
PHYSICAL REVIEW A 107, 013703 (2023)

Quantum-optical excitations of semiconductor nanostructures in a microcavity using a two-band
model and a single-mode quantum field
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We theoretically study quantum-optical properties of one- and two-dimensional semiconductor nanostructures,
where the electronic band structure is described by a two-band tight-binding model. Since the focus of our
work is on analyzing quantum-optical effects of systems with a continuous band structure, many-body processes
like electron-electron and electron-phonon interactions are neglected. The quantum-optical interband excitations
are fully incorporated and described by a Jaynes-Cummings-type model. The exciting quantum light can be a
state with arbitrary photon statistics. For simplicity, the results discussed here are limited to single-photon and
two-photon Fock states. Our analytical approach is based on the eigenvalue problem and can be utilized to obtain
explicit expressions for the steady-state properties of the system. Numerical simulations are based on solutions
of the equations of motion and allow for a more precise analysis of the dynamics and nonresonant excitations
of the system. We demonstrate that during the interaction process, a collective excitation of the conduction band
is formed. For nonresonant excitations, this collective dynamics results in interesting steady states, in which
the resonantly addressed eigenstates are occupied. The presented model provides a framework for microscopic
simulations of quantum-optically excited extended semiconductor nanostructures.
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I. INTRODUCTION

Several effects that arise due to the interaction between
quantum light and matter can be understood by treating the
matter as atomic few-level systems [1]. The consideration
of such systems is beneficial since they often allow one to
obtain exact solutions due to the limited degrees of freedom
and, at the same time, have led to significant progress in
the fields of quantum computing, quantum information, and
quantum cryptography [2–4]. On the other hand, quantum-
optical excitations of extended semiconductors have given rise
to a new branch in science, namely, semiconductor quantum
optics [5], where concepts of both optics and many-body
theory need to be systematically combined. Semiconductors
excited by quantum light show different properties [6] and
are very promising candidates for novel quantum devices
[5], which, however, require more involved theoretical de-
scriptions and usually demand approximation methods, such
as the cluster-expansion approach [7]. Over the past few
decades, attention has focused on semiconductor nanostruc-
tures, which are semiconductors of a reduced geometry in
which the carriers are confined in a certain number of di-
mensions. This number determines the type of semiconductor
nanostructure, leading to quantum dots, quantum wires, and
quantum wells, which are quasi-zero-dimensional materi-
als, quasi-one-dimensional (quasi-1D) materials, and quasi-
two-dimensional (quasi-2D) materials, respectively [8,9].
These structures are accompanied by unique optical prop-
erties and have led to a number of promising applications
[9–18].

Here, we study quantum-optical properties of 1D and 2D
semiconductor nanostructures, i.e., quantum wires and quan-
tum wells which are extended in one or two dimensions,
respectively, whose electronic band structure are described
by a tight-binding model [17,19,20]. Although we neglect
the Coulomb interaction and the interaction with phonons
[5,21,22], for the latter we assume very low temperatures at
which the relaxation time is sufficiently long, as was shown
for quantum well systems [23]; we explicitly take into account
the photon statistics of the quantum light, which leads to a
many-body problem itself. We present a theoretical approach
that includes quantum light with arbitrary photon statistics.
Clearly, the numerical complexity of the problem, i.e., the
number of coupled equations of motion, greatly and rapidly
increases with the number of photons. Therefore, we will
mainly restrict our analysis to single-photon states, which can
be efficiently generated and constitute an important building
element for quantum information and quantum cryptography
protocols [24–29], but also consider two-photon states. We
start with an analytical treatment of the system, in which we
obtain its general properties and derive explicit expressions
for the ground-state probability. Afterwards, we show and
discuss results of numerical simulations of the equations of
motion to highlight the microscopic behavior of the system.

II. THEORETICAL MODEL

The microscopic description of semiconductor nanostruc-
tures is performed using a two-band model, in which for each
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k point only vertical transitions are allowed. Thus, the total
Hamiltonian describing the interaction of such a system with
a single-mode quantum light is composed of the electronic
band structure of the semiconductor, the quantum-light mode,
and the interaction term in the dipole and rotating-wave ap-
proximation, which corresponds to a Jaynes-Cummings-type
model:

Ĥ =
∑

k

[εv
k a†

v,kav,k + εc
ka†

c,kac,k] + h̄ν

[
b†b + 1

2

]

−
∑

k

Mk(b†a†
v,kac,k + ba†

c,kav,k ), (1)

where a†
γ ,k (aγ ,k) is the creation (annihilation) operator of an

electron with momentum k in the band γ , while ε
γ

k is the
γ -band energy corresponding to momentum k, where γ = v

denotes the valence band and γ = c denotes the conduction
band. b† (b) is the creation (annihilation) operator of a photon
in the quantum-optical mode that excites the semiconductor,
Mk is the light-matter coupling, and ν is the frequency of
the quantum-light mode, which in the scope of this work
is assumed to be constant. To ensure that different band
discretizations do not lead to different dynamics, the total
oscillator strength of the system is kept constant by using
Mk = M0/

√
N , where N is the number of k points. Thus,

rather than Mk, the relevant quantity for this system is M0.
Note that the factor of 1/

√
N originates from preserving the

commutation relations for the creation and annihilation oper-
ators for different discretizations of the k space [30].

To simplify the notation in the subsequent description and
equations, we introduce the compound index γ , which con-
tains the band indices for the N considered k points, i.e.,
(γ ) = γ1, γ2, . . . , γN , where γ j can be either v or c. To denote
a change that is applied to this index, the following notation is
introduced:

γ1, γ2, . . . , γ j−1, γ j ± 1, γ j+1, . . . , γN = (γ |γ j ± 1), (2)

γ1, γ2, . . . , γ j−1, γ̃ , γ j+1, . . . , γN = (γ |γ j = γ̃ ), (3)

where +1 and −1 describe the promotion and demotion of
an electron in terms of the energy band, i.e., v + 1 = c and
c − 1 = v. At the same time, to denote that all k points are in
their ground state we use (v) = v, v, . . . , v.

To obtain equations of motion that describe the considered
system, we use the state-vector formalism. The state vector
can be written as an expansion over basis vectors:

|�〉 =
v,c∑
(γ )

∞∑
n=0

c(γ )
n e

1
ih̄ E (γ )

n t |(γ ), n〉 . (4)

Here, c(γ )
n is the probability amplitude for the system to

be in the state |(γ ), n〉, where n is the Fock-state number
of the quantum-light mode and E (γ )

n is the corresponding
energy. The equations of motion for the probability ampli-
tudes c(γ )

n can be derived from the Schrödinger equation and

read

−ih̄∂t c
(γ )
n =

N∑
j=1

Mkj c
(γ |γ j+1)
n−1 e− i

h̄ �k j t
√

nδγ j ,v

+
N∑

j=1

Mkj c
(γ |γ j−1)
n+1 e

i
h̄ �k j t

√
n + 1δγ j ,c, (5)

where j constitutes the discretization index for the continuous
k space. The optical detuning �k is given by

�k = h̄(ωk − ν), (6)

h̄ωk = εc
k − εv

k , (7)

where ωk determines the band structure and reflects the mate-
rial properties, such as composition and dimensionality. In this
work, we focus on 1D and 2D tight-binding models. Thus, in
the 1D case, the band structure is given by

ωk = ωg + ωb

2
[1 − cos(ka)], (8)

where h̄ωg determines the energy gap, h̄ωb is the bandwidth,
and a is the lattice constant. These three values are mate-
rial parameters, and for example, for GaAs-based structures,
typical values are given by h̄ωg = 1.5eV, h̄ωb = 1.8eV, and
a = 5.65Å. The band structure in the 2D case reads

ωk = ωg + ωb

4
[2 − cos(kxa) − cos(kya)]. (9)

This does not correspond to the zinc-blende crystal structure
of GaAs which results in a fcc lattice in k space, but rather de-
scribes a cubic crystal structure. However, this simplification
does not significantly modify the results shown below as they
are dominated by the parabolic region of the band structure
near the band gap.

In this work, we mainly focus on the occupation proba-
bilities. For this, we determine the ground-state probability
(GSP) Oground as the probability that the semiconductor is in
its electronic ground state; initially, this probability is equal to
1. Other relevant measures are the conduction- and valence-
band occupation probabilities for a fixed k point k j , namely,

O
kj
c and O

kj
v , respectively, which are obtained by tracing out

all other k points and the light mode. These observables can
be computed from the probability amplitudes and read

Oground =
∞∑

n=0

∣∣c(v)
n

∣∣2
, (10)

O
kj
c =

∞∑
n=0

∑
γ �=γ j

∣∣c(γ |γ j=c)
n

∣∣2
, (11)

O
kj
v =

∞∑
n=0

∑
γ �=γ j

∣∣c(γ |γ j=v)
n

∣∣2
, (12)

where O
kj
c + O

kj
v = 1, which follows from the trace conserva-

tion of the corresponding density matrix.
In general, arbitrary photon statistics can be applied for the

quantum-light mode. However, the more photons that are in-
volved, the more extensive the many-body problem becomes,
which can rapidly exceed tasks that can be solved by classi-
cal computers, as was similarly concluded for spin systems
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[31,32] and quantum dots in microcavities considering Dicke
states [33–35]. Therefore, we restrict our analysis to two spe-
cial cases which can be treated with reasonable numerical
efforts. The first case includes a single-photon Fock state,
which simplifies the description since only one k-point tran-
sition can be excited. The second case involves a two-photon
Fock state, which allows for all material states in which one
or two k-point transitions are excited.

Below we present simplified equations for the respective
special cases. In the case of a single photon, the basis set is
reduced to

Bsp = {|(v), 1〉 , |(v|γ1 = c), 0〉 ,

|(v|γ2 = c), 0〉 , . . . , |(v|γN = c), 0〉}, (13)

resulting in the following equations of motion:

∂t c
(v)
1 = i

h̄

N∑
l=1

Mkl c
(v|γl =c)
0 e− i

h̄ �kl t , (14)

∂t c
(v|γ j=c)
0 = i

h̄
Mkj c

(v)
1 e

i
h̄ �k j t . (15)

In this case, the observables read

Oground = ∣∣c(v)
1

∣∣2
, (16)

O
kj
c = ∣∣c(v|γ j=c)

0

∣∣2
. (17)

For an approximate description considering a parabolic dis-
persion near the vicinity of the band gap, the mentioned
equations of motion are similar to the ones used in Ref. [36],
where an inverse situation, namely, spontaneous emission near
the edge of a photonic band gap, was investigated.

In the case of a two-photon Fock state, the basis set reads

Btp = {|(v), 2〉 , |(v|γ1 = c), 1〉 ,

|(v|γ2 = c), 1〉 , . . . , |(v|γN = c), 1〉 ,

|(v|γ1 = γ2 = c), 0〉 , |(v|γ1 = γ3 = c), 0〉 ,

. . . , |(v|γN−1 = γN = c), 0〉}. (18)

Using the basis set, the equations of motion can be reduced to

∂t c
(v)
2 = i

h̄

N∑
l=1

Mkl c
(v|γl =c)
1 e− i

h̄ �kl t
√

2, (19)

∂t c
(v|γ j=c)
1 = i

h̄
Mkj c

(v)
0 e

i
h̄ �k j t

√
2

+ i

h̄

N∑
l=1,l �= j

Mkl c
(v|γ j=γl =c)
0 e− i

h̄ �kl t , (20)

∂t c
(v|γ j=γl =c)
0 = i

h̄
Mkj c

(v|γl =c)
1 e

i
h̄ �k j t

+ i

h̄
Mkl c

(v|γ j=c)
1 e

i
h̄ �kl t . (21)

Then, the observables read

Oground = ∣∣c(v)
2

∣∣2
, (22)

O
kj
c = ∣∣c(v|γ j=c)

1

∣∣2 +
N∑

l=1,l �= j

∣∣c(v|γ j=γl =c)
0

∣∣2
. (23)

III. ANALYTICAL TREATMENT

The analytical treatment of the system is based on the
quasienergy approach, where we restrict our analysis to a res-
onant excitation condition (ωg = ν) and a single-photon Fock
state. We begin the analytical treatment with the eigenvalue
problem for the Hamiltonian given in Eq. (1) that is evaluated
in the basis set given in Eq. (13):

Ĥ |ψ〉 = λ |ψ〉 , (24)

where λ are eigenvalues (quasienergies) and we neglect a
constant energy which is the same for all states and does not
contribute to the dynamics. Calculating the determinant of the
matrix corresponding to Eq. (24) and setting this determinant
to zero, the following equation can be obtained:

−λ = M2
N∑

j=1

1

� j − λ
=: G(λ). (25)

Note that this expression is defined only for M �= 0 since
in the special case M = 0, the eigenvalues λi exactly equal
the detunings �i, resulting in a division by zero. Henceforth,
we consider the case M > 0. Subsequently, the normalized
eigenvectors read

|ψl〉 = 1√
1 + G′(λl )

[
|(v), 1〉 +

N∑
j=1

M

� j − λl
|(v|γ j = c), 0〉

]
.

(26)

The state vector |�(t )〉 can be written as an expansion with
coefficients zl = 〈ψl | |�(t = 0)〉 with respect to the eigenba-
sis {|ψl〉}:

|�(t )〉 =
∑

l

zl e
− i

h̄ λl t |ψl〉 . (27)

Using this expansion and taking into account the initial con-
dition c(v)

1 (t = 0) = 1, the ground-state probability amplitude
can be written as

c(v)
1 = 〈(v), 1| |�〉 =

N∑
j=0

e− i
h̄ λ j t

1 + G′(λ j )
=

N∑
j=0

w je
− i

h̄ λ j t , (28)

where we identified the weight of the quasienergy λ j as

w j = [1 + G′(λ j )]
−1. (29)

From Eq. (25) we can show that the spectrum of eigenval-
ues is composed of a single negative eigenvalue and a set of
N positive eigenvalues, when counted according to their al-
gebraic multiplicity; see the Appendix for details. Therefore,
Eq. (28) can be decomposed as

c(v)
1 = w0e

i
h̄ |λ0|t +

N∑
j=1

w je
− i

h̄ |λ j |t . (30)

In addition, using Eq. (25), we can also show that the spectrum
of positive eigenvalues follows the band-structure profile; see
the Appendix for details. Physically, such a separation into
one negative and many positive eigenvalues is an analog of
the situation of having one joint ground state expressing all
the electrons in their valence bands (negative eigenvalue) and
several possibilities to have electrons in an excited state. In
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other words, we can talk about a collective excitation whose
shape is determined by the band structure and is reflected in
the spectrum of positive eigenvalues.

The second summand on the right-hand side of Eq. (30) is
a superposition of N weighted oscillations with frequencies
−|λ j |/h̄. For a large number of oscillations, N → ∞, the sum
can be approximated by an integral and can be identified as
the Fourier transform of the continuous spectrum. According
to the Riemann-Lebesgue lemma [37], the Fourier transform
of a spectrum to the time domain becomes smaller over time
and vanishes for t → ∞. The first summand does not belong
to the mentioned continuum and therefore remains unaffected.
Thus, at the limit of large times, the ground-state probability
is solely determined by the weight of the negative eigenvalue:

lim
t→∞

∣∣c(v)
1

∣∣2 = |w0|2. (31)

This property can also be shown explicitly by approximating
the tight-binding band structure with parabolic functions and,
further, for each parabolic function proceeding with the ap-
proach presented in Ref. [38].

In the following, the analytical treatment is divided into the
1D and 2D cases.

A. One-dimensional case

We start the analytical treatment with the 1D tight-binding
band structure given by Eq. (8). First, by assuming a large
number of k points, N → ∞, we evaluate G(λ) from Eq. (25)
by replacing the sum with an integral. This integral can be
calculated explicitly and used as a good approximation for
calculating the negative eigenvalue:

G(λ) = M2
0

a

2π

∫ π/a

−π/a

1
ωb
2 [1 − cos(ka)] − λ

dk (32)

= −M2
0

1

λ
√

1 − ωb
λ

, λ < 0. (33)

Substituting this expression in Eq. (25), we can find the neg-
ative eigenvalue, which in the case of ωb 	 λ0 has a simple
form:

λ0 ≈ −
(

M4
0

ωb

)1/3

, 1 − ωb

λ0
≈ −ωb

λ0
. (34)

The derivative of G(λ) required for Eq. (29) can be calculated
as

G′(λ) = −M2
0

ωb − 2λ

2λ2(λ − ωb)
√

1 − ωb
λ

. (35)

Generally, Eq. (25) with the use of G(λ) defined in Eq. (33)
has four roots, but only one of them is real and negative, which
proves the statement made early about the existence of exactly
one negative eigenvalue, independent of parameter choices.
Equations (33) and (34) also demonstrate that M0, i.e., the
light-matter interaction, is the only parameter which defines
the negative eigenvalue when the band structure described by
ωb is fixed.

Figure 1 shows |w0|2 obtained from Eqs. (29) and (35)
using two different approaches for calculating λ0. The first
approach utilizes the analytical solution from Eq. (34), which,

FIG. 1. Steady-state probability |w0|2 as a function of the light-
matter coupling M0 for the 1D tight-binding model obtained from
Eq. (29) with Eq. (35). The solid blue curve is obtained by using the
analytical solution for λ0 from Eq. (34), while the dashed orange
curve is obtained by solving G(λ0 ) = −λ0 numerically based on
Eq. (33). The bandwidth is h̄ωb = 1.8 eV. At the initial moment
of time, the semiconductor is in the electronic ground state. The
bandwidth and the initial condition are fixed for all other plots.

however, is decreasingly accurate for larger M0. Therefore,
another curve is shown where λ0 is obtained numerically
based on Eq. (33). We see that both approaches lead to a
similar result, which stresses the suitability of the analytical
method from Eq. (34) for a solution. Furthermore, one can
observe that in the 1D case, the choice of M0 only slightly
influences the final value of the GSP, which is in the range
of 0.44. Note that the presented steady state appears due to
taking into account a large number of k points and is formed
in the limit of long times. A decrease in the coupling strength
M0 leads to an increased wait time for the steady state to
form. In the limit M0 → 0 the system has very slow dynamics,
which means that the steady state can be formed only after
infinitely long wait times. Therefore, for a fixed observation
time interval, the steady state will tend to 1 as M0 → 0. Note
that the considered values for M0 can be realized with proper
cavities, as a reduction of the quantization volume leads to
stronger coupling strengths according to M0 ∼ 1√

V
. Different

microcavity systems that are suitable for such a realization are
discussed in Ref. [39].

Analytical expressions for positive eigenvalues can be ob-
tained by approximating the tight-binding band structure with
parabolic functions and applying the approach presented in
Ref. [38]. However, to avoid lengthy expressions and to make
the representation clearer, we will proceed with a numerical
solution to the eigenvalue problem stated in Eq. (24). The
corresponding weights given by Eq. (29) are shown in Fig. 2,
where in Figs. 2(a) and 2(b) we can clearly see the presence of
one negative eigenvalue and the continuum of positive eigen-
values. Figure 2(c) shows the positive eigenvalues λ j over the
discretization index j, which results in a cosine dependence.
This stresses the conclusion made in the previous section,
i.e., that the spectrum of the positive eigenvalues follows the
electronic band structure, even though they do not coincide.
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FIG. 2. Numerically computed weights of the eigenvalues in the
case of the 1D tight-binding band structure for an energy range of
(a) −0.025 to 0.1 eV and (b) −0.025 to 1.8 eV. (c) Eigenvalues are
shown depending on their index j. The number of k points is N =
200 and M0 = 20 meV.

B. Two-dimensional case

Next, we consider the 2D case with the band structure
given by Eq. (9). Like in the previous section, we start by
calculating G(λ) and derive an approximate solution for λ0:

G(λ) = M2
0

∫ π/a

−π/a

∫ π/a

−π/a

[a/(2π )]2dkxdky
ωb
4 [2 − cos(kxa) − cos(kya)] − λ

(36)

= M2
0

π

√
4

λ(λ − ωb)
K

(
− ω2

b

4λ(λ − ωb)

)
, λ < 0,

(37)

⇒ λ0 ≈ −2M2
0

πωb
W

(
2πω2

b

M2
0

)
, 1 − ωb

λ0
≈ −ωb

λ0
, (38)

FIG. 3. Steady-state probability |w0|2 as a function of the light-
matter coupling M0 for the 2D tight-binding model obtained from
Eq. (29) with the use of Eq. (39). The solid blue curve is obtained by
using the analytical solution for λ0 from Eq. (38), while the dashed
orange curve is obtained by solving G(λ0 ) = −λ0 numerically based
on Eq. (37).

G′(λ) = 1

π (ωb − 2λ)
4M2

0

√
1

λ(λ − ωb)
E

(
− ω2

b

4λ(λ − ωb)

)
,

(39)

where K (m) denotes the complete elliptic integral of the first
kind, E (m) denotes the complete elliptic integral of the second
kind [40], and W (z) is the Lambert W function [41].

This calculation was performed analogously to the one
in the 1D case and allows us to compute the weight of the
negative eigenvalue analytically according to Eq. (29) using
Eqs. (38) and (39). The presented expressions again demon-
strate the existence of exactly one negative eigenvalue despite
the choice of parameters.

Figure 3 shows |w0|2 from Eq. (29) with the use of Eq. (39)
depending on M0. Here, we apply the same procedure as
before; that is, we obtain λ0 from the analytical solution (38)
and from numerically solving G(λ0) = −λ0 with Eq. (37).
In contrast to the 1D case, such a dependence is more pro-
nounced and is found to be at larger values of the steady-state
probability. The latter is explained by the increase in k points,
compared to 1D case, that are excited nonresonantly. A total
excitation of such k points is more inefficient than in the 1D
case, resulting in less total conduction-band occupation.

We proceed with a numerical demonstration of positive
eigenvalues by solving the eigenvalue problem (24) (see
Fig. 4, where the red stripes were omitted for better visibility).
While the structure of the solution is more complex than in
the 1D case, the eigenvalues can again be decomposed into
a dominating negative eigenvalue and a continuum of positive
eigenvalues according to Eq. (30). Therefore, regardless of the
dimensionality of the problem, the ground-state probability is
determined by the negative eigenvalue.
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FIG. 4. Numerically computed eigenvalues in the case of the 2D
tight-binding band structure for an energy range of (a) −0.025 to
0.1 eV and (b) −0.025 to 1.8 eV. The number of k points is N = 201
per dimension, M0 = 20 meV.

IV. NUMERICAL SIMULATIONS

After analyzing the eigenvalue problem defined by the
Hamiltonian, we proceed with numerical simulations of the
equations of motion (5). This allows us a more effective
treatment of nonresonant excitations and a detailed view into
the dynamics in the conduction band. The numerical analysis
again is divided into the 1D and 2D cases. Unless stated other-
wise, the presented results are computed for the single-photon
case.

A. One-dimensional case

For the 1D case, we fix M0 = 20 meV as a model parameter
and start with the consideration of resonant excitation condi-
tions. The conduction-band occupations O

kj
c and the GSP are

shown in Figs. 5(a) and 5(b), respectively. The conduction-
band occupations for the respective k points can be identified
as oscillations with different frequencies, which are approxi-
mately the optical detunings �k . Due to the conservation of
the trace, the GSP Oground can be directly connected to the

conduction-band occupation O
kj
c as

Oground = 1 −
N∑

j=1

O
kj
c . (40)

It can be seen that, despite the rich dynamics of each k point
over time, the sum of conduction-band occupations for all k
points leads to a constant probability value corresponding to a

FIG. 5. (a) Conduction-band occupation and (b) GSP for the 1D
tight-binding model with M0 = 20 meV; the number of k points is
N = 20 001.

collective excitation of a semiconductor, which, according to
Eq. (40), is reflected in a constant value of the GSP at large
times. We find this steady-state value of GSP to be around
0.44, as predicted by the analytical treatment based on the
eigenvalue problem.

As a next step, we consider nonresonant excitation condi-
tions. For this, we introduce the energetic offset δ = h̄(ν −
ωg), where δ > 0 leads to an excitation inside the band struc-
ture since the light mode is energetically above the band gap,
whereas δ < 0 is an optical excitation below the band-gap en-
ergy. The conduction-band occupation for different energetic
offsets δ is presented in Fig. 6.

Comparing Figs. 6(a) and 6(b), which show the cases of
δ = −5 meV and δ = 0 meV, respectively, we can see that an
excitation of the semiconductor below the band-gap energy
δ < 0 leads to faster oscillations with smaller amplitudes com-
pared to the resonant excitation, which physically is explained
by the increased optical detuning �k j for each respective
k point. In contrast, δ > 0 leads to the formation of two
stripes, approximately found at �k j = 0; see Figs. 6(c) and
6(d), which show the cases for δ = 6 meV and δ = 10 meV,
respectively. This behavior is led back to eigenstates that cor-
respond to positive eigenvalues and are energetically located
inside the conduction band being excited resonantly. Such a
resonant excitation of various k-point transitions inside the
conduction band leads to the formation of a steady state,
where the occupation is stored inside the conduction band.

With the described behavior, the dynamics of the GSP
shown in Fig. 7 can be easily understood. Indeed, negative
energetic offsets, which lead to a weak-weighted continuum
that oscillates faster, lead to a higher GSP that also oscillates
faster than the resonant excitation condition. In contrast, pos-
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FIG. 6. Conduction-band occupation for the 1D tight-binding
model for M0 = 20 meV, N = 20 001, and (a) δ = −5 meV, (b) δ =
0 meV, (c) δ = 6 meV, and (d) δ = 10 meV.

FIG. 7. GSP for the 1D tight-binding model with M0 = 20 meV,
N = 20001 for different energetic offsets δ.

FIG. 8. (a) Conduction-band occupation for a two-photon exci-
tation. (b) GSP for the single-photon Fock-state (N = 5001) and the
two-photon Fock-state (N = 5001) excitations, M0 = 20 meV.

itive energetic offsets, which result in occupation trapping in
eigenstates corresponding to resonant excitation conditions,
lead to a fast decay of the GSP, eventually approaching zero
for large enough δ.

We finalize the investigation of the 1D case with a con-
sideration of a two-photon Fock-state, which is of particular
interest since it allows one to predict the behavior upon tran-
sition to states with a large number of photons. Figure 8(b)
shows the GSP for an excitation with a two-photon Fock state
together with the GSP for an excitation with a single-photon
Fock state.

Compared with the single-photon case, the GSP for a two-
photon excitation is located at much smaller values. This is
caused by the large number of possible excitations that are
introduced by using two photons, which is reflected in the
basis states (18). The increased number of excitations reduces
the possibility that all k points will be unexcited. Thus, one
can predict that multiphoton states will generally lead to a
smaller GSP. Furthermore, it is to be expected that the GSP
will be zero in most semiclassical treatments, where light
is composed of thousands of photons, making it unlikely
to find no electronic excitations at any point in time. Fig-
ure 8(a) shows the conduction-band occupation distribution
for a two-photon excitation. Such a distribution qualitatively
resembles the single-photon case shown in Fig. 5(a); how-
ever, its magnitude is generally higher since a two-photon
excitation gives rise to more possible electronic excitations.
Note that due to the trace conservation, the absolute value
of the conduction-band occupation distribution depends on
the number of k points; however, the normalized profile of
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FIG. 9. GSP for the 2D tight-binding model with N = 2000 k
points per dimension and different coupling constants M0 depicted
in the legend.

distribution is k independent; therefore, the recent conclusion
is valid regardless of the number of considered k points.

B. Two-dimensional case

As concluded in the analytical treatment, the 2D tight-
binding band structure, on the one hand, shares properties with
the 1D tight-binding band structure, like the overall structure
of the eigenvalue spectrum, but, on the other hand, shows
fundamentally different properties, such as its dependence on
the light-matter coupling M0. Thus, we begin the numerical
analysis of the resonantly excited 2D case with simulations of
the dynamics for different M0 (see Fig. 9).

As in the case of the 1D tight-binding model, the parameter
M0 determines the timescale of the system dynamics. But in
contrast to the 1D case, different values of M0 lead to a visible
change in the mean value of the GSP. However, apart from
this, the overall form of the GSP dynamics is still similar to
the 1D case, and therefore, general properties pointed out in
this work will be valid for different choices of M0. As already
pointed out in the analytical treatment, the overall value of the
GSP in the 2D case is higher than in the 1D case since the
nonresonantly excited k points are weighted more strongly;
for a comparison see the curves for M0 = 20 meV in Figs. 9
and 5(b).

Next, we consider nonresonant excitation conditions, i.e.,
δ �= 0, and fix M0 = 50 meV as a model parameter. Figure 10
depicts the GSP for different δ. One can note that the qualita-
tive behavior of the GSP for different detunings is similar to
that in the 1D case. However, in the 2D case, the conduction-
band occupation corresponds to a 2D grid and has more
complex dynamics.

Figure 11 shows the conduction-band occupation for the
2D case, where Figs. 11(a) and 11(c) are the time dynamics
for a cut at kx = 0, while Figs. 11(b) and 11(d) show the
conduction-band occupation on the full grid at t = 1 ps. Here,
Figs. 11(a) and 11(b) depict the resonant case (δ = 0 meV),
and Figs. 11(c) and 11(d) depict a nonresonant case (δ =

FIG. 10. GSP for the 2D tight-binding model with M0 = 50 meV
and N = 2000 k points per dimension for different energetic
offsets δ.

50 meV). One can notice that the qualitative behavior of the
conduction-band occupation is similar to that in the 1D case:
with δ > 0, the population is mostly trapped in the eigenstates
corresponding to the positive eigenvalues; however, the shape
of such collective excitations is different due to the different
(2D) geometry of the band structure. In the 2D plane, the
resonant excitation leads to the formation of circles, whose
radii oscillate with time, whereas a nonresonant excitation
leads to the formation of a circle with a fixed radius.

V. CONCLUSION

In this work, we presented a theoretical approach for
a microscopic description of quantum-optically excited ex-
tended one- and two-dimensional semiconductor nanostruc-
tures where the photon statistics is fully taken into account. An
analytical treatment that is based on the eigenvalue problem
of the system yields detailed insight into the system’s prop-
erties and allows for a deeper understanding of the occurring
dynamics. We demonstrated that both the 1D and 2D tight-
binding band structures have exactly one negative eigenvalue,
which determines the steady state of the system, while the
formed continuum of positive eigenvalues behaves similarly
to the band structure, even though they are not identical.

In the numerical treatment of the system, when the dy-
namical equations of motion were solved, we showed that
a collective excitation of the conduction-band occupation is
formed during the dynamics. At long times, destructive in-
terference within the continuum of positive eigenvalues of
the system occurs, which results in a steady state for the
occupation probability of the ground state. Due to the wide
band structure, nonresonant band-gap excitation can become
resonant with transitions at other k points, which leads to the
formation of new steady states.

Furthermore, we demonstrated that an increase in the num-
ber of photons of quantum light (two-photon excitations)
increases the occupation of the conduction band, while the
ground-state probability decreases. The presented results for
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FIG. 11. Conduction-band occupation for the 2D tight-binding model with M0 = 50 meV, N = 2501 k points per dimension, where (a) the
cut at kx = 0 and δ = 0 meV, (b) the cut at t = 1 ps and δ = 0 meV, (c) the cut at kx = 0 and δ = 50 meV, and (d) the cut at t = 1 ps and
δ = 50 meV are considered.

different cases show the consistency between the analytical
and numerical treatments. An interesting extension to the cur-
rent model is the inclusion of Coulomb interaction and the
study of exciton or exciton-polariton states.
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APPENDIX: STRUCTURE OF THE EIGENVALUE
SPECTRUM

In the main text, we claimed that it follows from Eq. (25)
that the eigenvalue spectrum is composed of exactly one
negative eigenvalue and N positive eigenvalues when they
are counted according to the algebraic multiplicity. In the
following, we prove this. From Eq. (25) it follows that λ is
a solution if the functions f (λ) = −λ and G(λ) intersect. We
note that G(λ) has singularities at λ = � j . Since � j � 0,
we know that both G and f are well defined in the domain

D = (−∞, 0) and, especially, are differentiable. We calculate
the first derivatives of the functions G and f to study their
monotonous behavior:

f ′(λ) = −1 < 0, (A1)

G′(λ) = M2
N∑

j=1

1

(� j − λ)2
> 0. (A2)

We conclude that f is a strictly monotonously decreasing
function and G a strictly monotonously increasing function.
For the domain D = (−∞, 0) we find that the range of f
is B f = (0,∞) and G(λ) > 0. Thus, the range of G is a
subset of B f , which is why exactly one solution exists in
the domain D, i.e., there is exactly one negative eigenvalue.
Since an (N + 1) × (N + 1) matrix has N + 1 eigenvalues
when counted according to their algebraic multiplicity, the
remaining N eigenvalues must be positive, which gives the
claim.

The idea of this proof can be extended to domains between
two adjacent singularities � j and �l , i.e., D = (� j,�l ),
where one can show that the range of f is a subset of the
range of G, which, together with the monotonous behavior,
lets us conclude that there must exist a positive eigenvalue in
the domain (� j,�l ). From this, one can conclude that the
positive eigenvalue spectrum follows the form of the band
structure.

013703-9



H. ROSE et al. PHYSICAL REVIEW A 107, 013703 (2023)

[1] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1997).

[2] S. Slussarenko and G. J. Pryde, Photonic quantum informa-
tion processing: A concise review, Appl. Phys. Rev. 6, 041303
(2019).

[3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum
cryptography, Rev. Mod. Phys. 74, 145 (2002).

[4] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng,
Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang,
W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z.
Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, Quantum com-
putational advantage using photons, Science 370, 1460 (2020).

[5] M. Kira and S. W. Koch, Semiconductor Quantum Optics (Cam-
bridge University Press, Cambridge, 2012).

[6] K. Jürgens, F. Lengers, D. Groll, D. E. Reiter, D. Wigger, and
T. Kuhn, Comparison of the semiclassical and quantum optical
field dynamics in a pulse-excited optical cavity with a finite
number of quantum emitters, Phys. Rev. B 104, 205308 (2021).

[7] M. Kira and S. W. Koch, Cluster-expansion representation in
quantum optics, Phys. Rev. A 78, 022102 (2008).

[8] C. W. J. Beenakker and H. van Houten, Quantum transport in
semiconductor nanostructures, Solid State Phys. 44, 1 (1991).

[9] D. Bimberg, Semiconductor Nanostructures (Springer, Berlin,
2008).

[10] A. N. Kosarev, H. Rose, S. V. Poltavtsev, M. Reichelt, C.
Schneider, M. Kamp, S. Höfling, M. Bayer, T. Meier, and I. A.
Akimov, Accurate photon echo timing by optical freezing of
exciton dephasing and rephasing in quantum dots, Commun.
Phys. 3, 228 (2020).

[11] F. P. García de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa,
M. Bayer, and E. H. Sargent, Semiconductor quantum dots:
Technological progress and future challenges, Science 373,
6555 (2021).

[12] M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van
Driel, and A. L. Smirl, Optical injection and coherent control
of a ballistic charge current in GaAs/AlGaAs quantum wells, J.
Appl. Phys. 94, 4999 (2003).

[13] P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T.
Li, H. Wang, S.-W. Chang, and S.-L. Chuang, Slow light in
semiconductor quantum wells, Opt. Lett. 29, 2291 (2004).

[14] M. Jacquet, M. Joly, F. Claude, L. Giacomelli, Q. Glorieux,
A. Bramati, I. Carusotto, and E. Giacobino, Analogue quantum
simulation of the Hawking effect in a polariton superfluid, Eur.
Phys. J. D 76, 152 (2022).

[15] M. J. Jacquet, L. Giacomelli, Q. Valnais, M. Joly, F. Claude, E.
Giacobino, Q. Glorieux, I. Carusotto, and A. Bramati, Quantum
vacuum excitation of a quasi-normal mode in an analog model
of black hole spacetime, arXiv:2110.14452.

[16] W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor-
Laser Physics (Springer, Berlin, 1994).

[17] H. Haug and S. W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors, 4th ed. (World
Scientific, Singapore, 2005).

[18] S. V. Andreev, Dipolar polaritons squeezed at unitarity, Phys.
Rev. B 101, 125129 (2020).

[19] T. Meier, P. Thomas, and S. W. Koch, Coherent Semiconductor
Optics: From Basic Concepts to Nanostructure Applications
(Springer, New York, 2007).

[20] W.-R. Hannes and T. Meier, Higher-order contributions and
nonperturbative effects in the nondegenerate nonlinear optical

absorption of semiconductors using a two-band model, Phys.
Rev. B 99, 125301 (2019).

[21] J. Kabuss, A. Carmele, M. Richter, and A. Knorr, Microscopic
equation-of-motion approach to the multiphonon assisted quan-
tum emission of a semiconductor quantum dot, Phys. Rev. B 84,
125324 (2011).

[22] A. Carmele, J. Kabuss, M. Richter, A. Knorr, and W. W. Chow,
Quantum optics in a semiconductor quantum dot, J. Mod. Opt.
58, 1951 (2011).

[23] N. Bannov, V. Aristov, V. Mitin, and M. A. Stroscio, Electron
relaxation times due to the deformation-potential interaction
of electrons with confined acoustic phonons in a free-standing
quantum well, Phys. Rev. B 51, 9930 (1995).

[24] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff,
L. Zhang, E. Hu, and A. Imamoglu, A quantum dot single-
photon turnstile device, Science 290, 2282 (2000).

[25] J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A.
Kuzmich, and H. J. Kimble, Deterministic generation of single
photons from one atom trapped in a cavity, Science 303, 1992
(2004).

[26] B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S.
Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier,
Controlled single-photon emission from a single trapped two-
Level atom, Science 309, 454 (2005).

[27] P. Maunz, D. Moehring, S. Olmschenk, K. C. Younge, D. N.
Matsukevich, and C. Monroe, Quantum interference of photon
pairs from two remote trapped atomic ions, Nat. Phys. 3, 538
(2007).

[28] J.-H. An, M. Feng, and C. H. Oh, Quantum-information pro-
cessing with a single photon by an input-output process with
respect to low-Q cavities, Phys. Rev. A 79, 032303 (2009).

[29] A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. Poizat, and
P. Grangier, Single Photon Quantum Cryptography, Phys. Rev.
Lett. 89, 187901 (2002).

[30] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,
Continuum fields in quantum optics, Phys. Rev. A 42, 4102
(1990).

[31] O. Tsyplyatyev and D. Loss, Dynamics of the inhomoge-
neous Dicke model for a single-boson mode coupled to a bath
of nonidentical spin-1/2 systems, Phys. Rev. A 80, 023803
(2009).

[32] O. Tsyplyatyev and D. Loss, Classical and quantum regimes of
the inhomogeneous Dicke model and its Ehrenfest time, Phys.
Rev. B 82, 024305 (2010).

[33] M. Gegg, A. Carmele, A. Knorr, and M. Richter, Superradiant
to subradiant phase transition in the open system Dicke model:
Dark state cascades, New J. Phys. 20, 013006 (2018).

[34] M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G.
Bacher, T. Passow, and D. Hommel, Superradiance of quantum
dots, Nat. Phys. 3, 106 (2007).

[35] N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, and
F. Nori, Open quantum systems with local and collective
incoherent processes: Efficient numerical simulations using per-
mutational invariance, Phys. Rev. A 98, 063815 (2018).

[36] S. John and T. Quang, Spontaneous emission near the edge of a
photonic band gap, Phys. Rev. A 50, 1764 (1994).

[37] S. Bochner and K. Chandrasekharan, Fourier Transforms
(Princeton University Press, Princeton, NJ, 1949).

[38] H. Rose, A. N. Vasil’ev, O. V. Tikhonova, T. Meier, and
P. R. Sharapova, Excitation of an electronic band structure

013703-10

https://doi.org/10.1063/1.5115814
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevB.104.205308
https://doi.org/10.1103/PhysRevA.78.022102
https://doi.org/10.1016/S0081-1947(08)60091-0
https://doi.org/10.1038/s42005-020-00491-2
https://doi.org/10.1126/science.aaz8541
https://doi.org/10.1063/1.1609639
https://doi.org/10.1364/OL.29.002291
https://doi.org/10.1140/epjd/s10053-022-00477-5
http://arxiv.org/abs/arXiv:2110.14452
https://doi.org/10.1103/PhysRevB.101.125129
https://doi.org/10.1103/PhysRevB.99.125301
https://doi.org/10.1103/PhysRevB.84.125324
https://doi.org/10.1080/09500340.2011.596630
https://doi.org/10.1103/PhysRevB.51.9930
https://doi.org/10.1126/science.290.5500.2282
https://doi.org/10.1126/science.1095232
https://doi.org/10.1126/science.1113394
https://doi.org/10.1038/nphys644
https://doi.org/10.1103/PhysRevA.79.032303
https://doi.org/10.1103/PhysRevLett.89.187901
https://doi.org/10.1103/PhysRevA.42.4102
https://doi.org/10.1103/PhysRevA.80.023803
https://doi.org/10.1103/PhysRevB.82.024305
https://doi.org/10.1088/1367-2630/aa9cdd
https://doi.org/10.1038/nphys494
https://doi.org/10.1103/PhysRevA.98.063815
https://doi.org/10.1103/PhysRevA.50.1764


QUANTUM-OPTICAL EXCITATIONS OF SEMICONDUCTOR … PHYSICAL REVIEW A 107, 013703 (2023)

by a single-photon Fock state, Zenodo, https://doi.org/10.5281/
zenodo.5774986.

[39] D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R.
Nabiev, Light-matter interaction in the strong coupling regime:
Configurations, conditions, and applications, Nanoscale 10,
3589 (2018).

[40] Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, edited by M. Abramowitz and I. A.
Stegun (Dover, New York, 1972).

[41] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and
D. E. Knuth, On the Lambert W function, Adv. Comput. Math.
5, 329 (1996).

013703-11

https://doi.org/10.5281/zenodo.5774986
https://doi.org/10.1039/C7NR06917K
https://doi.org/10.1007/BF02124750

