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Generation of dissipative Kerr solitons in a passive fiber Kerr resonator
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The generation of dissipative Kerr solitons (DKSs) in a passive fiber Kerr resonator with a fast saturable
absorber (SA) is studied numerically. Simulation results demonstrate the generation of DKSs in SA-based fiber
Kerr resonators. The impact of the properties of an SA, including the modulation depth and the saturation power,
on the performances of DKSs is studied. Our results show the existence of DKSs in SA-based passive fiber Kerr
resonators, suggesting that the SA provides additional degrees of freedom to get access to the DKS regime in
Kerr resonators in addition to the detuning and the pump. These findings provide guidance for the experimental
realization of the generation of DKSs in SA-based fiber Kerr resonators.
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I. INTRODUCTION

Passive Kerr resonators as dissipative systems support
many different localized solutions, among which the tem-
poral dissipative Kerr soliton (DKS) has received the most
attention in the past two decades. DKSs are stable ultrashort
pulses featuring excellent low noise [1,2], and they manifest
as equally spaced frequency combs in the frequency domain.
The demonstration of a DKS in a passive fiber resonator [1]
followed by the realization of the DKS in chip-scale microres-
onators [3] has fully released the potential of the DKS for
many applications. As a Kerr frequency comb, it has already
been successfully used in a wide range of applications, such as
optical communications [4], optical synthesizers [5], optical
clocks [6], LIDAR (light detection and ranging) [7], spectrom-
eters [8], and microwave photonics [9].

In Kerr resonators, the DKS is a result of the balance
between dispersion and nonlinearity on the one hand, and
between parametric gain and loss on the other [3]. The latter
is particularly important. In coherently driven Kerr resonators,
a process of four-wave mixing (FWM) [10] occurs when the
pump power reaches the threshold of modulation instabilities
(MIs) in the cavity [11]. The FWM process leads to the gen-
eration of two sidelobes symmetrically sitting on both sides
of the pump frequency in the spectrum. Further increasing the
pump power leads to a cascaded FWM process [12], resulting
in a transition of the intracavity field to an MI-induced Turing
pattern or DKS state. The DKS is usually formed in the
red-detuned region where the system is intrinsically thermally
unstable. Therefore, the challenge of getting a stable DKS in
practice is to overcome the thermal effects. In experiments, a
method called detuning scan is a universal technique to get
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DKSs in Kerr resonators [3]. The detuning that is defined
as the frequency offset between the pump frequency and the
cavity resonance is the key parameter to get the DKS. A
delicate adjustment of the detuning scan speed and accuracy
overcomes the variation of the resonant frequency due to the
thermal effect [13,14], thus enabling one to lock the pump
frequency to the cavity resonance in the detuning scan pro-
cess. Via scanning the detuning from the blue-detuned to the
red-detuned region, the phase of all modes can be locked
under certain detuning [15]. Consequently, a phase-locked
state of the DKS is observed. Other similar methods, including
the forward and backward detuning scan [16], power-kicking
[17], auxiliary-laser-based thermal controlling [18], and heat
management [19], are proposed and have been demonstrated
to excite DKSs in microresonators successfully.

One prominent issue of DKSs in Kerr resonators is the
lower energy transfer efficiency from the narrow continuous
wave (CW) pump to the intracavity field due to the small
fraction of the overlapping of the CW with the intracavity
field [19,20]. Because of this, DKS has lower single-pulse
energy (typically dozens of pJ). Approaches such as dark
solitons [21,22], pulse-pumping [23,24], and mutually cou-
pled Kerr resonators [25] have been demonstrated to improve
the utilization of the pump, and to improve the pump-soliton
efficiency. Noticeably, in recent years the concepts of disper-
sion/nonlinearity management [26,27] and gain management
[28] have been introduced into the field of Kerr resonators,
enabling one to explore the rich nonlinear dynamics of DKSs
and to get DKSs in Kerr resonators more efficiently. This
boosts the performances of the DKS in terms of the pulse
duration and energy, though the state-of-the-art pulse energy
of the DKS is still far below the nJ level, which is much lower
than its counterparts of solitons from mode-locked lasers
[29,30].

Apart from the lower energy, another main outstanding
challenge confronting the field of Kerr micro/fiber resonators
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is developing reliable and repeatable approaches to achieve
the stable operation of Kerr solitons, particularly a single
soliton state. The critical and strict conditions that are required
to initiate and maintain soliton states against perturbations
increase the system’s complexity and also its susceptibility
to perturbations. This is especially evident in fiber Kerr res-
onators. The spontaneous emergence of stable Kerr solitons
in fiber Kerr resonators is usually difficult to achieve, and
the excitation of Kerr solitons often requires additional proper
perturbation of system variables, for instance using a writing
pulse, phase/intensity modulation of the pump light, and me-
chanically perturbing the cavity by shaking the fibers [31–33].
People are keen to find an effective way to realize the self-
starting and robust operation of Kerr solitons in fiber Kerr
resonators.

Remarkably, recent literature shows that the transient loss
modulation introduced by saturable absorbers (SAs) is an
effective way to generate DKSs with high robustness and
pump-soliton efficiency in microresonators when achieving
the DKS state on resonance [34,35]. The SA is an optical
component with nonlinear absorption of light. Specifically, the
SA absorption is high for low-intensity light and is reduced
significantly for high-intensity light. One of the main applica-
tions of an SA is to initiate the mode-locking of lasers for the
generation of short pulses. The SA enhances the fluctuations
emitted from the spontaneous emission inside a laser cavity
during multiple roundtrips until one intensive pulse is selected
and an ultrashort pulse is formed. One could expect that an
SA in fiber Kerr resonators could overcome the pain points
of the spontaneous generation and the robustness of the DKS
operation in such a system. This is the strong motivation
behind this work.

When dealing with ultrafast fiber lasers, artificial fast SAs
are the most widely used devices for getting ultrashort pulses.
These SAs take several forms, based on different configu-
rations, such as nonlinear polarization rotation in a fiber, a
nonlinear fiber loop mirror, and a nonlinear amplified loop
mirror. Compared to slow SAs, ultrafast lasers with fast SAs
usually yield shorter pulses due to the rapid recovery time,
which is well below the pulse duration. Thinking from the
perspective of the simple structure, easier integration, and
ultrashort pulse generation, in this work we focus on studying
the DKS generation in a fiber Kerr resonator with a fast SA.

In this article, we have studied the generation of a DKS
in a fiber Kerr resonator with a fast SA in the cavity. The
SA provides a power-dependent transmission function in the
cavity to reshape and stabilize the pulses. Simulation results
of the Ikeda map reveal the DKS formation in the SA-
based fiber Kerr resonator. The parameter region for DKS
formation in the SA-based fiber Kerr resonator is given in
a two-dimensional space of (�, P). The impacts of the SA
properties on the DKS performances are also studied. These
results enrich our understanding of the nonlinear dynamics of
DKSs and provide an ideal platform to realize the generation
of DKSs in Kerr fiber resonators.

II. SIMULATION MODEL

The simulation model that we use is a pure passive optical
fiber ring resonator with a fast SA inside the resonator. The

FIG. 1. Schematic diagram of the simulation model of the pas-
sive fiber Kerr resonator with a fast saturable absorber inside the
cavity. SA denotes saturable absorber, OC denotes optical coupler,
CW denotes continuous-wave light, SMF denotes single-mode fiber,
and GVD denotes group velocity dispersion.

resonator consists of an 85-m-long single-mode fiber (SMF),
which is coherently pumped by a CW laser through a 10:90
optical coupler. 10% of the intracavity light has been extracted
for characterization. A schematic of the resonator is presented
in Fig. 1. The behavior of such a system is governed by the so-
called generalized Ikeda map. In simulations, the electric field
propagating in the resonator follows a concatenated sequence
representing different cavity elements. First, the field envelope
EN (z, τ ) that stands for the time-domain electric light field
inside the resonator at the N th roundtrip traveling along the
fiber in the cavity can be obtained by numerically solving a
standard nonlinear Schrödinger equation,

∂EN (z, τ )

∂z
= −i

β2

2

∂2EN

∂τ 2
+ iγ |EN |2EN , (1)

where β2 is the group velocity dispersion (GVD) and γ is the
nonlinearity coefficient. z is the longitudinal coordinate along
the optical fiber, and τ denotes the time in the pulse group
velocity reference frame. The subscript N stands for the N th
roundtrip.

After that, the electric light field EN (z = L, τ ) output from
the fiber passes a fast SA in the resonator. L is the fiber length,
namely the cavity roundtrip length. The SA in our model is
modeled by an instantaneous loss function αSA:

αSA(τ ) = L0

1 + |E (τ )|2/Psat
. (2)

Here, L0 is the modulation depth of the SA, P(τ ) = |E (τ )|2
being the instantaneous power. Psat stands for the saturation
power of the SA. Therefore, the electric field at the end of
the N th roundtrip can be obtained by multiplying the field
envelope output from the fiber by the SA transfer function,

E ′
N (z = L, τ ) =

√
1 − αSAEN (z = L, τ ). (3)

In transit from the N th roundtrip to the (N + 1)th
roundtrip, the electric light field EN+1(z = 0, τ ) obeys the
following roundtrip transit condition:

EN+1(z = 0, τ ) =
√

θEin + √
1 − αe−iδE ′

N (z = L, τ ), (4)
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where EN+1(z = 0, τ ) stands for the intracavity electric light
field at the beginning of the (N + 1)th roundtrip. Ein is the
driving field that is injected into the cavity superimposing
on the intracavity field in each roundtrip. θ is the power
transmission coefficient of the input optical coupler. δ denotes
the phase detuning between the driving field and one cavity
resonance. α stands for the total cavity loss per roundtrip,
which includes all the component losses and fiber loss. All the
numerical simulation results presented in our manuscript are
obtained by solving Eqs. (1)–(4). In the rest of this article, we
will use the term of a lumped model referring to Eqs. (1)–(4).

In the simulations, we solve Eq. (1) by using a distributed
split-step Fourier transform method where the linear terms are
solved in the frequency domain, whereas the nonlinear effect
is integrated directly in the time domain using the fourth-order
Runge-Kutta method. The time window is set to 100 ps and
the grid point is 2048. The parameter of the fiber is chosen
to match the typical experimental values: β2 = −20 ps2/km
and γ = 1.3 w−1/km at 1550 nm. The pump coupling ratio
is 10%, and the total cavity roundtrip loss is α = 0.233. The
initial field condition is a random noise field.

III. SIMULATION RESULTS

In what follows, the numerical simulation results are pre-
sented in three sections. In the first section, we simulate
the Ikeda map of our system for an SA with L0 = 0.08
and Psat = 10 W though solving the lumped model, con-
firming the existence of the DKS in such a system. Later
on, a two-dimensional space of (�, F ) (� is the detun-
ing and F is the pump power) is introduced to divide
the parameter plane into different regions, corresponding to
different types of solutions. In the third section, the perfor-
mances of DKSs for different SA properties are studied and
discussed.

A. DKS formation in the SA-based fiber Kerr resonator

We start with the simulation of the Ikeda-map via the de-
tuning scan technique, confirming the existence of the DKS in
the SA-based fiber Kerr resonator. The pump power is 2.7 W
and the SA has parameters of L0 = 0.08 and Psat = 10 W.
Considering that the system is bistable and highly nonlinear,
we notice that the final states for each parameter set are sen-
sitive to the initial conditions. In Fig. 2 we present only one
example of the Ikeda map of the evolution of the intracavity
field with an initial condition of random noise with a peak
power varying from 0 to 1 W. Figures 2(a) and 2(b) show
the temporal and spectral evolution of the intracavity field, re-
spectively. In the beginning, the resonator operates in the CW
regime due to the imperfect phase matching between the pump
frequency and the cavity resonance. Along with a further
scan of the detuning from the blue-detuned to the red-detuned
side, the power of the intracavity field increases. When the
pump power reaches the MI threshold at δ = −0.08π rad,
the system transits from the CW regime into a Turing roll
pattern that is a state with evenly spaced combs in the spectral
domain and periodic waveforms distributed within the cavity
in the time domain [Figs. 2(e) and 2(f)]. Further sweeping the
detuning from 0.08π rad into the red-detuned region leads to

chaotic MI patterns, followed by the generation of breathing
DKSs and multiple DKSs in a detuning range from 0.2π to
0.33π rad and then a stable single DKS within a range from
0.33π to 0.78π rad.

We also traced the energy of the intracavity field during the
detuning scan process, revealing clear boundaries determining
the region for different regimes. The energy is defined as the
total energy of the optical light field in the cavity, namely the
integral of its optical power over time. It can be expressed as
Ep = ∫ T/2

−T/2 |E |2dt . T is the time window of 100 ps in simu-
lations. Figure 2(c) depicts the evolution of the energy of the
intracavity field at a pump power of 2.7 W, exhibiting a rapid
drop in the energy at δ = 0.2π rad, which is an indication of
the onset of the DKS step. One example of the DKS state at
δ = 0.4π rad is presented in Figs. 2(g) and 2(h). The broad
and smooth spectrum is centered at 1550 nm with a 3 dB
width of 1.78 nm. The peak sitting atop the spectrum is the
residual CW light. The symmetric sidebands on both sides of
the spectrum are caused by periodic cavity loss. The pulse
[blue curve in Fig. 2(h)] has a peak power of 23.83 W and a
pulse width of 1.37 ps.

B. Map of different solutions in a two-dimensional
space of (�, F )

In this section, we aim to find the existence region of
the DKS in the SA-based fiber Kerr resonator in a two-
dimensional map in the space of the detuning and pump
power (�, F ). Note that � and F are the normalized unitless
detuning and pump power (see details of the normalization
in Appendix A). In simulations, the detuning δ0 is changing
from 0 to 0.8π rad and the pump power Pin is varying from 0.5
to 2.9 W. Using the form of F = θγ LPin/α

3 and � = δ0/α,
the normalized � is calculated to be within a range from 0 to
21.5, and F is from 3.5 to 20. Depending on the parameter
set, various stationary solutions are observed, including the
CW solutions (white area), the Turing roll pattern (not shown
in Fig. 3), the chaotic pattern (light yellow punctate area), as
well as breathers and DKS solutions (light blue area enclosed
by stars). As we are more interested in the DKS state, only
the region with a normalized detuning of � > 0 is plotted in
Fig. 3. Such a plot enables one to get insight into the DKS
generation in an SA-based fiber Kerr resonator, and it provides
guidelines for experiments.

The behavior of Kerr resonators can be well described by
the Lugiato-Lefever equation (LLE), and a stability chart of
the steady-state solutions of the LLE can provide additional
insights into the behavior of Kerr resonators. For instance,
the bistable range indicates the parameter space where DKSs
could exist. Therefore, a modified Lugiato-Lefever equa-
tion (mLLE) that includes the SA effect in a standard LLE
is deduced and used to analyze the stability chart of the
proposed SA-based fiber Kerr resonator (see the derivation in
Appendix A). The location of different steady-state solutions
of the mLLE is plotted in Fig. 3. The area between the two red
solid curves (F−, F+) is the bistable region where there are
three equilibria corresponding to a region where DKS states
may exist, while the area outside of these two curves only has
one equilibrium. The bistable region of the mLLE overlaps
the parameter space for the DKS obtained from numerical
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FIG. 2. Simulation results of the intracavity field evolution in SA-based fiber Kerr resonators at a pump power of 2.7 W. The SA parameters
are L0 = 0.08, and Psat = 10 W. The (a) temporal and (b) spectral evolution of the intracavity field as a function of the detuning. (c) The
intracavity energy upon the scan of the detuning. (d) The convergence of the energy of the intracavity field at a detuning of 0.4π rad confirms
the stable soliton solution obtained in simulations. Parts (e) and (f) are the spectrum and temporal profile of the Turing roll pattern, respectively,
at a detuning of 0.075π rad. Parts (g) and (h) are the spectrum and temporal profile of DKS, respectively, at a detuning of 0.4π rad.

simulations. Furthermore, the dependence of the bistable
range of the mLLE on the instantaneous intracavity power is
also studied and presented in Fig. 7 in Appendix B, revealing
a positive relationship between the intracavity power and the
bistable range. These results indicate that a stability chart
based on the mLLE can serve as the first step toward selecting
and optimizing the system parameters for getting a DKS in
simulations.

It is well known that the final states of the DKS pattern in
Kerr resonators seriously depend on initial conditions. This is
the very typical behavior in externally driven, damped Kerr
resonators. Therefore, the DKS region in the (�, F ) space in
Fig. 3 presents the maximum region where stable DKSs are
observed in our simulations with different initial conditions.

To reflect the universality of this behavior in our SA-based
system, we depict the evolution of the intracavity field in the
detuning scan process for three different initial conditions in
Fig. 4, revealing that the DKS step during the detuning scan is
slightly different for different DKS solutions. The DKS step is
a range of the detuning where one can achieve soliton states.
The pump is 2.7 W and the detuning is δ = 0.4π rad. It can be

seen that the range of the DKS step is inversely proportional
to the number of DKSs, i.e., the more the DKS is excited,
the smaller is the DKS step. A possible explanation of the
inverse relationship between the DKS step and the number of
DKSs is that the soliton properties rely significantly on the pa-
rameter of the detuning. The detuning describes the frequency
offset between the pump frequency and the cavity resonance,
hence determining the pump-to-soliton energy-transfer effi-
ciency. Because the soliton states are usually obtained for a
red-detuned pump, further scanning the detuning into the far
red-detuned side could lower the energy transfer efficiency
a lot. In this case, for multisoliton states in an anomalous
dispersion regime where the pulse energy of each soliton is
constrained due to the soliton area theorem, the intracavity
power cannot support the multisoliton operation in the far
red-detuned region. However, a single soliton can survive.
Based on the theory, back-scanning the detuning to control
the DKS number has been successfully implemented in the
microresonators [3,16]. Figure 4(b) shows the convergence of
the peak power of the intracavity field under these three initial
conditions, and (c) and (d) are the temporal profile and the
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FIG. 3. Map of different solutions of the SA-based fiber Kerr
resonator in a two-dimensional space of (�, F ) (� is the normalized
detuning and F is the normalized pump power). The modulation
depth of the SA is 0.08 and its saturation power is 10 W. The half-loss
of the fiber cavity is 0.117. The light yellow area (punctate area)
represents the parameter space for chaotic patterns, whereas the light
blue area enclosed by stars indicates the location where DKS can
be excited. Note that the red solid curves F+ and F− represent the
upper and lower boundary of the bistable range of a modified LLE
(mLLE) that is derived to describe the behavior of the SA-based fiber
Kerr resonator. The details of the derivation of the mLLE are given
in Appendix A.

spectrum profile of the final states, respectively, demonstrat-
ing the generation of different DKS states, including a single
DKS, two DKSs, and three DKSs.
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profile in the case of different modulation depths.

C. The influence of the SA properties on DKS performance

In the mode-locking regime, the SA introduces a power-
dependent amplitude modulation on the intracavity field and
hence helps with the formation of pulse structures and also
stabilizes the mode-locking operation. One could expect that
the SA employed in the Kerr resonators would be beneficial
to the performances of DKSs. To figure this out, we first keep
all parameters constant except for the modulation depth of the
SA in order to study the impact of the modulation depth of
the SA on DKS performances. The detuning is 0.36π rad and
the pump power is 2.7 W. The saturation power is 10 W. As
shown in Fig. 5, varying the modulation depth L0 from 0.18
to 0.22 allows the generation of DKSs. Figure 5(b) depicts
the energy of the DKS and its pulse duration as a function of
L0, revealing that an increase of L0 leads to a slight decrease
in the pulse energy. Consequently, the pulse is broadened
because of the soliton area theorem. Figures 5(c) and 5(d)
show the pulse profile and broad spectrum of the DKS under
five different values of L0, confirming the generation of the
DKS solutions and also indicating the weak influence of L0

on DKS performances.
Furthermore, the impact of the saturation power of the SA

on the performances of the DKS is also studied. In this case,
the detuning is 0.36π rad and the pump power is 2.7 W.
We keep the modulation depth a constant L0 = 0.18 and
vary the saturation power Psat of the SA from 14 to 22 W.
Figure 6(a) shows the evolution of the peak power of the
intracavity field along with the roundtrips, demonstrating that
stable solutions of DKSs can be achieved. The temporal pro-
file and the spectrum shown in Figs. 6(c) and 2(d) further
confirm the DKS solutions. The pulse duration of the DKS is
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proportional to Psat, whereas the pulse energy varies inversely
as Psat [Fig. 6(b)]. Although the simulation results also in-
dicate a weak dependence of the DKS performance on the
SA parameters, these results point out a direction for further
improving the DKS performance by using an SA with a lower
modulation depth and lower saturation power.

IV. DISCUSSIONS AND CONCLUSIONS

Our work demonstrates the existence of DKSs in fiber
Kerr resonators with a fast SA inside the resonators. The
influence of the SA parameters on the DKS performances is
also studied. Although by playing with the SA parameters no
significant boost in the DKS performances is observed, we
believe that using a SA with a lower modulation depth and
lower saturation power could improve the performances of
the DKS. Most importantly, our work paves the way to imple-
ment SA-based fiber Kerr resonators in different dispersion
regimes, which may improve the single pulse energy of the
DKS. Furthermore, considering the role of the SA in pulse ini-
tiation and stabilization in practice as well as its advantages of
a simple structure, easier integration with a fiber system, and
ultrashort pulse generation, our results will drive the design
of robust fiber Kerr comb systems, offering a potential way
to overcome the shortage of spontaneous emission and robust
operation of Kerr solitons in fiber Kerr resonators. We recog-
nize, however, that experiments must still be conducted, which
is the direction of our future work. Also, the integration of SAs
like graphene or carbon nanotubes with fiber Kerr resonators
may allow the realization of resonators with multifunctions,
such as a tunable working wavelength and an adjustable pulse
repetition rate [36].

As a complement to the numerical simulation results, we
have derived in Appendix A a modified mean-field LLE
(mLLE) of the SA-based fiber Kerr resonator, and we analyze
the stability chart of such a system in a two-dimensional
space of the pump power and detuning (see details in
Appendix B), revealing that the bistable range of the mLLE
is positively related to the instantaneous intracavity power.
The bistable range of the mLLE overlaps the existing range of
parameters for DKS excitation that is obtained in simulations,
indicating that the stability chart of the system can serve as
the first step toward selecting parameters and optimizing the
simulations.

The implementation of the SA in fiber resonators enhances
the flexibility of the Kerr resonator system. On the one hand,
the parameters of the SA provide additional degrees of free-
dom to optimize the system performance. Indeed, a very
recently published paper demonstrates the controllable gen-
eration of soliton crystal in microresonators benefiting from
the active role of the SA in the cavity [37]. The SA enables
the system to form a desired soliton crystal state directly from
the previous Turing pattern without passing the chaotic states.
Hence, the number of pulses in the soliton crystal can be fully
designed by changing the pump power and SA parameters.
Unlike the difficulty of integrating an SA in microresonators,
it is much easier and more practical to construct a fiber Kerr
resonator with an SA in the cavity.

On the other hand, our work on the existence of DKSs in
fiber Kerr resonators with an SA inside the cavity in anoma-
lous dispersion regimes may stimulate an enormous amount
of research on SA-based Kerr resonators in normal dispersion
regimes. The current performances of Kerr solitons from mi-
cro/fiber Kerr resonators are poor in terms of pulse energy and
average power, due to the low pump-to-soliton energy transfer
efficiency and soliton area theorem in the anomalous disper-
sion regime. A major research avenue in this field is to explore
the potential of DKSs in normal dispersion regimes. However,
a Kerr resonator in the normal dispersion regime will suffer
from difficulties in initiating the soliton state in the resonators,
because the threshold for DKS excitation in such resonators is
comparably higher. In this respect, our work may point out
a direction for solving the difficulty of getting DKSs in a
normal dispersion Kerr resonator by putting an SA inside the
resonator. The SA-based fiber resonators in different disper-
sion regimes, including zero-dispersion or normal-dispersion
regimes, may allow the generation of dispersion-managed
DKSs with higher pulse energy, which arouses our further
interest.

Finally, the transient loss modulation on the intracavity
field in micro-Kerr resonators has been proven instrumental
to the self-starting, robustness, and stability of DKS opera-
tion [34,35]. Therefore, we can also imagine that the noise
feature, the robustness, and the stabilities of the DKS excited
in SA-based fiber Kerr resonators are improved but need ex-
perimental evidence. Incidentally, a fiber Kerr resonator that
is typically emitting pulses at a low repetition rate of MHz
enables us to implement real-time time-frequency measure-
ments. A robust system of fiber Kerr resonators with SA
inside the cavity hence provides a good testbed to explore the
behavior of the nonlinear Kerr system, hence it will shed more
light on the DKS dynamics in Kerr resonators.
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APPENDIX A: A MODIFIED LUGIATO-LEFEVER
EQUATION AND THE STABILITY CHART ANALYSIS

We analytically analyze the bistable area of the system of
an SA-based fiber Kerr resonator using the mLLE where an
additional term describing the extra nonlinear loss introduced
by the fast SA is included. Compared to the prior studies,
our model considers the saturation effect of the SA in the
Kerr resonator system, hence providing additional insight into
the behavior of the fiber Kerr resonators with the SA in the
resonators. The mLLE is shown as follows:

TR
∂E (t, τ )

∂t
=

√
θEin +

[
−αSA(t, τ ) − α − iδ0

− iL
β2

2

∂2

∂τ 2
+ iγ L|E |2

]
E , (A1)

where TR is the roundtrip time, t is the fast time, α is half
of the total cavity loss, and the additional term αSA(t, τ ) is
half of the loss provided by the fast SA. We use the following
transformations:

t ′ → t
α

TR
, τ ′ → τ

√
2α

|β2|L , E ′ → E

√
γ L

α
,

κ (τ ′) = αSA(t ′, τ ′)
α

, � = δ0

α
, Din =

√
θγ L

α3
Ein. (A2)

Equation (A1) can be normalized to a dimensionless two-
parameter model, which can be characterized as in the panel
corresponding with the laser detuning and the pump power,

∂E ′

∂t ′

= Din +
[
−κ (τ ′) − 1 − i� − i sgn(β2)

∂2E ′

∂τ ′2 + i|E ′|2
]

E ′.

(A3)

For the steady-state solutions (CW solutions), the deriva-
tive terms in Eq. (A3) should equal zero, namely ∂E ′

∂t ′ = 0 and
∂2E ′
∂τ ′2 = 0. Then we can obtain

Din = [[κ (τ ′) + 1] − i(|E ′|2 − �)]E ′. (A4)

To find the steady-state solutions, the fast time-dependent
characteristic of the SA is ignored from hereon, and hence
κ (τ ) is reduced to

κ (τ ′) = κ = 1

2α

L0

1 + P/Psat
, (A5)

where P is a constant representing the instantaneous power
of the intracavity field. Taking the square modular of both
sides in Eq. (A4), we obtain the following relationships among
pump power, cavity loss, detuning, and intracavity power:

F = ρ[(κ+1)2 + (ρ − �)2], (A6)

where F = |Din|2 is the pump power, and ρ = |E ′|2 is the
transient intracavity power. Equation (A6) is a cubic polyno-
mial equation in ρ. To make it clear, we rewrite Eq. (A6) as
follows:

F = ρ3 − 2ρ2� + �2ρ + (κ + 1)2ρ. (A7)
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F+
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=[1/2   /(1+P/    )]/L0 Psat

FIG. 7. Bifurcation diagram to scale, showing the bistable area
of DKS solutions of the mLLE in two cases of P = 11.8 and 23.6,
respectively.

The solutions to Eq. (A7) are dependent on the parameters
� and F . The number of solutions is either one, two, or
three [38]. The steady-state solution may arise in a polynomial
equation when it has local extrema and hence requires the
existence of critical ρ satisfying the following equation [22]:

3ρ2 − 4�ρ + �2 + (κ + 1)2 = 0. (A8)

This is a quadratic equation, and the discriminant is√
�2 − 3(κ + 1)2. Therefore, when � �

√
3(κ + 1), the crit-

ical solutions are

ρ± = 2� ±
√

�2 − 3(κ + 1)2

3
. (A9)

Therefore, the corresponding pump power can be obtained:

F± = 2� ∓
√

�2 − 3(κ + 1)2

3

×
⎡
⎣(κ + 1)2 +

(√
�2 − 3(κ + 1)2 ± �

3

)2
⎤
⎦. (A10)

When � �
√

3(κ + 1), three equilibria (ρ1, ρ2, ρ3) can
be found in the range F (�) ∈ [F−(�), F+(�)], where ρ1 �
ρ− � ρ2 � ρ+ � ρ3. Therefore, the extrema solutions ρ1 and
ρ3 are always stable, while the intermediate solution ρ2 is
unstable. Outside of this range, there is only one unique
equilibrium. Therefore, we can estimate the existing range
of DKS solutions by plotting the stability chart. The DKS
usually forms within the bistable region, namely within the
pump range [F−(�), F+(�)].

APPENDIX B: THE DEPENDENCE OF THE BISTABLE
AREA OF THE mLLE ON THE INSTANTANEOUS

INTRACAVITY POWER

To investigate how the instantaneous intracavity power
influences the bistable range of the SA-based fiber Kerr res-
onator, we show in Fig. 7 the stability chart of the mLLE in the
panel (� − F ) for different instantaneous intracavity power
when ρ �= 1. The SA parameters are αhalf = 0.117, L0 = 0.08,
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and Psat = 10 W. As stated in Appendix A, the fast-time-
dependent characteristic of the SA is ignored for simplicity,
and the term P = |E (z, τ )|2 is assumed to be a constant that
is varying accordingly. The normalized detuning � is varying
from 0 to 20, and the normalized pump power F is in the range
from 0 to 20. The area within the triangular green dash-dotted
lines is the bistable area corresponding to a case of P = 11.8,
and the area within the triangular pink solid lines is for the
case of P = 23.6. The yellow area (punctate area) outside of
the [F−, F+] range corresponds to the unstable solutions. It
can be seen that the saturation degree of the SA has a positive
impact on the bistable area. For a larger value P of 23.6,
the bistable range is wider, while when P decreases to 11.8,
the bistable range shrinks. Note that the fast time-dependent
property of the SA has been ignored in the aforementioned
analysis, hence the colored region in Fig. 7 is not strictly the
parameter space where the bistable solutions exist. Detailed
numerical simulations based on a lumped model need to be
conducted. However, studying the dependence of the bistable
range of the system on the parameter of P reveals the positive
relationship between the instantaneous power and the soliton
existence range, which guides the selection of parameters in
numerical simulations.

APPENDIX C: COMPARISON OF NUMERICAL
SIMULATION RESULTS OF THE IKEDA MAP FOR

FIBER KERR RESONATORS WITH/WITHOUT AN SA

We admit that the insertion of the SA in fiber Kerr res-
onators reduces the existence range of the DKS solutions
when compared with a fiber Kerr resonator without an SA. A
comparison of numerical simulation results of the Ikeda map
for fiber Kerr resonators with and without an SA is shown in
Fig. 8. The area between the black dotted line is the parameter
space on the (�, P) plane for DKSs in the case of fiber Kerr
resonator with an SA, while the area within the two white
dashed lines is for the case of a pure fiber Kerr resonator

D
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 (

W
)

Without SA
With SA

Cavity detuning (  rad) 

FIG. 8. The map of different solutions in a two-dimensional
plane (the detuning and pump power) for a fiber Kerr resonator with
and without an SA. The modulation depth of the SA is 0.08 and the
saturation power is 10 W.

without an SA. The color represents the intensity of the in-
tracavity field. Consequently, different colors correspond to
different solutions. For instance, the red area represents the
unstable MI pattern. The uniform light blue corresponds to
the breathing DKSs and stable DKS solutions, while the dark
blue is the CW solution. This comparison demonstrates that
the SA narrows down the parameter space for the DKS to
survive in the fiber Kerr resonators due to the additional loss
introduced by the SA. However, we remind ourselves that in
this article we focus on exploring the existence of DKSs in
SA-based fiber Kerr resonators, paving the way to construct
such systems in practice, which, on the one hand, enables
the spontaneous generation and stable operation of DKSs in
fiber Kerr resonators without external perturbations, and on
the other hand demonstrates the feasibility of SA-based fiber
Kerr resonators operating in dispersion-managed regimes.
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