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Floquet generation of a magnonic NOON state
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We propose a concise and deterministic protocol to generate NOON states in a hybrid system consisting
of a superconducting qubit, a circuit resonator mode, and two magnonic modes, based on Floquet engineering.
In particular, we construct a time-reversal-symmetry broken Hamiltonian for chiral state propagation of the three
continuous-variable modes depending on qubit state, by the time modulation over qubit-resonator interaction
and magnon frequency. Then, an arbitrary magnonic NOON state can be generated by a typical preparing-
and-measurement procedure. We analyze the robustness of our protocol against the systematic errors in the
qubit-magnon coupling strength, the Floquet-driving intensity, the frequency mismatch of the magnons, and the
counterrotating interactions. We can obtain a high-fidelity NOON state in the presence of quantum dissipation
on all components.
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I. INTRODUCTION

NOON states, i.e., (|N0〉 + |0N〉)/
√

2 with N integer,
consisting of two symmetric components in the maximal
superposition [1] constitute a prominent class of highly entan-
gled states [2]. They offer diversified applications in quantum
metrology [3], quantum communication [4], and quantum
information processing [5]. The NOON-state generation pro-
tocols [6–15] are conventionally developed on various Rabi
oscillations. They have been realized in multiple quantum
platforms, such as polarization states of photons [16], nuclear
spin of molecules [17], optical paths of photons [18], ultracold
dipolar atoms in an optical superlattice setup [19,20], exci-
tations in superconducting resonators [6,8], and phonons in
ion trap [21]. The ultraprecise control over complex quantum
devices and decoherence of quantum systems [22], however,
makes it extremely difficult to create a NOON state with a
large N . It therefore remains interesting to find fast and faith-
ful approaches to generate NOON states in low-decoherence
systems. Here, we propose to realize a magnonic NOON
state by virtue of the chiral state transfer based on Floquet
engineering.

The magnonic system is a growing field of research on
magnetic devices that operate in the quantum realm. With
unique properties such as high tunability, long coherent time,
and strong dipole-dipole coupling to the microwave photons
and qubits, magnonic modes have been used as the infor-
mation carrier in an even broader variety of hybrid systems
[23–25]. They are thus capable to prepare and manipulate
various nonclassical states [26–34]. Bell states of the magnon-
photon system can be observed in both theory proposal
[35] and experimental demonstration [36]. Analogous to the
cavity quantum electrodynamics [37], Ref. [38] proposed a
magnonic cat-state generation protocol, in which the magnon
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was directly and quantum-coherently coupled to a supercon-
ducting transmon qubit.

In a broader view, NOON states could be categorized
with the nonclassical states in a (nonnormalized) form of
|ϕ〉|0〉 + |0〉|ϕ〉, where |ϕ〉 is an arbitrary pure state. They
can result from a chiral state transfer depending on the sym-
metrically superposed state of a two-state system in charge
of control. Chirality [39,40] has been found to play an im-
portant role in the fractional quantum Hall effect [41] in the
magnetic materials. It breaks the time reversal symmetry [42]
and perfectly realizes directional state transfer [43,44]. In
recent experiments [45,46] on superconducting circuits and
qubits, a three-spin interaction with chirality is fabricated by
specially designed Floquet driving. Floquet engineering by
fast periodic modulation over the characteristic frequency of
a quantum system is a major control approach to the desired
effective Hamiltonian for the long-time dynamics of the sys-
tem [47–50]. It has also been implemented to realize quantum
switch [51], chiral ground state current [43], and quantum
simulation [52].

In this work, we consider a hybrid qubit-resonator-magnon
system upon a state-of-the-art device, in which the qubit is
coupled to the resonator mode with time-modulated strength
[43,53] and simultaneously coupled to two magnonic modes
[38]. Floquet engineering is applied to the frequencies of
the magnonic modes [54]. Using appropriate frequencies,
intensities, and local phases in control, we can fabricate an ef-
fective time-reversal-symmetry broken Hamiltonian to ensure
chiral state transfer among resonator and magnonic modes.
The transfer direction depends on the state of the qubit. A
magnonic NOON state can thus be generated upon preparing
the resonator mode as a Fock state |N〉 [55].

The rest of this work is structured as follows. In Sec. II, we
introduce the full Hamiltonian for a hybrid qubit-resonator-
magnon system and then derive the effective Hamiltonian for
a perfect chiral state transfer among the three continuous-
variable components. In Sec. III, we discuss the systematic
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FIG. 1. Diagram of the chiral state propagations among three
continuous-variable modes a, m1, and m2 in a hybrid qubit-resonator-
magnon system. The qubit population on the excited and ground
states determines, respectively, the clockwise and anticlockwise di-
rections of the chiral state propagation.

errors from the qubit-magnon coupling strength, the Floquet
driving intensity, the frequency mismatch of the two magnonic
modes, and the counterrotating interactions. The NOON-state
generation protocol and its fidelity are analyzed in Secs. IV A
and IV B, respectively. The whole work is summarized in
Sec. V.

II. MODEL AND CHIRAL STATE TRANSFER

Consider a hybrid system that consists of a circuit res-
onator, a superconducting qubit, and two yttrium iron garnet
(YIG) spheres in their ground states (the Kittel mode of the
spin ensemble), as shown in Fig. 1. The transition frequencies
of the qubit, resonator, and magnon mode k are supposed to be
resonant with each other in the microwave regime, i.e., ωq =
ωa = ωk . The qubit-resonator interaction and the frequencies
of the two magnonic modes are under Floquet engineering
[43,53,54]. Then, in the rotating frame with respect to the
free Hamiltonian H = ωa(σ+σ− + a†a + ∑2

k=1 m†
kmk ), the

full Hamiltonian can be written as

H = ga cos(ωt )(σ+a + σ−a†) + �

2∑
k=1

cos(ωt + φk )m†
kmk

+ g
2∑

k=1

(σ+mk + σ−m†
k ), (1)

where a (a†) and mk (m†
k ) are the annihilation (creation)

operators for the resonator mode and the kth magnonic
mode, respectively, and σ+ ≡ |e〉〈g| and σ− ≡ |g〉〈e| are Pauli
transition operators. The qubit-resonator interaction is charac-
terized by the coupling strength ga and the driving frequency
ω [43,53]. For magnons, �, ω, and φk represent the Floquet
driving intensity, frequency, and local phases, respectively
[54]. g is the qubit-magnon coupling strength [38]. The
resonator-magnon interaction is vanishing when they depart
with a significant distance.

In the rotating frame with respect to the magnon Hamilto-
nian under driving [the second term in Eq. (1)], we have

H (t ) = ga cos(ωt )(σ+a + σ−a†)

+ g
2∑

k=1

(ei f [sin φk−sin(ωt+φk )]σ+mk + H.c.), (2)

where f ≡ �/ω is the ratio of the driving intensity and
frequency. According to the perturbative expansion ordered
by the Bessel functions of the first kind, i.e., eiz sin y =∑n=+∞

n=−∞ Jn(z)einy, we have

HI = Ha(eiωt + e−iωt ) + H0 +
2∑

k=1

∞∑
n=1

[
H (k)

n einωt

+ H (k)
−n e−inωt

]
, (3)

where

Ha = ga

2
(σ+a + σ−a†),

H0 = gJ0( f )
2∑

k=1

(σ+mk + σ−m†
k ),

H (k)
n = ge−i f sin φk einφk Jn( f )σ−m†

k

+ (−1)ngei f sin φk einφk Jn( f )σ+mk, (4)

and H (k)
−n is the Hermitian conjugate of H (k)

n . Using the James
method [48,49], the interaction Hamiltonian HI can therefore
be written as

HI ≈ H0 + 1

ω

2∑
k=1

{[
Ha, H (k)

−1

] + [
H (k)

1 , Ha
]}

+
2∑

k=1

1

nω

∞∑
n=1

[
H (k)

n , H (3−k)
−n

]
, (5)

up to the order of O(1/ω2). The zeroth-order term H0 de-
scribes the effective qubit-magnon interaction under Floquet
driving, whose coupling strength gJ0( f ) can be tuned by
varying the ratio f . This term is phase independent and can
be eliminated by setting J0( f ) = 0, i.e., f ≈ 2.4048. In this
situation, we have a σz-dependent effective Hamiltonian

Heff = σz

[
a†(g1ei f sin φ1 m1 + g2ei f sin φ2 m2)

− ig12ei f (sin φ2−sin φ1 )m†
1m2 + H.c.

]
, (6)

where the coupling strengths are

gk = −gag

ω
J1( f ) cos φk, k = 1, 2,

g12 = 2g2

ω

∞∑
n=1

J2
n ( f )

n
sin[n(φ2 − φ1)]. (7)

To render a perfect chiral transfer among the three compo-
nents a, m1, and m2, it is required that |g1| = |g2| = |g12| =
geff , i.e., | cos(φ1)| = | cos(φ2)|. Note that this condition im-
plies the distinction between driving the coupling strength and
driving the frequency in realizing the three-body chirality. In
previous works [44,46] for generating a chiral state transfer
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by Floquet engineering on the three components’ frequen-
cies, the driving phases have to be uniformly distributed in
[0, 2π ], while in our protocol (as a mixture of driving both
frequency and coupling strength), the phases φk are not fixed.
A nonunique solution is φ1 = 2π/3 and φ2 = 4π/3, and then

ga = 4g

J1( f )

∞∑
n=1

J2
n ( f )

n
sin

(
2nπ

3

)
. (8)

Consequently, the effective Hamiltonian in Eq. (6) could be
written in a Matrix-product formation,

Heff = σz[a
†, m†

1, m†
2]

× geff

⎡
⎢⎢⎣

0 e
i
√

3 f
2 e− i

√
3 f

2

e− i
√

3 f
2 0 −ie−i

√
3 f

e
i
√

3 f
2 iei

√
3 f 0

⎤
⎥⎥⎦

⎡
⎣ a

m1

m2

⎤
⎦, (9)

which is convenient to obtain the time evolution of the
continuous-variable operators⎡

⎣ a(t )
m1(t )
m2(t )

⎤
⎦ = T̂ (t )

⎡
⎣ a(0)

m1(0)
m2(0)

⎤
⎦. (10)

Here, T̂ (t ) depends on the qubit state. When the qubit is in the
excited state |e〉, we have

T̂ (t ) = T̂ (e)(t )

= 1

3

⎡
⎢⎢⎣

x(t ) −ie
i
√

3 f
2 y(t ) ie− i

√
3 f

2 z(t )

ie− i
√

3 f
2 z(t ) x(t ) −e−i

√
3 f y(t )

−ie
i
√

3 f
2 y(t ) −ei

√
3 f z(t ) x(t )

⎤
⎥⎥⎦,

(11)

where

x(t ) = 1 + 2 cos(
√

3gefft ),

y(t ) = 1 + 2 cos

(√
3gefft − 2π

3

)
,

z(t ) = 1 + 2 cos

(√
3gefft + 2π

3

)
. (12)

The transformation matrix T̂ (e) entails a sufficient condi-
tion for a clockwise and periodic chirality. It is interesting
to find that m2(t ) = a(0), m1(t ) = m2(0), and a(t ) = m1(0)
when t = (2π/3 + 2nπ )/(

√
3geff ); m2(t ) = m1(0), m1(t ) =

a(0), and a(t ) = m2(0) when t = (4π/3 + 2nπ )/(
√

3geff );
and mk (t ) = mk (0), a(t ) = a(0) when t = 2nπ/(

√
3geff ) with

n integer. This transfer is exactly the rotation a → m2 →
m1 → a described by the straight-line arrows in Fig. 1, cor-
responding to a clockwise chiral propagation of states in the
Schrödinger picture, i.e., |ϕaϕ1ϕ2〉 → |ϕ1ϕ2ϕa〉 → |ϕ2ϕ1ϕa〉,
where |ϕa〉 and |ϕk〉 are arbitrary states for the resonator and
magnonic mode k, respectively.

Suppose that the resonator is prepared as an arbitrary su-
perposed state Cn|n〉 and the two magnonic modes are in their
ground states, i.e.,

|ϕ(0)〉 =
∑

n

Cn|n00〉 =
∑

n

Cn√
n!

(a†)n|000〉. (13)

By virtue of Eq. (11), it is straightforward to express the time-
evolved state as

|ϕ(t )〉 =
∑

n

Cn√
n!

[
a†T̂ (e)†

11 (t ) + m†
1T̂ (e)†

12 (t )

+ m†
2T̂ (e)†

13 (t )
]n|000〉. (14)

For example, when |ϕ(0)〉 = |100〉, we have

|ϕ(t )〉 = 1
3 [x(t )|100〉 − ie

i
√

3 f
2 z(t )|010〉

+ ie
−i

√
3 f

2 y(t )|001〉]. (15)

We can have a unit transfer fidelity at the desired moments
for the general superposed state in Eq. (13), e.g., when t =
2π/(3

√
3geff ), |ϕ(t )〉 = ∑

n Cn|00n〉. To avoid the influence
from local phases [56] during the whole evolution, the state-
transfer fidelity can be measured by time-dependent state
populations

Pj (t ) =
∑
Cn 	=0

|〈ϕ(t )|n〉 j |2, (16)

where |n〉 j , j = a, 1, 2, indicates that the marked mode is in
the Fock state |n〉 and the other two modes are in their ground
states.

In parallel to Eq. (11), we have

T̂ (t ) = T̂ (g)(t )

= 1

3

⎡
⎢⎢⎣

x(t ) −ie
i
√

3 f
2 z(t ) ie− i

√
3 f

2 y(t )

ie− i
√

3 f
2 y(t ) x(t ) −e−i

√
3 f z(t )

−ie
i
√

3 f
2 z(t ) −ei

√
3 f y(t ) x(t )

⎤
⎥⎥⎦, (17)

when the qubit is in the ground state |g〉. The transformation
matrix T̂ (g) indicates an anticlockwise chirality, yielding the
transfer along the rotation a → m1 → m2 → a described by
the curved arrows in Fig. 1. Then, in the Schrödinger pic-
ture, a chiral evolution emerges as |ϕaϕ1ϕ2〉 → |ϕ2ϕaϕ1〉 →
|ϕ1ϕ2ϕa〉. For the same initial states in Eq. (13), we have

|ϕ(t )〉 =
∑

n

Cn√
n!

[
a†T̂ (g)†

11 (t ) + m†
1T̂ (g)†

12 (t )

+ m†
2T̂ (g)†

13 (t )
]n|000〉 (18)

by virtue of Eq. (17).
Figures 2(a) and 2(b) show the time-evolved state pop-

ulations Pj (t ) under the effective Hamiltonian (6) (see the
lines with markers) and the system Hamiltonian in Eq. (1)
(see the lines with no markers), demonstrating, respectively,
the clockwise and anticlockwise chirality. The numerical and
analytical results are found to match perfectly with each other.
The qubit state determines the chiral direction. A superposed
state of the qubit gives rise to two chiral directions, which
are demanded to generate the NOON state. The period of
the chiral state propagation is state independent and uniquely
determined by the coupling strengths in Eq. (7) under the
condition J0( f ) = 0.
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FIG. 2. Chiral dynamics of the state populations Pj for the three
modes, j = a, 1, 2, by numerical simulation with the Floquet engi-
neering Hamiltonian (1) and analytical evaluation with the effective
Hamiltonian (6). In (a), the qubit is at |e〉 and in (b), it is at |g〉. The
three modes are initialized as |1〉a|0〉m1 |0〉m2 . The parameters are set
as ω = 20g, f = �/ω = 2.4048, φ1 = 2π/3, and φ2 = 4π/3.

III. SYSTEMATIC ERRORS

In practice, the ideal chiral state transfer in Fig. 2 using the
effective Hamiltonian (6) cannot be exactly realized because
of the imperfections and constraints in experiments. Even
under the desired conditions in the last section, i.e., fast en-
gineering, exact cancellation of the phase-independent term,
and accurate setting of the coupling strength, it is inevitable to
estimate the perturbative effect on the transport protocols from
the fluctuations in parameters of the full Hamiltonian. In the
rest of this section, we analyze the systematic errors induced
by the qubit-magnon coupling-strength deviation, the unstable
Floquet driving, the mismatch of the magnon frequencies, and
the presence of the counterrotating interactions.

A. The qubit-magnon coupling-strength deviation

The coupling strengths between qubit and magnonic modes
[the last term in Eq. (1)] are chosen the same in magnitude.
They depend practically on the distance between the YIG
spheres and the qubit. We first consider their deviation from a
fixed value. The system Hamiltonian can thus be rewritten as

H ′ = ga cos(ωt )(σ+a + σ−a†)

+ � cos(ωt + φ1)m†
1m1 + g(1 + δ)(σ+m1 + σ−m†

1 )

+ � cos(ωt + φ2)m†
2m2 + g(1 − δ)(σ+m2 + σ−m†

2),

(19)

-0.2 -0.1 0 0.1 0.2
0.8

0.85

0.9

0.95

1

FIG. 3. Chiral state-transfer fidelity of the target state (|e00N〉 +
|g0N0〉)/

√
2 under the nonideal Hamiltonian (19) as a function of the

systematic error associated with the qubit-magnon coupling strength.
Ideally (under the effective Hamiltonian) the initial state (|eN00〉 +
|gN00〉)/

√
2 would become the target state at the desired moment

T = 2π/(3
√

3geff ). Here the parameters are set the same as Fig. 2.

where δ represents the magnitude of the relative error. Un-
der the same settings that φ1 = 2π/3, φ2 = 4π/3, J0( f =
�/ω) = 0, and |gk| = |g12| in Eq. (7) for the chiral transfer,
the effective Hamiltonian in Eq. (9) is modified by changing
the coefficient matrix into

geff

⎡
⎢⎢⎣

0 (1 + δ)e
i
√

3 f
2 (1 − δ)e− i

√
3 f

2

(1 + δ)e− i
√

3 f
2 0 −i(1 − δ2)e−i

√
3 f

(1 − δ)e
i
√

3 f
2 i(1 − δ2)ei

√
3 f 0

⎤
⎥⎥⎦.

(20)

It can be perturbatively decomposed into

H ′
eff = Heff + δH1 + δ2H2, (21)

where Heff is the unperturbed effective Hamiltonian in Eq. (9).
H1 is the leading-order perturbation, whose coefficient matrix
reads

geff

⎡
⎢⎢⎣

0 e
i
√

3 f
2 −e− i

√
3 f

2

e− i
√

3 f
2 0 0

−e
i
√

3 f
2 0 0

⎤
⎥⎥⎦. (22)

Using the method in Ref. [57] and up to the second order
of the systematic error δ, one can obtain the population p of
the magnon mode m2 for the transfer |e100〉 → |e001〉 at the
desired time T = 2π/(3

√
3geff ) as

p = 1 −
2∑

j=1

∣∣∣∣
∫ T

0
dt〈0|mj (t )|δH1|a†(t )|0〉

∣∣∣∣
2

= 1 − δ2, (23)

where a(t ) and mj (t ) are the time-evolved operators given
in Eq. (10) and |0〉 ≡ |0〉a|0〉m1 |0〉m2 is the vacuum state. By
the population definition in Eq. (16), the state-transfer pop-
ulation P for |e00N〉 from |eN00〉 can then be estimated as
P = pN = (1 − δ2)N ≈ 1 − Nδ2. This result applies also to
the state transfer |gN00〉 → |g00N〉. The nonideal dynamics
under Hamiltonian (19) are provided in Fig. 3 by the sensi-
tivity of the transfer fidelity (population) of the target state
|	(t )〉 = (|e00N〉 + |g0N0〉)/

√
2 that evolves from the initial
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TABLE I. Chiral state-transfer population of the target state
(|e00N〉 + |g0N0〉)/

√
2 under the total Hamiltonian in Eq. (19) with

δ = 0. Here the parameters are set the same as Fig. 2.

N 1 2 3 4 5 6 7 8 9 10

P 0.98 0.97 0.95 0.93 0.90 0.87 0.84 0.80 0.76 0.72

state |	(0)〉 = (|eN00〉 + |gN00〉)/
√

2, to δ. The populations
are evaluated at T , which is determined by the ideal chiral
state transfers depending on Eqs. (11) and (17). The state-
transfer population in general declines with increasing |δ| and
N . Our protocol is found to be robust even under |δ| ≈ 20%
and N = 3, whereby the population is about 0.85.

Note that Heff is the second-order perturbation over H , so
that one can find a less-than-unit population even when δ =
0. We list the results for various N in Table I. The transfer
population decreases monotonically with N and it becomes
less than 0.80 when N > 8. It is due to the fact that the second-
order effective Hamiltonian is applicable in the regime g � ω

and g becomes practically g
√

N for |N〉.

B. The unstable Floquet driving

To cancel the phase-independent term from the interaction
Hamiltonian (5) for a chiral propagation of quantum states,
the ratio f = �/ω of the Floquet-driving intensity � and
the frequency ω is fixed to meet the requirement J0( f ) = 0.
We now estimate the effect of the control error arising from
the Floquet-driving intensity, which is unstable in the time
domain. The error could then be regarded as random fluctu-
ations. The Hamiltonian in Eq. (1) can thus be modified to

H ′ = ga cos(ωt )(σ+a + σ−a†)

+ �

2∑
k=1

(1 + εk ) cos(ωt + φk )m†
kmk

+ g
2∑

k=1

(σ+mk + σ−m†
k ), (24)

where εk indicates a dimensionless factor for the driving in-
tensity on the magnonic mode k. It is assumed to be a random
number in the range of [0, ε] with ε < 1 and ε1 	= ε2.

In Fig. 4, we present the sensitivity of the state-
transfer population to the error upper bound ε. The ini-
tial state is chosen as |	(0)〉 = (|e200〉 + |g200〉)/

√
2 and

then the target state is |	[T = 2π/(3
√

3geff )]〉 = (|e002〉 +
|g020〉)/

√
2. The populations, measured by the maximum

Pmax, the minimum Pmin, and the average values P̄, are
obtained by 100 numerical simulations using randomly dis-
tributed εk’s. The distance between Pmax and Pmin is found to
decrease roughly with increasing ε. The average population P̄
can be maintained above 0.90 when ε � 0.1, and above 0.70
when ε � 0.2. However, the minimum value Pmin declines
to below 0.50 when ε approaches 0.1. It implies a dramatic
error caused by the fluctuation in the Floquet driving inten-
sity, which is more significant than that in the qubit-magnon
coupling strength.

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

FIG. 4. Chiral state-transfer fidelity of the target state (|e002〉 +
|g020〉)/

√
2 under the nonideal Hamiltonian (24) as a function of

the systematic error associated with the Floquet-driving intensity.
The circles, squares, and diamonds represent the maximum Pmax,
minimum Pmin, and average populations P̄, respectively. Here the
parameters are set the same as Fig. 2.

For a constant deviation ε1 = ε2 = ε, we have an extra
term in addition to the ideal effective Hamiltonian in Eq. (6),
i.e.,

H ′
eff = H0 + Heff , (25)

where H0 is the zeroth-order term in Eq. (4) and the ratio f in
both H0 and Heff is replaced with f ′ = f (1 + ε). When ε =
0.005, the chiral state-transfer fidelity is found to be P = 0.84
under H ′

eff in Eq. (25), and it is about P = 0.82 under the full
Hamiltonian in Eq. (24). When ε = 0.01, it drops to P = 0.50
and P = 0.49, respectively. Thus, the fidelity is sensitive to
the error arisen from the unstable Floquet driving intensity.
To render a perfect chiral state transfer among components a,
m1, and m2, the magnitude of the zeroth order should be kept
as low as possible, i.e., gJ0( f ′) � geff .

C. The frequency mismatch of magnons and qubit

The four components in our system, i.e., the supercon-
ducting qubit, the resonator, and two magnonic modes, are
supposed to be resonant with each other in the microwave
regime in Sec. II. It is challenging to achieve such accurate
resonance in experiments. Therefore, the frequency mismatch
effects on chiral state-transfer fidelity are important.

For the frequency mismatch of the two magnon modes,
the deviated Hamiltonian in the Schrödinger picture could be
written as

H ′ = ωa(a†a + σ+σ−) + ωa

2∑
k=1

(1 + χk )m†
kmk + H, (26)

where χ1 = χ , χ2 = −χ , χ represents the relative magnitude
of the frequency mismatch, and H is the Hamiltonian in
Eq. (1). In Fig. 5(a), the chiral state transfer population dy-
namics from the initial state |	(0)〉 = (|e200〉 + |g200〉)/

√
2

is presented under various χ . One can observe that the popula-
tion dynamics when χ = 10−5 is close to the dynamics free of
mismatch. And the target state population can be maintained
above 0.95. It is reduced to 0.4 when χ = 10−4. Nevertheless,
our protocol is promising in the recent experiments [58] since
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FIG. 5. [(a) and (b)]: Chiral state-transfer population of the target
state (|e002〉 + |g020〉)/

√
2 under the deviated system Hamiltonians

(26) and (27) with various error magnitude χ , which are associated
with the magnons and qubit frequency mismatch, respectively. Here
the parameters are set the same as Fig. 2 and T = 2π/(3

√
3geff ).

the bandwidths of the resonator and magnon modes are found
to be around 10−6 ∼ 10−5ωa.

For the frequency deviation from the qubit, the Hamilto-
nian turns out to be

H ′ = ωaa†a + ωa(1 + χ )σ+σ− + ωa

2∑
k=1

m†
kmk + H. (27)

One can find in Fig. 5(b) that this deviation has no sig-
nificant effect on the state transfer dynamics, as the three
lines under various χ are almost the same. It can be
understood by the effective Hamiltonian, which is found
to be H ′

eff = χωaσ
+σ− + Heff . The extra term about the

qubit-frequency mismatch is clearly irrelevant to the chi-
ral state transfer dynamics among the other three bosonic
modes.

D. The presence of the counterrotating interaction

Back to the laboratory frame, the full Hamiltonian under
the resonant condition without the rotating-wave approxima-
tion is written as

H ′ = ωa(a†a + σ+σ−)

+
2∑

k=1

[ωa + � cos(ωt + φk )]m†
kmk

+ ga cos(ωt )(σ+a + σ−a† + σ+a† + σ−a)

+
2∑

k=1

g(σ+mk + σ−m†
k + σ+m†

k + σ−mk ), (28)

where ωa represents the characteristic frequency of the
four components. In the Hamiltonian H (1) used for our
chiral state-transfer protocol, both qubit-resonator and qubit-
magnon coupling strengths ga and g have to be much smaller
than the transition frequency ωa in magnitude. Although a
faster speed of the chiral transfer favors a larger ga or g, a
constraint for their magnitude has to be estimated by including
the counterrotating interactions into the original Hamiltonian
H ′.

Using the James method [48,49], the ideal effective Hamil-
tonian in Eq. (6) becomes

H ′
eff = σz

[
a†

2∑
k=1

g′
kei f sin φk mk

−ig′
12ei f (sin φ2−sin φ1 )m†

1m2 + H.c.

]
,

+ σzδ(2ωa − n′ω)

[
a†

2∑
k=1

G′
ke−i f sin φk m†

k

+G′
12e−i f (sin φ2+sin φ1 )m†

1m†
2 + H.c.

]
(29)

with

g′
k = − gagJ1( f ) cos φk

(
1

ω
− 1

2ωa + ω

)
, k = 1, 2,

g′
12 = 2g2

∞∑
n=1

(
1

nω
− 1

2ωa + nω

)
J2

n ( f ) sin[n(φ2 − φ1)],

G′
k = (−1)n′−1 gag

ω

[n′e−i(n′−1)φk Jn′−1( f )

n′ − 1

− n′e−i(n′+1)φk Jn′+1( f )

n′ + 1

]
,

G′
12 = g2

ω

∞∑
n=1

(−1)n+n′ n′

n(n′ + n)
Jn( f )Jn+n′ ( f )

× {e−i[nφ1−(n+n′ )φ2] + e−i[nφ2−(n+n′ )φ1]}

+ g2

ω
(−1)n′

n′−1∑
n=1

1

n
Jn( f )Jn′−n( f )

× [einφ1+i(n′−n)φ2 + einφ2+i(n′−n)φ1 ]. (30)

The counterrotating interactions (a†m†
1, a†m†

2, and m†
1m†

2)
could be omitted when ωa  ω (even when 2ωa ≈ n′ω).
In this case, the effective coupling strengths g′

k ≈ gk 
G′

k , g′
12 ≈ g12  G′

12, and Jn′−1( f ) � J1( f ), Jn( f )Jn+n′ ( f ) �
J2

n ( f ) and Jn( f )Jn′−n( f ) � J2
n ( f ) for f = 2.4048 and n′  1.

On the other hand, the perturbative method based on the
James effective Hamiltonian is valid when the Floquet-driving
frequency ω  g. Thus, the Floquet driving frequency in our
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FIG. 6. Chiral state-transfer fidelity of the target state (|e002〉 +
|g020〉)/

√
2 under the system Hamiltonian (28) holding the counter-

rotating interactions with (a) varying transition frequency ωa and a
fixed ω = 20g, and (b) varying Floquet driving frequency ω and a
fixed ωa = 200g. Note that the evolution period T = 2π/(3

√
3geff )

is independent of ωa but dependent on ω. The other parameters are
set the same as Fig. 2.

protocol should be in a compromise regime, given transition
frequency ωa and coupling strength g.

Figure 6(a) is used to reveal the implicitly required mag-
nitude of ωa to justify the system Hamiltonian H in our
protocol. We demonstrate the effect of the counterrotating
interactions by the chiral state-transfer population dynamics
from the initial state |	(0)〉 = (|e200〉 + |g200〉)/

√
2 under

varying transition frequency ωa. It is found that the popu-
lation can be maintained above 0.90 when ωa = 100g and
above 0.98 when ωa = 200g. A smaller ωa yields a lower P.
When ωa decreases to ωa = 50g, P is lower than 0.30 in the
end of the evolution. In Fig. 6(b), we plot the chiral state-
transfer population dynamics for the same state under varying
transition frequency ω. It is found that the population can
be maintained above 0.90 in the regime of 15 < ω/g < 25.
However, when ω = 30g, P is lower than 0.75 in the end of
the evolution with T = 2π/(3

√
3geff ). Thus, our protocol is

not appropriate in the strong Floquet regime.

IV. NOON STATE GENERATION
AND FIDELITY ANALYSIS

This section provides the details of generating the
magnonic NOON states based on the Floquet-engineering
Hamiltonian (1) under the qubit-dependent chiral-transfer

FIG. 7. Circuit model of the magnonic NOON state generation.
Part A is used to prepare the resonator as a Fock state |N〉 and the
qubit as a symmetrical-superposed state. It consists of a sequence of
π pulses on qubit characterized by the Rabi frequency �, the local
evolution of qubit and resonator under a Jaynes-Cummings Hamilto-
nian HJC (31), and a final π/2 pulse U (34) on qubit. In Part B, after
the global evolution under the Floquet-engineering Hamiltonian (1),
a bare-basis projection is performed on qubit to yield the magnonic
NOON state.

condition. Also, we analyze the protocol fidelity in the pres-
ence of the quantum dissipation.

A. Preparing NOON state with multiple excitations

Suppose that all four components in our hybrid sys-
tem (qubit, resonator mode, and two magnonic modes)
are initially in their ground states, i.e., |	(0)〉 = |g000〉 =
|g〉q|0〉a|0〉m1 |0〉m2 . The generation procedure of a magnonic
NOON state could be constituted by two parts, A and B.

As illustrated by the circuit model in Fig. 7, Part A is
mainly used to prepare the resonator mode as an arbitrary
Fock state |N〉. Accordingly, it is divided into N + 1 steps
as follows. This part is local to the resonator and the qubit.
Then, to avoid unnecessary crosstalk with the two magnons,
the resonator and the qubit are detuned to be far-off-resonant
from them. Also, we temporally remove the time modulation
over the coupling strength between qubit and resonator. Thus,
in Part A we have a Jaynes-Cummings Hamiltonian

HJC = ga(σ+a + σ−a†). (31)

Step A1. A microwave π pulse of {ωq, π/(2�)} is applied
to the qubit and the system state is transformed to be |	(τ )〉 =
|e000〉 up to a global phase. Here, ωq is the pulse frequency,
which is currently resonant with the qubit. τ ≡ π/(2�) is the
duration time of the pulse. The Rabi frequency � is assumed
to be much larger than ga to make it reasonable to ignore the
evolution under HJC during a sufficiently short period τ . Then,
turning on the Hamiltonian (31) for a period of τ1 = π/(2ga),
we have

|	(τ + τ1)〉 = −|g100〉. (32)

Step Aj , j = 2, . . . , N . We alternatively employ the same
microwave π pulse {ωq, π/(2�)} to pump the qubit from
the ground state to the excited state and switch on and off
the Hamiltonian (31) with a decreasing duration time τ j =
π/(2

√
jga) to transform |e( j − 1)00〉 to be |gj00〉. Therefore,

after these steps, the system state becomes

|	(TA)〉 = (−1)N |gN00〉, (33)
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where TA = Nτ + ∑N
j=1 τ j . Till now, a number state is created

in the resonator mode. The global phase (−1)N can be ignored
for simplicity.

Step AN+1. A π/2-pulse gate is performed on a qubit. It can
be expressed by

U = ei(π/4)�σ ·�n = 1√
2

[
1 ie−iθ

ieiθ 1

]
, (34)

where �σ ≡ (σx, σy, σz ) and �n = (cos θ, sin θ, 0). The qubit
becomes a superposed state and the system state reads

|	(TA)〉 = 1√
2

(|g〉 + ieiθ |e〉)|N00〉, (35)

where the phase θ is tunable as desired and can be regarded as
an encoded local phase for the NOON state.

In the beginning of Part B, we are well prepared to generate
the magnonic NOON state based on the full Hamiltonian (1)
and the system state in Eq. (35). Here, the qubit is in charge
of controlling the direction of the chiral state transfer to make
the Fock state |N〉 of the resonator to be perfectly transferred
to the two magnonic modes at the same time.

Step B1. Under the desired time modulations over the
qubit-resonator interaction and the Floquet engineering over
the magnonic modes to achieve the effective Hamiltonian in
Eq. (6), the system state evolves to

|	(TA + T )〉 = 1√
2

(|g0N0〉 − ieiθ |e00N〉) (36)

after T = 2π/(3
√

3geff ), according to the transformation ma-
trices in Eqs. (11) and (17). Then, we detune the qubit
frequency and apply a microwave π/2 pulse {ωq, π/(4�)} to
the qubit. The state becomes

|	(TB = TA + T + τ/2)〉

= 1
2 (|g0N0〉 − eiθ |g00N〉) − i

2
(|e0N0〉 + eiθ |e00N〉)

= 1
2 |g0〉(|N0〉 − eiθ |0N〉) − i

2
|e0〉(|N0〉 + eiθ |0N〉). (37)

Step B2. In the final step, one can obtain the magnonic
NOON state (|N0〉 − eiθ |0N〉)/

√
2 or (|N0〉 + eiθ |0N〉)/

√
2

by performing a projective measurement on the ground or
the excited state of the qubit. To hold the NOON state, the
frequencies of all four components can then be offset to avoid
unnecessary evolution. With a typical coupling strength be-
tween the qubit and magnon g/2π ∼ 20 MHz [38], it is found
that TB ≈ 0.65μs for N = 5 when the tuning time is omitted
(e.g., the pulse duration is nearly 10 ns [59]). So, the full
generation time is much smaller than the relaxation time of
magnon of about 10 μs [25].

In a general situation where the resonator is initialed as
an arbitrary state |ϕ〉 and the two magnons are in the same
state |β〉, one can generate a (nonnormalized) entangled state
|ϕ〉|β〉 + |β〉|ϕ〉 of the two magnonic modes through Part B.
For example, if |ϕ〉 is a coherent state |α〉 and |β〉 = |0〉, then
the final state of two magnonic modes would be a (nonnor-
malized) cat state [60] |α〉|0〉 + |0〉|α〉 as long as the qubit is
prepared as the superposed state in Eq. (35). The state of the

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

FIG. 8. Fidelity during the process of generating Fock-state |N =
5〉 of the resonator mode a as indicated in Eq. (33). All the lines
except the green solid line marked with squares indicate the inter-
mediate result about the overlap between evolved state and |N < 5〉.
� = 30g, ga = g, and γ /g = 10−5.

magnons could be detected in experiments by the integrated
superconducting qubit and nitrogen vacancy center [25,32].

B. Fidelity analysis

The physical feasibility of our generation protocol could
be verified by the numerical simulation over the whole pro-
cedure in Sec. IV A. The overlap of the final state and the
ideal NOON state at the end of Step B2 could be regarded as
the generation-protocol fidelity. In particular, we prepare the
whole system as a product of ground state, follow all the steps
in Parts A and B, and take into account the decoherence from
all components of the hybrid system into the dynamics. Under
the standard Markovian approximation and tracing out the de-
grees of freedom of the external environment (assumed to be
at the vacuum state), we arrive at the master equation for the
density-matrix operator ρ(t ) of the whole system consisting
of qubit, resonator, and magnonic modes:

ρ̇(t ) = − i[H̃, ρ(t )] + κaL[a]ρ(t ) + κmL[m1]ρ(t )

+ κmL[m2]ρ(t ) + γL[σ−]ρ(t ). (38)

In Part A for the local evolution of qubit and resonator, H̃ =
HJC (31), and in Part B for the global evolution, H̃ = H (1).
κa, κm, and γ are the decoherence rates of the resonator, the
magnonic modes, and the qubit, respectively. To simplify the
discussion but with no loss of generality, we set κa = κm =
γ . These rates are surely dependent on the magnitude of the
associated transitions in spontaneous emission. Yet this setting
is simply used to estimate the robustness of the ideal protocol,
so all of the decoherence rates are supposed to be in the same
order of magnitude. The dissipative superoperator L is defined
in a Lindblad form,

L[o]ρ ≡ 1
2 (2oρo† − o†oρ − ρo†o), (39)

where o = σ−, a, m1, m2 are the decay operators.
Before taking the crucial steps of generating a NOON

state by chiral state transfer, as discussed in Sec. II, we
have to consider the nonideal dynamics during Part A to
achieve a desired Fock state of the resonator. In Fig. 8, the
fidelity dynamics of |N = 5〉 is plotted by using the master
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FIG. 9. Fidelity of the NOON state obtained by the projective
measurement over (a) the excited state and (b) the ground state of
the qubit (see Step B2 in Sec. IV A), under varying decoherence rate
γ . Here the parameters are set as ω = 20g, φ1 = 2π/3, φ2 = 4π/3,
θ = π , and � = 30g.

equation (38). On this stage, the magnons are separable. The
five peak values indicate the temporal fidelity of |N � 5〉
during the step-by-step process, which decline with N . In
particular, we have F = 0.95 for N = 5.

Using Eq. (37), Step B2, and Eq. (38), the final fidelity
is calculated by F = 〈�|Trqr[ρ(TB)]|�〉, where |�〉 is the
target magnonic NOON state and Trqr[·] means tracing out
the degrees of freedom of the qubit and resonator. Perform-
ing |e〉〈e| and |g〉〈g| on |	(TB)〉 gives rise to |�〉 = (|N0〉 +
eiθ |0N〉)/

√
2 and |�〉 = (|N0〉 − eiθ |0N〉)/

√
2, respectively.

In Fig. 9, we plot the fidelity of the NOON state under var-
ious decoherence rates γ . As expected, the fidelities decline

with N . In comparing Figs. 9(a) and 9(b), the results are not
sensitive to the choice of measurement basis. With a moderate
decoherence rate γ /g = 10−4, the fidelities are 97.9%, 95.4%,
90.1%, 85.6%, and 75.6% for N = 1, 2, 3, 4, 5 in Fig. 9(a) by
projecting to the excited state |e〉, and they are, respectively,
97.8%, 96.0%, 92.4%, 86.9%, and 77.7% in Fig. 9(b) by mea-
suring the ground state. Roughly the latter are slightly higher
than the former and both demonstrate robustness against the
environmental dissipation. Under a strong decoherence rate
γ /g = 10−3, however, the generation fidelity will decline to
almost 50%.

V. CONCLUSION

In summary, we have presented a magnonic NOON state
generation protocol based on the Floquet engineering method.
The control protocol is carried out in a hybrid qubit-resonator-
magnon system, where the qubit is coupled to the resonator
mode with a time-modulation interaction and simultaneously
coupled to two magnonic modes. Floquet engineering with
the desired driving intensity, frequency, and local phases is
applied to the eigen frequencies of two magnons, by which an
effective time-reversal-symmetry broken Hamiltonian is con-
structed to realize a chiral state transfer among the resonator
and the two magnonic modes. The state transfer direction
could be controlled by the state of the qubit. In our protocol,
when the qubit is prepared as (|e〉 + |g〉)/

√
2, an arbitrary

pure state (including the Fock state) of the resonator can thus
be transferred to the two magnons at the same time. We can
eventually obtain the magnonic NOON state upon a projective
measurement on the qubit. We estimate the sensitivity of the
state-transfer fidelity to the systematic errors in qubit-magnon
coupling strength, Floquet driving intensity, frequency mis-
match in magnons and qubit, and counterrotating interactions.
Our protocol shows robustness against the quantum dissipa-
tion of all the components. Our work therefore provides an
alternative approach to generate a NOON state in a hybrid
system, which constitutes an interesting application of chiral
state transfer under Floquet control.
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