of the two-mode system interacting
with the dissipative environment is the master equation in the
Lindblad form [56,67],

dρ

dt
= − i[H, ρ] + γãL[a]ρ + γb̃L[b]ρ + σL[c]ρ, (3)

where the second and third terms represent the intrinsic damp-
ing of modes ã and b̃, respectively. The fourth term describes
the cooperative interactions between the two modes and the
common reservoir. The standard dissipative superoperator
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L[o] is defined by L[o]ρ = 2oρo† − o†oρ − ρo†o, and the
jump operator c is a linear superposition of the annihilation
operators a and b, c → νa + ueiθ b. If the phase difference θ

of light propagation from one mode to another is a multiple
of 2π , the jump operator has the general form c → νa + ub
[67], where the coefficients ν and u represent the couplings
of the two modes to the common reservoir, respectively. If
the two modes are symmetrically coupled to the common
reservoir, the operator c is expressed as c = (1/

√
2)(a + b).

The external damping rates induced by the common reservoir
for the two modes are σν2 = κã and σu2 = κb̃, respectively.
The cooperative dissipations between the two modes is σνu =√

κãκb̃, where the
√

κãκb̃ represents the effect of quantum
interference resulting from the cross coupling between the
two modes. Without loss of generality, we assume that the
parameters γ j and κ j ( j = ã, b̃) are the same for the whole
system, i.e., γã = γb̃ = γ0 and κã = κb̃ = �.

III. SENSITIVITY AT THE COHERENCE-INDUCED
SINGULARITY

A. Effective Hamiltonian and the sensitivity
of the system to nonlinearities

Starting from the Lindblad master equation in Eq. (3), we
can obtain the mean-value equations for modes ã and b̃ via the

relation 〈ζ̇ 〉 = Tr(ρ̇ζ ) [56]:

α̇ = − i[�ã − i(γ0 + �)]α − i(J − i�)β,

β̇ = − i(J − i�)α − i[�b̃ − i(γ0 + �)]β

− 2iU |β|2β − 2iGβ∗ − i�,

α̇∗ = (α̇)∗,

β̇∗ = (β̇ )∗, (4)

where α̇ = 〈ȧ〉, β̇ = 〈ḃ〉, and we set θp = 0. In the derivation
of Eq. (4), we have adopted the mean-field approximation,
i.e., 〈b†bb〉 ≈ 〈b†〉〈b〉〈b〉. In the next sections, we work in the
parameter interval, in which the mean-field approximation is a
good approximation (more details are given in the Appendix).
It is obvious to observe from the above expressions that the
effective dissipative coupling strength between the two modes
is i�, which originates from the bath-mediated collective
damping.

To study the performance of the proposed sensor, we
need to solve the eigenvalues of the effective optical system
and find the CIS feature. The equivalent Schrödinger-like
equation in this configuration obeys i dφ

dt = Heffφ, where φ =
(α, β, α∗, β∗)T is the state vector, and the form of the associ-
ated effective Hamiltonian Heff is

Heff =

⎛
⎜⎜⎜⎝

�ã − i(γ0 + �) J − i� 0 0
J − i� �b̃ − i(γ0 + �) + 2Ũ 0 2G

0 0 −�ã − i(γ0 + �) −J − i�
0 −2G −J − i� −�b̃ − i(γ0 + �) − 2Ũ

⎞
⎟⎟⎟⎠, (5)

where Ũ = U |β|2. Notably, the effective Hamiltonian (5)
does not have the anti-PT symmetry. Therefore, our system is
easier to obtain than previous schemes [31,45]. The effective
Hamiltonian Heff has four eigenvalues forming two pairs, and
one pair is due to the appearance of α∗ and β∗ in the dynamics.

In the limit of the weak two-photon driving amplitude G,
we can bring the effective Hamiltonian into a block-diagonal
form, and we will study the block corresponding to α and β

in the following:

H̃eff =
(

�ã − i(γ0 + �) J − i�
J − i� �̃b̃ − i(γ0 + �)

)
, (6)

where �̃b̃ = �b̃ + 2Ũ . Without loss of generality, we choose
the parameter as follows: �ã = −�b̃ = δ/2, J = 0, and Ũ =
10−3 �, which are similar to the parameters chosen in
Ref. [31]. The eigenvalues of Eq. (6) are given by

λ̃± = Ũ − i(γ0 + �) ± 1

2

√
4Ũ 2 − 4�2 − 4Ũδ + δ2

≈ −i(γ0 + �) ±
√

δ2

4
− �2. (7)

With the intrinsic damping γ0 of the mode approaching zero,
one of the eigenvalues characterizing its dynamics tends to the
real axis at δ = 0. The dissipative coupling strength i� can be
viewed as an effective gain that offsets exactly the external
dissipation of the coupled resonance.

The solid and dashed lines in Figs. 2(a) and 2(b) show
the real (ω) and imaginary (γ ) parts of the eigenvalues [see
Eq. (7)] as a function of the detuning δ. For comparison, we
numerically solve the eigenvalues of Eq. (5) at G = 0.01�

and Ũ = 10−3� [see the circles and squares in Figs. 2(a)
and 2(b)]. We see that the numerical and analytical results
highly agree at a weak two-photon driving amplitude G. This
validates the approximations we made in the calculations.
Figure 2(b) shows that the spectrum of the dissipatively cou-
pled system acquires a CIS in the limit δ = 0 and γ0 →
0. The extreme condition γ0 = 0 holds when none of the
cavity modes suffers spontaneous losses from the surround-
ings while interacting with the mediating bath. The CIS has
prodigious sensing potential, allowing efficient detection of
nonlinearities in the configuration [31]. The physical origin
of this peculiar behavior comes from an effective coupling
induced between two modes in the presence of a shared
reservoir.

The CIS was exploited to measure the response (mean
excitation number for the system in steady state) of the system
to the parameter change of the Kerr nonlinearity with only a
single-photon drive in Ref. [31]. Here, we elaborate a different
detection strategy through homodyne detection. Specifically,
we perform a homodyne measurement on the cavity field b̃
to detect the weak nonlinearities with higher sensitivity. The
key measurement quantity, in this case, is the amplitude and
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FIG. 2. (a) The real and (b) imaginary parts of the eigenvalues
vs the detuning δ with γ0 = 10−5�. The circles and squares are the
numerical results with G = 0.01� and Ũ = 10−3�, while the solid
and dashed lines represent the analytical approximation given in
Eq. (7). The CIS is marked by the star. We study only the eigenvalue
corresponding to α and β.

phase quadratures of the cavity field. Solving the steady-state
solutions of Eq. (4), we obtain

−i[δ/2 − iγ ]α − �β = 0,

−�α − i[−δ/2 − iγ ]β − 2iU |β|2β − 2iGβ∗ = i�,

i[δ/2 + iγ ]α∗ − �β∗ = 0,

−�α∗ + i[−δ/2 + iγ ]β∗ + 2iU |β|2β∗ + 2iGβ = − i�.

(8)

Eliminating α and α∗, we get

�2β

iδ/2 + γ
+ (iδ/2 − γ )β − 2iU |β|2β − 2iGβ∗ = i�,

�2β∗

−iδ/2 + γ
+ (−iδ/2 − γ )β∗ + 2iU |β|2β∗ + 2iGβ = −i�,

(9)

where γ = γ0 + �. Defining the amplitude Xb̃ = b+b†√
2

and the

phase Yb̃ = −i(b−b† )√
2

, the expressions for the amplitude and

phase quadratures of the cavity mode b̃ are given by

〈Xb̃〉 =
√

2�

− �2γ 2

(γ 2+(δ/2)2 )2
(

(δ/2)�2

γ 2+(δ/2)2
−δ/2+2U |β|2−2G

) − ( (δ/2)�2

γ 2+(δ/2)2 − δ/2 + 2U |β|2 + 2G
) ,

〈Yb̃〉 =
√

2�

�γ

γ 2+(δ/2)2 + γ 2+(δ/2)2

�γ

[( (δ/2)�2

γ 2+(δ/2)2 − δ/2 + 2U |β|2 + 2G
)( (δ/2)�2

γ 2+(δ/2)2 − δ/2 + 2U |β|2 − 2G
)] , (10)

where � = �2 − γ 2 − (δ/2)2. Especially, � becomes ex-
tremely small around the CIS, which will cause 〈Yb̃〉 to
converge to zero. However, the expression of the amplitude
quadrature of the cavity field b̃ around the CIS can be further
simplified as

|〈Xb̃〉| ≈ �√
2(U |β|2 + G)

. (11)

The introduction of the two-photon drive reduces the sensitiv-
ity of the sensor; nevertheless, we can eliminate this influence
by setting G � Ũ . In this situation, we can approximately
obtain

|〈Xb̃〉| ≈ �√
2U |β|2 . (12)

Clearly, Eq. (12) shows an excellent nonlinear dependence
of the amplitude |〈Xb̃〉| on the Kerr nonlinear coefficient U
around the CIS. To validate the superiority of utilizing the
CIS, we numerically plot the amplitude and phase averages of
the cavity field b̃ as a function of the detuning δ in Figs. 3(a)
and 3(b). In the absence of two-photon drive, the amplitude
average |〈Xb̃〉| displays a sharp peak to U around the CIS. A
similar result was obtained by homodyning the amplitude of
the cavity field ã. This suggests that the CIS is a useful tool
for sensing the Kerr nonlinearity. In contrast to the amplitude
average, the phase average has a dip near the CIS, as predicted

by the second line of Eq. (10). To this extent, we can choose to
measure the amplitude quadrature to estimate the Kerr nonlin-
ear coefficient U . The corresponding sensitivity quantitatively
characterizes the performance of the sensor operating at CIS.
The sensitivity can be defined as

S =
∣∣∣∣d〈Xb̃〉

dU

∣∣∣∣ = ξU −2, (13)

where ξ = �/(
√

2|β|2). In order to reveal the advantages of
our sensing mechanism, a comparison with a previous sensing
protocol is necessary. For the previous nonlinearity sensor, the
sensitivity was expressed as S0 = ζU −5/3 [31]. Figure 3(c)
shows the normalized sensitivities S and S0 versus U . The
sensitivity of the proposed sensor has been considerably en-
hanced in comparison with the previous nonlinearity sensor.
In addition, we note that the tuning of the phase θp of the
two-photon drive plays an important role in enhancing the
response of the system to Kerr nonlinearity. When we set
θp = π , Eq. (11) becomes

|〈Xb̃〉| ≈
∣∣∣∣ �√

2(U |β|2 − G)

∣∣∣∣, (14)

where the sign of the two-photon driving amplitude G is
flipped. This means that the response of the system to Kerr
nonlinearity can be enhanced to some extent by increasing the
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FIG. 3. (a) Average of the amplitude quadratures |〈Xb̃〉| (black)
and |〈Xã〉| (bright green) for the system in steady state vs the detuning
δ at U = 0.02� and G = 0. (b) |〈Yb̃〉| vs δ at U = 0.02� and G =
0. (c) Contrast between the normalized sensitivities S/ξ (black) and
S0/ζ (bright green) when U is below 0.1� at G = 0. Notice that the
coordinate scales for S and S0 are different. (d) |〈Xb̃〉| vs G around
the CIS at U = 0.02�. The other system parameters are the same as
in Fig. 2.

two-photon driving amplitude G. This analysis is in agreement
with our numerical results in Fig. 3(d).

Another important finding of our work is that the system is
also highly sensitive to the two-photon drive. We consider the
case where the Kerr nonlinearity is weak with respect to the
two-photon drive, at which point the Kerr nonlinearity can be
safely ignored. In Figs. 4(a) and 4(b), we plot the amplitude
and phase averages of the cavity field b̃ as a function of the
detuning δ at four different strengths of the two-photon drive.
Similarly, the amplitude average shows a striking response
to U around the CIS. A weaker nonlinearity begets a higher
response, as manifested in Fig. 4(a). And the phase average
tends to zero around the CIS [see Fig. 4(b)]. In this case, the
sensitivity of the system to the two-photon drive is obtained
as follows:

SG =
∣∣∣∣d〈Xb̃〉

dG

∣∣∣∣ ∝ G−2. (15)

Clearly, near the CIS, the amplitude average becomes ex-
tremely sensitive to variations in G [see Fig. 4(c)], proving the
efficiency of the CIS-based sensor in detecting the two-photon
drive. Thus, our work provides a different way of esti-
mating the two-photon driving amplitude for the CIS-based
sensor.

B. The effect of fabrication imperfections on the sensitivity

The present scheme works for zero cavity-cavity cou-
plings and ignorable intrinsic dampings. In realistic scenarios,
however, fabrication imperfections are unavoidable. In this
section, we investigate the effects of fabrication imper-
fections on the performance of the scheme. First, for a
system consisting of two cavities with nonzero coupling J
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FIG. 4. (a) Average of the amplitude quadrature |〈Xb̃〉| for the
system in steady state vs the detuning δ at four different strengths
of the two-photon drive. The purple stars, yellow squares, orange
diamonds, and blue solid circles correspond to G = 1 × 10−9�,
G = 2 × 10−9�, G = 3 × 10−9�, and G = 4 × 10−9�, respectively.
A significant response of the system to two-photon drive can be
found around the CIS; otherwise, the response of the system to
two-photon drive was weak (see the inset). (b) Average of the phase
quadrature |〈Yb̃〉| for the system in steady state vs the detuning δ at
G = 4 × 10−9�. (c) The sensitivity SG vs G around the CIS. The
other system parameters are the same as in Fig. 2.

(J � �), the eigenvalues of Eq. (7) become λ̃± = −i� ±√
(J − i�)2 + δ2/4 at γ0 = 0. We get a near-CIS around δ =

0. Note that the amplitude and phase quadratures of Eq. (10)
are now modified by replacing �2 with −(J − i�)2. We plot
the modified response (amplitude average) of the system to the
two-photon drive as a function of the direct coupling J around
the CIS [see Fig. 5(a)]. The introduction of the direct coupling
J between the two modes results in a decrease in the amplitude
average, disrupting the performance of the CIS-based sensor.
Second, the nonzero γ0 (with a finite linewidth) also results in
a decrease in the response [see Fig. 5(b)], and this decrease
can be canceled by appropriately increasing the single-photon
driving amplitude � [see Fig. 5(c)]. A single-photon driving
amplitude close to 2.61� returns an amplitude average corre-
sponding to zero intrinsic damping. Similar conclusions can
be obtained for the sensing of Kerr nonlinearity. In contrast to
the sensing of the two-photon drive, we need to increase the
two-photon driving amplitude only slightly to overcome the
deleterious effects of fabrication imperfections, as revealed in
Fig. 5(d). In this sense, the present work provides a different
method for a CIS-based sensor that is robust against defects
or fabrication imperfections.

IV. DISCUSSION OF EXPERIMENTAL FEASIBILITY

Owing to recent progress in nanofabrication, our sensing
protocol can be realized in experiments [68,69]. Here, we
consider a silicon integrated photonic apparatus comprising
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FIG. 5. (a) The response of the system to two-photon drive as a
function of the direct coupling J around the CIS at γ0 = 0, G = 4 ×
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response at γ0 = 0 and � = 0.5�, the orange diamonds show the
response at γ0 = 10−8� and � = 0.5�, and the purple solid stars rep-
resent the response at γ0 = 10−8� and � = 2.61�. (d) The response
of the system to Kerr nonlinearity as a function of the detuning δ

at θp = π , � = 0.5�, and U = 0.02�. The blue dashed line shows
the response at γ0 = 10−5� and G = 0, the red solid line denotes the
response at γ0 = 0.03� and G = 0, and the orange dash-dotted line
indicates the response at γ0 = 0.03� and G = 0.05�.

two microring resonators; both of them are coupled to a
one-dimensional (1D) waveguide, as depicted in Fig. 6(a).
The two microring resonators have a radius of 3.1 µm and a
waveguide width of 0.4 µm. The gaps between the microring
resonators and the waveguide are 0.1 µm. In the setup, the sil-
icon has a negligible intrinsic damping in the communication
band (∼1550 nm). The resonant frequency can be tuned pre-
cisely by the electro-optic effects. Owing to the large distance
between the two resonators, the direct coupling between them
can be ignored. Thus, such a configuration constitutes a good
benchmark to test our protocol.

To make our protocol work, a driving laser of frequency
ωl is applied to mode b̃; the field amplitudes are given by
� = √

κ jPl/h̄ωl ( j = ã, b̃), where Pl is the input laser power.
A two-photon drive can be realized via optical parametric
down-conversion. Within the reach of current experiment
[68], the system parameters in this study can be chosen to
be � = 1334 GHz and Q ∼ 104 (Q factor). Using these to-
gether with the attainable two-photon driving amplitude G ∈
[133.4, 5336] Hz, the response of the system to two-photon
drive falls in the region of (3.536–0.088) × 109.

We would like to mention that our protocol is not limited to
this particular architecture. For example, it can be realized in
the cavity-magnon configurations reported in [70–76]. Here,
we consider a setup that consists of a microwave cavity and a
yttrium iron garnet (YIG) sphere, both interfacing with a 1D

waveguide

YIG

FIG. 6. (a) Schematic of the dual-resonator system that demon-
strates the CIS. The two microring resonators are dissipatively
coupled through a 1D waveguide. The effective dissipative coupling
strength between the two modes is i�. (b) Schematic of the cavity-
magnonic setup. The device consists of a yttrium iron garnet (YIG)
sphere and a cross-line microwave circuit. An external magnetic field
�B aligned along the Z axis produces the Kittel mode in YIG.

waveguide [see Fig. 6(b)]. The microwave cavity is subject to
a two-photon drive of amplitude G and a microwave field with
the Rabi frequency �. Due to the absence of spatial overlap
between the optical cavity and magnon modes, the direct
coupling between them can be safely ignored. The interac-
tion with the waveguide induces a dissipative magnon-photon
coupling with � = 2π × 10 MHz. With an achievable two-
photon driving amplitude range G ∈ [0.0063, 0.2513] Hz, our
sensing protocol theoretically predicts that the response of
the system to the two-photon drive falls in the range of
(3.536–0.088) × 109. It can also be seen that the response of
the system to two-photon drive is greatly increased for weak
two-photon driving amplitude. This validates the efficiency of
the CIS-based sensor in detecting weak nonlinearities.

V. CONCLUSION

In conclusion, we have proposed a mechanism to enhance
the sensitivity of the system to nonlinearities by homodyn-
ing the amplitude quadrature of the cavity field. The system
consists of two dissipatively coupled cavity modes, one of
which is subject to single- and two-photon drives. For low
two-photon driving strength, the spectrum of the dissipatively
coupled system acquires a CIS, which exhibits high sensitivity
to weak nonlinearities. The physical origin of this peculiar
behavior lies in the effective coupling induced between two
modes in the presence of a common reservoir. Compared to
the previous sensing protocol, the sensor achieves an unprece-
dented sensitivity around the CIS. We illustrated the sensing
capabilities in two scenarios, one with a silicon integrated
photonic apparatus and the other with a cavity-magnonic
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FIG. 7. (a) The relative error η due to the mean-field approxima-
tion vs the amplitude � of the single-photon drive at G = 10−3� and
U = 10−3�. Inset: η vs G at � = 0 and U = 10−3�. (b) The relative
error η due to the mean-field approximation vs the Kerr nonlinearity
coefficient U at G = 0 and � = 0.5�. (c) η vs G at U = 0.02� and
� = 0.5�. The other parameters chosen are δ = 0 and γ0 = 10−5�.

setup. Our scheme is robust against the fluctuations and opens
a different avenue for weak nonlinearities. It is worth noting
that our scheme does not require anti-PT symmetry and
can be extended to a plethora of systems, including, laser-
cooled atomic ensembles [30], superconducting transmon
qubits [77], and optomechanical systems [78–81]. Although
we focus here on estimating a nonlinear parameter, our sens-

ing protocol, in principle, can also be applied to estimate the
linear parameter.
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APPENDIX: THE VALIDITY OF THE MEAN-FIELD
APPROXIMATION

In this Appendix, we discuss the validity of the mean-
field approximation. First, we numerically plot the relative
error due to the mean-field approximation defined by η =
|〈b†bb〉−〈b†〉〈b〉〈b〉|

|〈b†bb〉| versus the amplitude � of the single-photon
drive [see Fig. 7(a)]. It can be seen that when the system is
in the steady state, the relative error η due to the mean-field
approximation can reach 100% before the introduction of the
single-photon drive (i.e., � = 0). By further increasing the
two-photon driving amplitude G, η remains unchanged (see
the inset). With the introduction of the single-photon drive,
the relative error η decreases gradually and is less than 30%
in the region that interests us. Moreover, we numerically plot
the relative error η due to the mean-field approximation as a
function of U at G = 0 and � = 0.5� and show the results in
Fig. 7(b). We can find that when the system is in the steady
state, the relative error is less than 30% for parameter region
U ∈ [0.01, 0.1]�. In the presence of the two-photon drive, this
mean-field approximation remains valid in the parameter in-
terval G ∈ [0, 0.079]� for a fixed Kerr nonlinearity coefficient
U = 0.02� [see Fig. 7(c)].
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