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Collective quantum beats from distant multilevel emitters
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We analyze the dynamics of quantum beats in a system of two V-type three-level atoms coupled to a
waveguide. We show that quantum beats can be collectively enhanced or suppressed, akin to Dicke super- and
subradiance, depending on the interatomic separation and the initial correlations between the atoms. In particular,
the interference properties of the collective beats are determined by the distance between the atoms modulo the
beat wavelength. We study the collective atomic and field dynamics, illustrating a crossover from a Markovian to
a non-Markovian regime as the atomic separation becomes sufficiently large to bring memory effects of the elec-
tromagnetic environment into consideration. In such a non-Markovian regime, collective quantum beats can be
enhanced beyond the Markovian limit as a result of retardation effects. Our results demonstrate the rich interplay
between multilevel and multiatom quantum interference effects arising in a system of distant quantum emitters.
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I. INTRODUCTION

Quantum beats refer to the quantum interference effect
in the radiation emitted from different excited levels in a
multilevel atomic system [1]. Similar to the well-known
phenomenon of collective atomic spontaneous emission [2],
quantum beats can exhibit cooperative effects when consid-
ering the fluorescence from a collection of multilevel atoms
as demonstrated theoretically [3] and experimentally [4]. Col-
lective effects can thus be a tool for enhancing quantum
beats, relevant to improving the sensitivity of precision time-
resolved spectroscopy methods [5].

Collective atom-field interactions have been historically
explored in systems where atoms are confined within small
volumes compared to the resonant wavelengths [6–10]. How-
ever, waveguides allow for the realization of cooperative
effects between distant emitters, which has been a subject
of significant interest in recent theoretical and experimental
works [11–22]. In such cases, the radiation emitted from a
pair of emitters that are prepared in a symmetric initial state is
super(sub)radiant for an interatomic separation that is a (half-
)integer multiple of the resonant transition wavelength. Thus
the atomic separation (d ) modulo the resonant wavelength is
crucial in determining the collective emission properties of a
system. The interference can thus be engineered in ordered
atomic arrays to exhibit strong collective phenomena creat-
ing nearly perfect mirrors [23–25] and facilitating quantum
metrology [26,27] and quantum memory [13,28].

In this paper, we study the collective quantum beat dy-
namics of distant multilevel emitters coupled to a waveguide.
In such a case, the collective dynamics involves multiple
transition frequencies and exhibits even richer interference be-
havior. We find that at larger length scale the beat wavelength
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λbeat ≡ 2πv/ωbeat (ωbeat being the beat frequency and v being
the speed of light in the waveguide) becomes relevant in deter-
mining the phase relations between the radiation emitted from
different transitions. For a pair of distant multilevel atoms that
are prepared in a symmetric initial state with respect to one of
the transitions, we show that the resulting quantum beats can
be enhanced (suppressed) for an interatomic separation that is
a (half-)integer multiple of the beat wavelength, similar to the
dependence of Dicke super- and subradiance on the atomic
separation modulo the resonant wavelength.

Furthermore, we investigate the regime where the in-
teratomic separation becomes comparable to the coherence
length defined as Lc = v/�, where � is the characteris-
tic spontaneous emission rate for individual atoms. It has
been shown that in such a case the system exhibits rich
retardation-induced non-Markovian dynamics, with features
such as collective spontaneous emission rates exceeding those
of Dicke superradiance [29–32] and formation of highly de-
localized atom-photon bound states [32–36]. Increasing the
atomic separation to regimes where the retardation effects
become relevant, we illustrate a crossover from a Markovian
to a non-Markovian dynamics of collective quantum beats.

The paper is organized as follows. We present the model
for the system of two V-type three level atoms coupled to
a waveguide in Sec. II. Section III analyzes the collective
quantum beat dynamics for the atomic and field degrees of
freedom. In Sec. IV, we describe the distance dependence of
collective quantum beat dynamics. We discuss the conclusions
and outlook of the paper in Sec. V.

II. MODEL

We consider two three-level V-type atoms coupled through
a one-dimensional waveguide, as shown in the schematic
Fig. 1. The ground state is labeled as |1〉 and the two excited
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FIG. 1. Schematic representation of two three-level atoms, de-
noted by A and B, coupled to a waveguide. We consider that each
atom has a V-type level structure, with the ground state denoted by
|1〉 and the two excited states denoted by |2〉 and |3〉, with decay rates
�22 and �33, respectively. The detuning between levels |2〉 and |3〉
is ω23. We consider different regimes of the interatomic separation
d such that (1) d ∼ λbeat � Lc and (2) λbeat � d ∼ Lc, with λbeat =
2πv/ω23 as the beat wavelength and Lc = v/�22 as the coherence
length, with v as the speed of the EM field in the waveguide.

levels are |2〉 and |3〉. The frequency difference between levels
i and j is denoted as ωi j . The positions of the two atoms are
denoted by xA = −d/2 and xB = d/2.

We can write the total Hamiltonian of the system as H =
H0 + HAF , where H0 is the free Hamiltonian and HAF rep-
resents the atom-field interaction. The free Hamiltonian is
defined as

H0 =
∑

m=A,B

∑
j=2,3

h̄ω j1σ̂
+
m, j σ̂

−
m, j

+
∑

k

h̄ωk
[
â†

R,k âR,k + â†
L,kâL,k

]
. (1)

The first term corresponds to the atomic Hamiltonian where
σ̂±

m, j are the atomic raising and lowering operators acting on
the jth level of atom m. The second term is the Hamiltonian
for the electromagnetic (EM) field where the creation and
annihilation operators â(†)

R,k and â(†)
L,k correspond to the right

and left propagating field modes with frequency ωk along
the waveguide, respectively. Moving to the interaction picture
with respect to H0, the atom-field interaction Hamiltonian
H̃AF ≡ eiH0t/h̄HAF e−iH0t/h̄ is given by

H̃AF = −
∑

m=A,B

∑
j=2,3

∑
k

h̄gm, j (ωk )
{
σ̂+

m, j

[
âR,keikxm

+ âL,ke−ikxm
]
ei(ω j1−ωk )t + H.c.

}
(2)

where we have employed the rotating-wave approximation.
We remark that the waveguide enables the interaction between
two distant atoms via a common set of guided modes, without
the ≈1/r3 reduction of interaction strength as in free space.
We further assume that the atom-field coupling strengths
for the two atoms are equal such that gA, j (ωk ) = gB, j (ωk ) ≡
g j (ωk ).

We consider a system where the two atoms initially share a
single excitation in level 2 and the EM field is in the vacuum
state:

|�(0)〉 = (
cos θ |2〉A|1〉B + eiφ sin θ |1〉A|2〉B

)⊗ |{0}〉. (3)

We remark that even in the absence of an initial superposition
of the levels 2 and 3 there is a second-order coupling between
the excited levels due to the emission and absorption of virtual
photons. Such a second-order coupling allows for the pos-
sibility of the initially unpopulated excited level |3〉 to emit
simultaneously with level |2〉, resulting in vacuum-induced
quantum beats [37], as was recently demonstrated experi-
mentally in [4]. Furthermore, the above initial state readily
extends to the more general initial state in the single excitation
manifold where a single excitation is shared among any of the
excited states and any of the two atoms.

Observing that the interaction Hamiltonian preserves the
number of excitations in the atom-field system, we make the
following ansatz for the time-evolved state:

|�(t )〉 =
⎡
⎣ ∑

m=A,B

∑
j=2,3

cm, j (t )σ̂+
m, j +

∑
k

{
cR(ωk, t )â†

R,k

+cL(ωk, t )â†
L,k

}⎤⎦|1〉A|1〉B|{0}〉. (4)

cm, j (t ) denotes the excitation amplitude for the mth atom in
the jth level and cR(L)(ωk, t ) stands for the excitation ampli-
tude for the right (left) propagating field mode of frequency
ωk .

III. COLLECTIVE QUANTUM BEAT DYNAMICS

A. Equations of motion

From the interaction Hamiltonian and the single-excitation
ansatz for the total system state [Eqs. (2) and (4)], we obtain
the equations of motion for the atomic and field excitation
amplitudes as follows:

∂t cm, j (t ) = i
∑

k

g j (ωk )ei(ω j1−ωk )t

× [
cR(ωk, t )eikxm + cL(ωk, t )e−ikxm

]
, (5)

∂t cR(ωk, t ) = i
∑

m=A,B

∑
j=2,3

g j (ωk )e−i(ω j1−ωk )t cm, j (t )e−ikxm ,

(6)

∂t cL(ωk, t ) = i
∑

m=A,B

∑
j=2,3

g j (ωk )e−i(ω j1−ωk )t cm, j (t )eikxm . (7)

One can solve for the atomic dynamics by tracing out the
field modes assuming a flat spectral density of the EM field
such that g j (ωk ) ≈ g j (ω j1) ≡ g j to obtain

∂t cm, j (t ) = −
∑
l=2,3

� jl

2
eiω jl t cm,l (t )

−
∑
l=2,3

η� jl

2
eiω jl t eiωl1

d
v cn,l

(
t − d

v

)
�

(
t − d

v

)
,

(8)

where the atomic indices n and m are not equal and the
generalized decay rate � jl is defined as

� jl = d j1dl1ω
3
jl

3πε0hv3
, (9)

013701-2



COLLECTIVE QUANTUM BEATS FROM DISTANT … PHYSICAL REVIEW A 107, 013701 (2023)

FIG. 2. Schematic representation of the interference between ra-
diation emitted from different atomic transitions for propagation
distances of d = λbeat/2 and λbeat . The two field modes at different
frequencies are in phase right after being emitted and gradually
become out of phase as they travel through the waveguide. For a
propagation distance of half the beat wavelength, the two modes
are exactly out of phase with each other; for a propagation distance
equal to the beat wavelength, they become in phase again. Thus,
the interatomic distance modulo the beat wavelength determines
the interference properties of the radiation emitted from the two
transitions.

assuming the transition dipole moments are parallel to each
other. We remark that we phenomenologically added the cou-
pling efficiency η ≡ �1D/�tot, where �1D is the decay rate
to the waveguide and �tot is the total decay rate, in order to
account for the decay to the other channels such as free space.
The underlying assumption is that spatially separated atoms
only interact via guided modes.

One can identify the various processes that contribute to
the total collective quantum beat dynamics from Eq. (8) as
follows: (1) individual atomic spontaneous emission, corre-
sponding to the terms involving the same atom and same
excited level (n = m, j = l); (2) individual atomic quantum
beats, corresponding to the terms involving the same atom
and different excited levels (n = m, j �= l); (3) collective
spontaneous emission, corresponding to the terms with dif-
ferent atoms and same excited levels (n �= m, j = l); and (4)
collective emission of quantum beats, represented by the in-
terference terms between different atoms and different excited
levels (n �= m, j �= l).

The collective atomic and field dynamics is obtained as
a combination of the above four processes, exhibiting a rich
interplay between different length scales. For example, for a
symmetric initial state, (1) when d is a (half-)integer multiple
of the transition wavelength λ j1, the photons emitted by the
two distant atoms from the respective transitions (| j〉 ↔ |1〉)
are in (out of) phase, and (2) when d is a (half-)integer
multiple of the beat wavelength λbeat, the two photons of
wavelengths λ21 and λ31 become in (out of) phase at the
position of the other atom, as illustrated in Fig. 2.

Furthermore, non-Markovian retardation effects become
prominent as the atomic separation becomes comparable to
the coherence length of the photons emitted from the atoms.
The Markov approximation assumes that the bath correlations
decay on a much faster timescale compared to the system
relaxation, thus the system evolution only depends on its

instantaneous state. In a regime where d � Lc, the timescale
over which the EM field interacts with the delocalized sys-
tem (τB ∼ d/v) becomes comparable to the system relaxation
timescale (τR ≈ 1/� j j). Thus, as d/v � 1/� j j , or τB/τR � 1,
it becomes pertinent to include the retardation effects in the
EM field mediating the interaction between the two atoms,
making the system non-Markovian [32].

B. Atomic dynamics

An arbitrary initial state with a shared single excitation
between the two atoms in level |2〉 [Eq. (3)] can be always
decomposed into symmetric(|ψ+〉) and antisymmetric(|ψ−〉)
states:

|ψ±〉 = 1√
2

(|2〉A|1〉B ± |1〉A|2〉B). (10)

Thus, we will limit our investigation to the initial states |ψ±〉.
For completeness, the description of a general initial-state
case is given in Appendix A.

The time-evolved excitation amplitudes for the two atoms
follow the symmetry of the initial state, such that

c(±)
A, j (t ) = ±c(±)

B, j (t ), (11)

where the superscripts +(−) correspond to the
(anti)symmetric initial states |ψ±〉. Importantly, we note
that the symmetry of the atomic state with respect to both
the |3〉 ↔ |1〉 and the |2〉 ↔ |1〉 transitions is the same as the
initial symmetry for the |2〉 ↔ |1〉 transition throughout the
dynamics.

To simplify the notation, we will drop the atomic labels
m, i.e., c(±)

A, j (t ) ≡ c(±)
j (t ), and focus on the evolution of atom

A. From solving the coupled atomic dynamical equations of
motion in Eq. (8) by taking a Laplace transform, one ob-
tains the atomic dynamics as the sum of various modes (see
Appendix A for details):

c(±)
2 (t ) =

∞∑
n=−∞

α(±)
n es(±)

n t , (12)

c(±)
3 (t ) =

∞∑
n=−∞

β (±)
n e(s(±)

n −iω23 )t . (13)

The coefficients s(±)
n and s(±)

n − iω23 denote the characteristic
complex eigenfrequencies of the amplitude dynamics for the
levels 2 and 3, respectively, and are defined as the poles of the
propagator G(±)(s):

G(±)(s) ≡
[(

s − iω23 + �33

2
± η

�33

2
eiφ2 e− d

v
s

)

×
(

s + �22

2
± η

�22

2
eiφ2 e− d

v
s

)

−�23�32

4

(
1 ± ηeiφ2 e− d

v
s
)2
]−1

. (14)

Here, φ2 = ω21d/v is the propagation phases for the res-
onant transition frequency ω21. In general, the propagator
above has an infinite number of poles, and it is difficult to
express the corresponding eigenfrequencies in a closed-form
analytical solution. We therefore obtain s(±)

n numerically for
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a finite number of poles of the propagator G(±)(s(±)
n ) with

n ∈ {−N, . . . , N}.
The corresponding coefficients α(±)

n and β (±)
n for the nth

eigenfrequency are

α(±)
n = 1√

2
lim
s→sn

s − iω23 + �33
2 ± η�33

2 eiφ2 e− d
v

s

∂s
{
[G(±)(s)]−1} , (15)

β (±)
n = − �32

2
√

2
lim
s→sn

(
1 ± ηeiφ2 e− d

v
s
)

∂s
{
[G(±)(s)]−1} . (16)

In the limit where atoms are colocated, the eigenfrequen-
cies given by the poles of the propagator [Eq. (14)] can be
solved analytically, and the atomic dynamics corresponds to
simple collective quantum beat dynamics without delay. We
remark that when the atoms are colocated different atoms
may interact via the free space as well as the guided field
modes, thus the effective coupling efficiency for this specific
case should be set to 1. Generally, when the atoms are close
enough so that they may interact through the free space
mode, the coupling efficiency should change accordingly.
For the symmetric initial state, this yields two solutions:

s(+) = {−�22+�33
2 + i ω23+δ

2 ,−�22+�33
2 + i ω23−δ

2 } where

δ = [ω23
2 − (�22 + �33)2 − 2iω23(�22 − �33)]

1
2 . In the

regime where the excited levels are well separated ( �i j

ω23
� 1),

the atomic dynamics can be simplified as follows:

c(+)
2 (t ) = 1√

2

[
e−�22t −

(
�32�23

ω23
2

)
e−�33t eiω23t

]
, (17)

c(+)
3 (t ) = i�32√

2ω23

[
e−�33t − e−�22t e−iω23t

]
. (18)

The dynamics of the amplitude of level 2 is dominated by the
collective decay at a rate �22, overlaid with a beating term
with an amplitude �32�23/ω

2
23 � 1. The initial population in

level 3 being zero, the excitations in level 3 arise exclusively
from a second-order vacuum-induced coupling between level
2 and level 3. Thus, the decay and the beat terms in c3(t ) have
the same amplitude.

For the antisymmetric initial state in the zero-distance case
we obtain the complex eigenfrequencies as s(−) = {0, iω23},
without any real component or decay. Thus, the system
remains in the subradiant state with no evolution of the cor-
responding atomic coefficients: c(−)

2 (t ) = 1√
2
, c(−)

3 (t ) = 0.

C. Field dynamics

While the atomic dynamics provides physical intuition, it cannot be measured directly in experiments. Instead, one measures
the intensity of the light emitted from the system, which carries indirect information about the atomic dynamics. The intensity
emitted by the atomic system is given by I (x, t ) = ε0c

2 〈ψ (t )|Ê†(x, t )Ê (x, t )|ψ (t )〉, with the electric-field operator defined as
Ê (x, t ) = ∫∞

0 dkEk[âR,keikx + âL,ke−ikx]e−iωkt . This can be calculated explicitly as follows (see Appendix B for details):

I (x, t )/I0 =

∣∣∣∣∣∣∣∣∣
∑
j=2,3

∑
m=A,B

g j

g2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩cm, j

(
t − x − xm

v

)
e−iω j1(t− x−xm

v )
[
�

(
t − x − xm

v

)
− �

(
−x − xm

v

)]
︸ ︷︷ ︸

Right light cone for atom m at frequency ω j1

+ cm, j

(
t + x − xm

v

)
e−iω j1(t+ x−xm

v )
[
�

(
t + x − xm

v

)
− �

(
x − xm

v

)]
︸ ︷︷ ︸

Left light cone for atom m at frequency ω j1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣

2

. (19)

The first and second terms in the above expression appear
in terms of t ± (x − xm)/v, corresponding to the light cone
emitted by atom m at frequency ω j1 towards right and left,
respectively. Before the two light cones meet, the atoms are
causally disconnected and emit independently. As each atom
“sees” the other atom, the interference between the light cones
at the two transition frequencies emitted by the two atoms
leads to collective quantum beat dynamics.

The intensity measured outside the system (x < xA or x >

xB) can be expressed in a further simplified form by taking the
limit x → x+

B and making use of the system eigenfrequencies:

I (t )/I0 =
∣∣∣∣∣∑

n

(
α(±)

n + g3

g2
β (±)

n

)

×
(
�(t ) ± e−s(±)

n d/v�(t − d/v)
)

es(±)
n t

∣∣∣∣∣
2

. (20)

From the above expression we note that quantum beats result
from the interference of the modes with different frequencies,
such that Ims(±)

n �= Ims(±)
m . In particular, collective quantum

beats originate from the interference between the fields emit-
ted by the two atoms at different frequencies for t > d/v. The
collective beat amplitude has a distance dependence as can
be seen from the prefactor e−s(±)

n d/v , which corresponds to the
difference in phase and amplitude for various field modes as
they propagate between the two atoms.

In the limit of two coincident atoms (d → 0), the intensity
measured at x → x+

B is

I (t )/I0 =
∣∣∣∣cA2(t ) + g3

g2
cA3(t )eiω23t

+ cB2(t ) + g3

g2
cB3(t )eiω23t

∣∣∣∣2�(t ). (21)
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TABLE I. Summary of parameters used in calculations, based on
typical values in a superconducting circuit setup. The frequencies are
in the units of �22, and the lengths are in units of v/�22.

Decay rate of level 3 (�33/�22) 1
Energy separation of level 2 and 3 (ω23/�22) 50
Resonant frequency of level 2 (ω21/�22) 104

Coherence length (Lc×�22/v) 1
Beat wavelength (λbeat×�22/v) 4π×10−2

Transition wavelength (λ21×�22/v) 2π×10−4

For the antisymmetric initial state where cA2(t ) = −cB2(t )
and cA3(t ) = −cB3(t ), the total emitted intensity vanishes, as
expected for a Dicke subradiant state.

For a symmetric initial state where cA2(t ) = cB2(t ) and
cA3(t ) = cB3(t ), the emitted intensity is four times that of
a single three-level atom, corresponding to standard Dicke
superradiance. Plugging in Eqs. (17) and (18) into Eq. (21),
one gets

I (t )/I0 = e−2�22t + �33

�22

(
�23�32

ω23
2

)
e−2�33t

− 2
�23�32

ω23�22
sin(ω23t )e−(�22+�33 )t , (22)

using the relation g j
2 ∝ � j j . The first two terms correspond

to spontaneous emission from levels 2 and 3, and the third
term represents quantum beats. The above expression is in
agreement with the collective quantum beat dynamics from
coincident atoms as previously obtained in [4].1

IV. DISTANCE DEPENDENCE OF COLLECTIVE
QUANTUM BEAT DYNAMICS

We now present the system dynamics for a specific im-
plementation of the model in a superconducting circuit setup
as an example [21,38], with parameters described in Table I.
As superconducting circuits allow for both a strong enough
coupling between the emitters and field, as well as a precise
control of emitter positions, the parameters can be prefer-
entially chosen to best observe the collective quantum beat
dynamics. For example, the ratio ∼�23/ω23 can be suffi-
ciently large so that the vacuum-induced coupling between
the excited levels results in sizable quantum beats [Eq. (22)].
Unlike in the case of optical frequencies, the transition wave-
lengths being in the microwave regime enables a precise
enough positioning of emitters such that one can realize the
desired separations needed to observe various interference
phenomena in collective quantum beats. Also, the ratio of the

1While, strictly speaking, the experiment in [4] corresponds to a
timed Dicke state of a finite-sized ensemble, it can be approximated
well by a symmetric state of coincident atoms. Such an assumption is
valid in the limit where the ensemble size (≈2 mm) is much smaller
compared to the beat wavelength (≈2.5 m). We further remark that
the dynamics of a timed Dicke state of atoms separated by a distance
comparable to λbeat is different from that of the symmetric state of
coincident atoms because every 1

2 λbeat the photons of two different
frequencies would be out of phase.

characteristic wavelengths (transition and beat wavelengths)
to the coherence length, while being small, is still substantial
enough compared to optical regimes to allow one to access
both the Markovian and non-Markovian regimes of the system
dynamics with a small variation of the emitter separation d .
We note that, as long as the parameters are carefully chosen
regarding the above requirements, the various interference
properties of collective quantum beats should appear in any
multilevel quantum system.

In particular we discuss the dependence of the collective
system dynamics on atomic separation across two different
regimes wherein (1) d � Lc (Markovian regime) and (2)
d � Lc (non-Markovian regime). In each of these regimes,
we analyze the system dynamics for the symmetric and an-
tisymmetric initial states of the two artificial atoms [Eq. (10)],
considering interatomic separations of integer and half-integer
multiples of the beat wavelength. For simplicity we assume
that d is an integer multiple of λ21. While the initial state
determines the total collective spontaneous emission, the in-
teratomic distance modulo the beat wavelength determines
the interference properties of the collective quantum beats, as
discussed in Sec. III A.

A. Markovian regime

We study the dynamics of atomic excitation probabilities
and the field intensity for interatomic separations of d =
{λbeat, λbeat/2} � Lc. We numerically calculate the poles of
Eq. (14) for |Re[s( j,±)

n ]| < 200 �22 and |Im[s( j,±)
n ]| < 200 ω23.

Including sufficient high-frequency modes allows one to cor-
rectly capture the dynamics of the system for the timescales
of interest (see Appendix C for details).

Figure 3 depicts the atomic and field dynamics for initial
symmetric and antisymmetric states of the two atoms. We
note that the onset of collective dynamics happens at d = λbeat

or 1
2λbeat depending on the interatomic separation as indi-

cated by the vertical dash-dotted lines. Figures 3(a) and 3(b)
illustrate the level 2 population dynamics which exhibits a
super(sub)radiant decay for (anti)symmetric initial states. It
can be seen from Eq. (17) that the amplitude of the beat term
is smaller compared to that of the individual decay in level 2
dynamics by a factor of �23�32/ω23

2 � 1. Thus, we do not
see any visible beats in the level 2 population curves.

More interestingly, Figs. 3(c) and 3(d) illustrate the col-
lective quantum beat effect as seen in the level 3 population
dynamics. We note that for an interatomic separation of
d = λbeat there is a collective enhancement of the quantum
beats for the symmetric initial state, and suppression for the
antisymmetric initial state as denoted in Fig. 3(c). For this
separation, the phase of the field modes mediating the interac-
tion between the atoms is an even integer multiple of 2π such
that ω21d/v = 2nπ , ω31d/v = 2mπ ({n, m} ∈ N). Further-
more, the total atomic state is (anti)symmetric with respect
to the |3〉 ↔ |1〉 transition for an initial (anti)symmetric state
with respect to the |2〉 ↔ |1〉 transition. Thus, we observe
an enhancement or suppression of the quantum beats for an
initial symmetric or antisymmetric state, respectively. More
specifically, it can be seen that the amplitude of the first peak
of the collective “superradiant” quantum beats (solid blue) is
enhanced roughly by a factor of ≈4.1 in comparison with the
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FIG. 3. Atom-field dynamics in the Markovian regime: (a), (b)
level 2 dynamics, (c), (d) level 3 dynamics, and (e), (f) field dy-
namics measured at x → x+

B for interatomic separations (a), (c), (e)
d = λbeat and (b), (d), (f) d = 1

2 λbeat . The solid blue curves are for
the symmetric initial state, and the dashed red curves are for the
antisymmetric initial state. The vertical dash-dotted lines indicate the
times when the field emitted from one atom reaches the other atom.
For comparison the single atom dynamics is drawn with the dotted
gray lines. The level 3 population is scaled by a factor of 103 for
clarity of illustration.

independent emission case (dotted gray). In contrast, it can
be seen in Fig. 3(d) that for a separation of d = λbeat/2 the
resulting beats are suppressed as a result of the destructive
interference between the fields emitted from the two atoms at
ω21 and ω31, as illustrated in Fig. 2.

In Figs. 3(e) and 3(f), the intensity of the light measured
outside the system is depicted. The radiated intensity, as given
by Eq. (19), is governed by the interference between the
atomic excitation amplitudes. For the (anti)symmetric initial
state, the overall emission is superradiant (subradiant). For
the case of superradiant emission, the size of the beat is
enhanced (suppressed) for an atomic separation of d = λbeat

(d = 1
2λbeat ), in agreement with the collective atomic dynam-

ics.

B. Non-Markovian regime

We now consider the case wherein the atomic separations
are comparable to the coherence length of the emitted pho-
tons, with d = 7.5λbeat ≈ 0.94Lc and 8λbeat ≈ Lc. We note
that for such large separations the retardation effects of
the waveguide field become relevant, rendering the system
dynamics non-Markovian. We calculate the dynamics numeri-
cally by obtaining the characteristic system frequencies as the
poles of the propagator Eq. (14) within |Re[s( j,±)

n ]| < 10 �22

and |Im[s( j,±)
n ]| < 10 ω23 (see Appendix C for details).

The atomic and field dynamics for this regime is shown
in Fig. 4 for the initial symmetric and antisymmetric states.
The level 2 dynamics for a symmetric initial state as de-

FIG. 4. Non-Markovian regime: (a), (b) level 2 dynamics, (c),
(d) level 3 dynamics, and (e), (f) field dynamics measured at x →
x+

B for interatomic separations (a), (c), (e) d = 8λbeat and (b), (d),
(f) d = 7.5λbeat . The solid blue curves are for the symmetric initial
state, and the dashed red curves are for the antisymmetric initial state.
The vertical dashed-dotted lines indicate the times when the field
emitted from one atom reaches the other atom. For comparison the
single atom dynamics is drawn with the dotted gray lines. The level
3 population is scaled by a factor of 103.

noted by the solid blue curves in Figs. 4(a) and 4(b) exhibits
collective emission rates faster than standard Dicke superradi-
ance, which is termed “superduperradiance” (see Appendix D
for comparison of decay profiles of superduperradiance and
Dicke superradiance), similar to the non-Markovian collective
dynamics for a system of two two-level atoms [29,32,39].
Such an enhancement of the collective decay rate can be
understood by considering the atomic collective emission in
terms of a mutually stimulated emission process wherein
each atomic dipole is stimulated by the field emitted by the
other atom [31,40]. As each atom emits into the waveguide,
there is a probability amplitude associated with the emit-
ted field reaching the other atom—in the presence of delay
this amplitude increases with the atomic separation, caus-
ing an enhancement in the instantaneous rate of collective
emission beyond regular superradiance. For an antisymmetric
initial state (dashed red curves), one can see the formation of
delocalized atom-photon bound states in continuum in agree-
ment with previous studies in delocalized two-level emitters
[33,34]. Such atom-photon bound states arise as a result of
the destructive interference between the atomic dipole and the
fields emitted by each of the atoms, which causes the fields to
be reflected as they interact with the atoms.

The effects of retardation on collective quantum beats are
illustrated in the population dynamics of level 3 in Figs. 4(c)
and 4(d). For an interatomic separation d = 8λbeat as seen in
Fig. 4(c), we observe an enhancement of the quantum beats
for a symmetric initial state and moderate suppression of beats
for the antisymmetric initial state. Furthermore, comparing
the first peak of the collective quantum beats (solid blue)
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with that of the independent decay (dotted gray) shows an
enhancement beyond the Markovian case by roughly a factor
of ≈6.8. For a separation of d = 7.5λbeat as illustrated in
Fig. 4(d), the population dynamics of level 3 for both the
initial symmetric and antisymmetric cases exhibits beating in
addition to an exponential decay.

The light intensity measured outside the system is depicted
in Figs. 4(e) and 4(f). The symmetric initial state exhibits
an overall exponential decay faster than Dicke superradiance,
with an overlaid beating that is enhanced (suppressed) for
a separation d = 8λbeat (d = 7.5λbeat ). The antisymmetric
initial state shows a suppressed total emission outside the
system, indicating that most of the light is trapped in between
the atoms forming a delocalized atom-photon bound state. We
note that the atom-photon bound state in this case has a larger
photonic amplitude than in the Markovian case. However,
there is a finite emission into the field modes from the other-
wise subradiant state, indicating existence of additional modes
in a non-Markovian regime that provide channels for the
atomic excitations to decay away. Such modes have been pre-
viously investigated in the context of the steady-state atomic
spectrum emitted from two distant two-level atoms [31].

V. DISCUSSION

In this paper we have demonstrated the distance-dependent
dynamics of collective quantum beats, resulting from the in-
terference between the radiation emitted from a collection
of multilevel atoms coupled to a waveguide. Considering
a system of two V-type three-level atoms interacting via a
waveguide, we show that the coherent interference between
the spontaneous emission from different excited levels of the
two atoms results in a collective quantum beat phenomenon
[4] (Sec. II). We find that the distance between the atoms
modulo the beat wavelength (d/λbeat) is critical in determin-
ing the interference properties of such collective quantum
beats: the emitted fields at the two transition frequencies go
from interfering constructively to interfering destructively for
d = nλbeat to (n + 1/2)λbeat (Fig. 2). We obtain the collective
dynamics of the total atom-field system by analyzing the
system in terms of its characteristic complex eigenfrequencies
determined by the poles of the system propagator (Sec. III). In
the limit d → 0 our results agree with the recent experimental
investigations of vacuum-induced collective quantum beats

from a small sample, which could be approximately consid-
ered as a system of coincident atoms [4]. A general analysis
of the collective atomic and field dynamics as a function
of the interatomic separation and the initial atomic states is
presented in Sec. IV. We find that while the atomic separa-
tion modulo the transition wavelength in conjunction with the
symmetry properties of the initial state governs the overall
collective spontaneous emission the length scale λbeat governs
the collective nature of the quantum beats. We further in-
vestigate the non-Markovian dynamics of collective quantum
beats in Sec. IV B. As the system size become comparable to
the coherence length of the emitted photons (d ∼ v/�), there
can be significant retardation effects in the field mediating the
interaction between the atoms, rendering the system dynamics
non-Markovian. In such a regime, we find that the collective
quantum beats can exhibit a non-Markovian enhancement
beyond superradiant quantum beats arising in the Markovian
regime, as illustrated in Fig. 4.

The results presented in this paper open directions for
investigating and controlling radiation from multilevel atomic
systems coupled to waveguides. Quantum beats are relevant
to precision time-resolved spectroscopy measurements [5]; a
collective enhancement of quantum beats can improve sensi-
tivities of such measurements. It would be pertinent to extend
the present model to a system of N atoms for characterizing
the metrological advantage offered by the collective nature of
quantum beats.

Furthermore, collections of quantum emitters coupled to
waveguides are a paradigmatic system for implementation of
quantum networks and long-distance quantum communica-
tion protocols. It has been shown that collective multilevel
atomic systems offer a higher-dimensional entangled state
space, enabling efficient quantum memories [41] and secure
quantum communication [42–44]. Our analysis is relevant
to such schemes, with a consideration of retardation effects,
which can be significant in distributed quantum information
processing.
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APPENDIX A: ATOMIC DYNAMICS

We can solve the coupled atomic equations of motion [Eq. (8)] by using Laplace transformation. Defining Laplace-
transformed coefficients, c̃m, j (s) ≡ ∫∞

0 cm, j (t )e−st dt , Eq. (8) reads

∂t cm, j (t ) = −
∑
l=2,3

� jl

2
c̃m,l (s − iω jl ) −

∑
l=2,3

η� jl

2
e− d

v (s−iω j1 )c̃n,l (s − iω jl ), (A1)

where m �= n. Setting the initial-state condition [Eq. (3)], we get the coupled equations in Laplace space:

sc̃A2(s) = cos θ − �22

2
c̃A2(s) − �23

2
c̃A3(s − iω23) − �22

2
ηeiφ2 e− d

v
sc̃B2(s) − �23

2
ηeiφ2 e− d

v
sc̃B3(s − iω23), (A2a)

sc̃B2(s) = eiφ sin θ − �22

2
ηeiφ2 e− d

v
sc̃A2(s) − �23

2
ηeiφ2 e− d

v
sc̃A3(s − iω23) − �22

2
c̃B2(s) − �23

2
c̃B3(s − iω23), (A2b)
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sc̃A3(s) = −�32

2
c̃A2(s + iω23) − �33

2
c̃A3(s) − �32

2
ηeiφ3 e− d

v
sc̃B2(s + iω23) − �33

2
ηeiφ3 e− d

v
sc̃B3(s), (A2c)

sc̃B3(s) = −�32

2
ηeiφ3 e− d

v
sc̃A2(s + iω23) − �33

2
ηeiφ3 e− d

v
sc̃A3(s) − �32

2
c̃B2(s + iω23) − �33

2
c̃B3(s). (A2d)

Here, φ j = ω j1d/v is the general propagation phase for a photon of frequency ω j1. First solving for c̃A2(s) and c̃B2(s), we get

c̃A2(s) = cos θ A(s) − eiφ sin θ B(s)

C(s)
,

c̃B2(s) = eiφ sin θ A(s) − cos θ B(s)

C(s)
, (A3)

where A(s), B(s), C(s), and D(s) are defined as

A(s) =
(

s − iω23 + �33

2

)[(
s + �22

2

)(
s − iω23 + �33

2

)
− �23�32

4

]

− η2e2iφ2 e−2 d
v

s

[(
�33

2

)2(
s + �22

2

)
+ �23�32

4

(
s − iω23 − �33

2

)]
,

B(s) = ηeiφ2 e− d
v

s

[
�22

2

(
s − iω23 + �33

2

)2

− �23�32

4

(
2s − 2iω23 + �33

2

)]
− η3e3iφ2 e−3 d

v
s �33

2

[
�22�33

4
− �23�32

4

]
,

C(s) =
[(

s − iω23 + �33

2
+ �33

2
ηeiφ2 e− d

v
s

)(
s + �22

2
+ �22

2
ηeiφ2 e− d

v
s

)
− �23�32

4

(
1 + ηeiφ2 e− d

v
s
)2
]

×
[(

s − iω23 + �33

2
− �33

2
ηeiφ2 e− d

v
s

)(
s + �22

2
− �22

2
ηeiφ2 e− d

v
s

)
− �23�32

4

(
1 − ηeiφ2 e− d

v
s
)2
]
. (A4)

Then c̃A3(s) and c̃B3(s) are obtained in terms of c̃A2(s) and c̃B2(s):

c̃A3(s) = − �32

2

(
s + �33

2 − �33
2 η2e2iφ3 e−2 d

v
s
)

c̃A2(s + iω23) + sηeiφ3 e− d
v

sc̃B2(s + iω23)(
s + �33

2

)2 − (
�33
2

)2
η2e2iφ3 e−2 d

v
s

,

c̃B3(s) = − �32

2

sηeiφ3 e− d
v

sc̃A2(s + iω23) +
(

s + �33
2 − �33

2 η2e2iφ3 e−2 d
v

s
)

c̃B2(s + iω23)(
s + �33

2

)2 − (
�33
2

)2
η2e2iφ3 e−2 d

v
s

. (A5)

We first numerically find the poles sn of the denominators in Eqs. (A3) and (A5), with each pole representing a complex
eigenfrequency of the system. The excitation amplitude c̃(s) in Laplace space is expressed in terms of its modes:

c̃(s) =
∑

n

wn

s − sn
, (A6)

where wn = lims→sn (s − sn)c̃(s).
In this paper we consider two specific initial states: a symmetric and antisymmetric superposition of a single excitation in

level 2. For the symmetric initial state, i.e., θ = π/4 and φ = 0,

c̃A2(s) = c̃B2(s) = 1√
2

s − iω23 + �33
2 + �33

2 ηeiφ2 e− d
v

s(
s − iω23 + �33

2 + �33
2 ηeiφ2 e− d

v
s
)(

s + �22
2 + �22

2 ηeiφ2 e− d
v

s
)− �23�32

4 (1 + ηeiφ2 e− d
v

s)2
, (A7)

c̃A3(s) = c̃B3(s) = − �32

2
√

2

1 + ηeiφ3 e− d
v

s(
s + �33

2 + �33
2 ηeiφ3 e− d

v
s
)(

s + iω23 + �22
2 + �22

2 ηeiφ3 e− d
v

s
)− �23�32

4 (1 + ηeiφ3 e− d
v

s)2
. (A8)

Note that the denominators in Eqs. (A7) and (A8) are the same up to a constant shift of the Laplace variable s → s + iω23.
Similarly, for an antisymmetric initial state, i.e., θ = π/4 and φ = π ,

c̃A2(s) = −c̃B2(s) = 1√
2

s − iω23 + �33
2 − �33

2 ηeiφ2 e− d
v

s(
s − iω23 + �33

2 − �33
2 ηeiφ2 e− d

v
s
)(

s + �22
2 − �22

2 ηeiφ2 e− d
v

s
)− �23�32

4 (1 − ηeiφ2 e− d
v

s)2
, (A9)

c̃A3(s) = −c̃B3(s) = − �32

2
√

2

1 − ηeiφ3 e− d
v

s(
s + �33

2 − �33
2 ηeiφ3 e− d

v
s
)(

s + iω23 + �22
2 − �22

2 ηeiφ3 e− d
v

s
)− �23�32

4 (1 − ηeiφ3 e− d
v

s)2
. (A10)

Similar to the symmetric case, the denominators on the right-hand sides of Eqs. (A9) and (A10) are the same up to a Laplace
variable shift of s → s + iω23 as well.
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FIG. 5. Markovian regime: The poles and the corresponding coefficients for symmetric (blue circle) and antisymmetric (red x) initial states,
for the separation of (a)–(d) d = 0.5 λbeat and (e)–(h) d = λbeat . (a), (e) The real part of the poles corresponds to the decay rate of each mode
in units of �22 and (b), (f) the imaginary part corresponds to the frequency of the modes in units of ω23. (c), (g) The coefficient αn shows the
contribution of each pole to the level 2 dynamics and (d), (h) the coefficient βn shows the contribution to the level 3 dynamics.

We remark that the dynamics of a general initial state in the single excitation manifold |�(0)〉 = K2A|2〉A|1〉B + K2B|1〉A|2〉B +
K3A|3〉A|1〉B + K3B|1〉A|3〉B, with |K2A|2 + |K2B|2 + |K3A|2 + |K3B|2 = 1, can be obtained directly from our result. An initial
excitation in |3〉A(|3〉B) would follow the same dynamics as for the case of an initial excitation in |2〉A(|2〉B), given by Eqs. (12)
and (13), with the following substitutions:

ω23 ↔ −ω23,

�22 ↔ �33,

�23 ↔ �32.

APPENDIX B: FIELD INTENSITY DYNAMICS

We consider the dynamics of the intensity radiated by the atoms as follows:

I (x, t ) = ε0c

2
〈�(t )|

[∫ ∞

0
dk1E∗

k1

{
â†

R,k1
e−ik1x + â†

L,k1
eik1x

}
eiω1t

][∫ ∞

0
dk2Ek2

{
âR,k2 eik2x + âL,k2 e−ik2x

}
e−iω2t

]
|�(t )〉

= ε0c|E0|2
2

∣∣∣∣
∫ ∞

0
dk
[
cR(ωk, t )eikx + cL(ωk, t )e−ikx

]
e−iωkt

∣∣∣∣2, (B1)

where we have assumed that Ek ≈ E0 to be constant near the atomic resonance frequency.
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FIG. 6. Non-Markovian regime: The example of the poles and the corresponding coefficients for symmetric (blue circle) and antisymmetric
(red x) initial states, for (a)–(d) d = 7.5 λbeat and (e)–(h) d = 8λbeat . (a), (e) The real part of the poles corresponds to the decay rate of each
mode in units of �22 and (b), (f) the imaginary part corresponds to the frequency of the modes in units of ω23. (c), (g) The coefficient αn shows
the contribution of each pole to the level 2 dynamics and (d), (h) the coefficient βn shows the contribution to the level 3 dynamics.

We can derive the excitation amplitudes of the field modes from Eq. (6) and (7) as follows:

cR(ωk, t )=i
∫ t

0
dτ

∑
m=A,B

∑
j=2,3

g j (ωk )e−i(ω j1−ωk )τ cm, j (τ )e−ikxm , (B2)

cL(ωk, t ) =i
∫ t

0
dτ

∑
m=A,B

∑
j=2,3

g j (ωk )e−i(ω j1−ωk )τ cm, j (τ )eikxm . (B3)

Then one can simplify the intensity expression [Eq. (B1)] in terms of the atomic coefficients as follows:

I (x, t ) = ε0c|E0|2
4π

∣∣∣∣∣∣
∫

dωe−iωt

⎡
⎣∫ t

0
dτ

∑
j=2,3

g j
{
cA j (τ )eiω(−x+xA )/v + cB j (τ )eiω(−x+xB )/v

+ cA j (τ )e−iω(−x+xA )/v

+ cB j (τ )e−iω(−x+xB )/v
}
ei(ω−ω j1 )τ

⎤
⎦
∣∣∣∣∣∣
2

, (B4)

where we have used Eqs. (B2) and (B3) to determine the field excitation amplitudes in terms of those of the atoms. Performing
first the integral over frequency and subsequently the integral over time leads to Eq. (19).
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FIG. 7. The dynamics of the population in level 2 of the initial
symmetric state of atoms for three scenarios: independent decay
(d = ∞, dotted black), Dicke superradiance (d = 0, dashed red), and
superduperradiance, i.e., the non-Markovian collective decay with
retarded backaction (d = 8λbeat , solid blue), each rescaled to 1 at
t = 8λbeat/v for clear comparison.

APPENDIX C: POLES FOR THE MARKOVIAN
AND THE NON-MARKOVIAN EXAMPLES

The poles sn and the corresponding coefficients α(±)
n and

β (±)
n in Eqs. (12) and (13) determine the atomic and the

field dynamics. However, the coefficients α(±)
n and β (±)

n also
account for the higher eigenfrequencies that cause an abrupt
change at t = d/v, arising due to the time-delayed feedback.

Since we are interested in the dynamics after t = d/v, we
redefine the following coefficients:

αn ≡ αnesnd/v, (C1)

βn ≡ βnesnd/v. (C2)

The dynamics after t = d/v is thus described as

cA2(t ) =
∞∑

n=−∞
αnesn (t−d/v), (C3)

cA3(t ) =
∞∑

n=−∞
βne(sn−iω23 )(t−d/v). (C4)

αn and βn do not consider the high-frequency components
constituting the abrupt change at t = d/v, and only account
for the dynamics in the regime t > d/v.

Figures 5 and 6 show the poles sn and the corresponding
coefficients αn and βn for Markovian and non-Markovian
regimes, respectively. The real part of the poles represents
the collective decay rate and the imaginary part represents
collective shift of energy in the eigenmodes. We see that in
the Markovian regime (Fig. 5) the high-frequency and fast
decaying modes have negligible contribution. In contrast, the
non-Markovian regime (Fig. 6) shows that the dominant poles
occur in the range of frequencies between zero and ω23, and
decay rates that are enhanced beyond the Markovian limit.

APPENDIX D: COMPARISON OF
SUPERDUPERRADIANCE AND DICKE

SUPERRADIANCE IN LEVEL 2 DYNAMICS

The enhancement of decay rate of level 2 population for
symmetrically correlated emitters in a non-Markovian regime
exceeds the standard Dicke superradiant decay rate, whereas

FIG. 8. The atom-field dynamics for coupling efficiency η = 0.4: (a)–(d) level 2 dynamics, (e)–(h) level 3 dynamics, and (i)–(l) field
dynamics measured at x → x+

B for interatomic separations (a), (e), (i) d = λbeat , (b), (f), (j) d = 0.5λbeat , (c), (g), (k) d = 8λbeat , and (d), (h), (l)
d = 7.5λbeat . The solid blue curves are for the symmetric initial state, and the dashed red curves are for the antisymmetric initial state. The
vertical dash-dotted lines indicate the times when the field emitted from one atom reaches the other atom. For comparison the single atom
dynamics is drawn with the dotted gray lines. The level 3 population is scaled by a factor of 103 for clarity of illustration.
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it is hard to tell just by looking at Figs. 4(a) and 4(b). Figure 7
shows a direct comparison of non-Markovian enhancement
of decay for the case of d = 8λbeat, to the standard Dicke
superradiant decay and independent decay, demonstrating that
retarded backaction may lead to a faster-than-superradiance
decay.

APPENDIX E: MARKOVIAN AND NON-MARKOVIAN
DYNAMICS FOR IMPERFECT COUPLING EFFICIENCY

The example of imperfect coupling efficiency of η = 0.4
is shown in Fig. 8. The general effect of having a finite

coupling efficiency is that the interference between different
atoms observed at the separation time is mitigated. In conse-
quence, the level 2 dynamics shows reduced enhancement and
suppression of decay rates for symmetric and antisymmetric
initial states, respectively. Similarly, the level 3 dynamics
for d = nλbeat shows less enhancement and suppression of
quantum beats for symmetric and antisymmetric initial states,
respectively. In the level 3 dynamics for d = (n + 1

2 )λbeat,
destructive interference due to the out-of-phase photon from
the other atom is also reduced. As a result, the intensity of
light emitted from the system shows less enhancement or
suppression of the decay rate and the quantum beats.
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