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Force sensing with an optomechanical system at room temperature
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We present an alternative approach to force sensing with optomechanical systems. The operation is based on
a nonlinear dynamical mechanism, which locks the mechanical oscillation and the associated cavity field pattern
of a system when two external drive tones satisfy a frequency match condition. Under a weak force that adds
a slight detuning to the external driving fields, the cavity field will undergo a transition between two locked
patterns while the locked mechanical oscillation is well preserved, thus having the small modifications to its
sidebands. The force sensing is realized by detecting the intensity changes of the cavity field sidebands in such
process. With the currently available optomechanical systems, the sensitivity of force detection can reach the
level of attonewton and can be further improved with improved system parameters and longer detection time.
One important feature of the applied dynamical scenario is that thermal noise insignificantly affects the cavity
field sidebands of the locked states, so that the scheme can work well even at room temperature. This method is
hopeful to reduce the difficulty in the practical applications of force sensing.
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I. INTRODUCTION

How to measure a physical quality as accurately as possible
is highly important to both fundamental research and practical
applications. Nowadays sensing is a widely applied technol-
ogy in almost every aspect of daily life, including mass,
size, force, acceleration, and so on [1,2]. Thanks to its tiny
mass and ultrahigh mechanical frequency, a nanomechanical
resonator is usually used for mass sensing with ultrahigh res-
olution. For instance, yoctogram resolution can be achieved
with the GHz nanomechanical resonator [3]. For size sensing,
the whispering gallery mode microcavity is regarded as a
good candidate since it has an ultrahigh quality factor and
small mode volume [4,5]. Dozens of nm resolution can be
achieved with mode shift [6], mode splitting [7], or mode
broadening [8].

In this work, we will study a method for force sens-
ing, which aims to detect an extremely low magnitude
of static force. Force sensing used to be performed with
hybrid systems. So far, various experiments [9–12] and the-
oretical schemes [13–28] were reported to realize the force
sensing to different levels. In 2012, Gavartin et al. combined
a nanomechanical beam with a microdisk cavity in an in-
tegrated hybrid system to achieve a sensitivity 74 aN/

√
Hz

under room temperature by the comparison of averaged probe
phase fluctuations with and without external force [9]. If the
average measurement time is as long as 35 seconds, the sen-
sitivity of the setup can be increased to 15 aN/

√
Hz. Later, in

2013, Moser et al. used a carbon nanotube as the mechanical

*bing.he@umayor.cl
†qlin@hqu.edu.cn

resonator and realized the sensitivity of 12 zN/
√

Hz at the
temperature of 1.2 K by the detection of the mechanical mo-
tion of the carbon nanotube induced by the resonant periodic
force [10]. Afterward, in 2014, Schreppler et al. injected the
ultracold atom gas into an optical F -P cavity. When the exter-
nal force resonated with the oscillation frequency of the cloud,
the sensitivity 42 ± 13 yN/

√
Hz near the standard quantum

limit (SQL) was realized by the heterodyne detection of phase
fluctuations of probe light [11]. Later, in 2016, Buchmann
et al. suggested realizing force sensing beyond the SQL by the
detection of complex correlations between the amplitude and
phase fluctuations through so-called synodyne detection in an
optomechanical system (OMS) [18]. More recently, Mason
et al. inserted a thin Si3N4 membrane into the F -P cavity
and achieved the sensitivity of 11.2 aN/

√
Hz, 1.5 dB below

the SQL by exploiting strong quantum correlations through
the measurement of a rotated quadrature at the temperature of
10 K [12].

Nonetheless, most of the experiments or theoretical
schemes demand complicated hybrid structures and na
ultra-low temperature environment, thus increasing the imple-
mentation difficulty and limiting their application feasibility.
Here, we present a different approach of force sensing based
on a nonlinear mechanism of optomechanics. Our scheme is
simple, without a complicated structure, and can work well
at room temperature. The high sensitivity to the aN-level is
possible with the currently available experimental conditions
and it can be improved further with a longer detection time or
better system parameters.

The rest of the paper is organized as follows. In Sec. II,
we give a detailed description of the dynamics of the con-
cerned system. After that, in Sec. III, the mechanism of our
weak force measurement is presented in detail. The different
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FIG. 1. The setup of the force sensor. A laser beam with two fre-
quency components of different frequencies drives an optical cavity
with a movable mirror. When an external constant force is applied to
this mirror, the size of the cavity will be slightly changed. Through
the detection of the changed amplitude of the cavity sidebands, this
external force can be measured. Here the real displacement is related
to the dimensionless displacement Xm as xm(t ) = √

h̄/(mωm )Xm(t ),
where m is the effective mass of the moving mirror.

features in the performance of the force detection are il-
lustrated in Sec. IV. Finally, we discuss the experimental
feasibility in Sec. V and conclude the work in Sec. VI.

II. SETUP AND ITS DYNAMICS

We consider a typical optomechanical system driven by a
two-tone laser field with its frequency components ωL1 and
ωL2 , which correspond to the two detunings �1 = ω0

c − ωL1

and �2 = ω0
c − ωL2 where ω0

c is the resonant cavity frequency
with a fixed end mirror; see Fig. 1. The system dynamical
equations in the rotation frame with respect to ω0

c can be
expressed in terms of the dimensionless cavity quadratures Xc,
Pc, together with the dimensionless mechanical displacement
Xm, momentum Pm, as follows:

Ẋc = −κXc − gmXmPc +
2∑

i=1

√
2[Ei + √

κξi(t )] cos(�it ),

Ṗc = −κPc + gmXmXc +
2∑

i=1

√
2[Ei + √

κξi(t )] sin(�it ),

Ẋm = ωmPm,

Ṗm = −ωmXm − γmPm + gm
(
X 2

c + P2
c

)
/2 − fex

+
√

2γmξm(t ), (1)

where κ and γm are the damping rate of the cavity and me-
chanical modes, respectively. The cavity noise component√

κξ1(2)(t ) comes from the fluctuation of drive amplitude
E1(2), and it can be well suppressed with the locked laser
power. Meanwhile, the mechanical noise

√
2γmξm(t ) comes

from the coupling of the mechanical resonator to the ther-
mal environment, and is determined by the correlation
〈ξm(t )ξm(t ′)〉 = nthδ(t − t ′) with the thermal occupation nth =
1/(eh̄ωm/kBT − 1) [29] (the connection with the more gen-
eral correlation for the thermal noise can be seen, e.g., in
Ref. [30]). All of the nonlinear terms −gmXmPc, gmXmXc

and gm(X 2
c + P2

c )/2 in the equations, where the single
photon coupling strength is gm, arise from the interaction
between the cavity and mechanical modes in the form of radi-

ation pressure. Moreover, the force term fex is proportional to
the unknown one Fex applied to the mechanical resonator.

Without loss of generality, the intensities of two drive fields
can be set to be the same (E1 = E2). The different drive
intensities will not bring any obvious difference in our con-
cerned approach. When a weak constant force Fex is applied
to the movable mirror, the cavity length L will be changed
accordingly. Supposed that the cavity length is reduced from
L to L − δL, the corresponding resonance frequency of the
cavity mode will be accordingly modified to

ω0
c = k

πc

L

→ ωc = kπc

L − δL

∼ ω0
c (1 + δL/L), (2)

where k is the integer mode number. With such a relative shift
of the cavity frequency δF /ω0

c = δL/L, the detunings of the
two driving fields will undergo the change

�1 → �1 + δF ,

�2 → �2 + δF . (3)

These shifts change the quadratures Xc and Pc in Eq. (1),
which could be measured directly as proposed previously
[31], but we will make use of the corresponding change in
the cavity-field spectrum amplitudes for the measurements.

III. MECHANISM FOR FORCE SENSING

We first look at the situation of a single driving field. The
radiation pressure from the driving laser gives rise to the
optomechanical interaction between the cavity and mechan-
ical modes. When the drive detuning � is away from the
red-detuned resonant point (� = ωm), the mechanical motion
enters a stable oscillation

Xm = Am cos(ωmt ) + dm, (4)

given a strong enough drive intensity [32,33]. The correspond-
ing cavity field, α(t ) = [Xc(t ) + iPc(t )]/

√
2 will have a form

Fourier series

α(t ) = eiφ(t )
∑

n

αnei(nωm+�)t , (5)

where φ(t ) = gmAm/ωm sin(ωmt ) (n is the integer). The
Fourier components αn can be found analytically as

αn = E

κ

Jn(−gmAm/ωm)

inωm/κ + 1 − i(gmdm − �)/κ
, (6)

where Jn(x) is the Bessel function of the first kind.
The peaks of the cavity field spectrum [the Fourier series

in Eq. (5)] will be shifted after an external force is applied to
have the shift δF . Such a shift δF is similar to the term gmdm in
the denominator of Eq. (6). In principle, the detection of a tiny
frequency shift of the cavity field spectrum components can
be performed by a careful measurement under the condition
of a stable driving laser frequency, which guarantees that
the small shift δF should not be indistinguishable from the
drive frequency fluctuation. This practice could be hard to
implement for a shift much less than the cavity line width κ . In
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FIG. 2. The stabilized cavity field intensity as the photon num-
ber |a|2 and the stabilized pattern of the field quadrature Xc in
the time domain. While the cavity oscillation pattern is locked un-
der the frequency match condition for two driving fields, the |a|2
for the exemplary drive amplitudes E = 106κ to E = 1.1 × 106κ

become similar. A frequency shift δF = 0.1κ induced by the external
force modifies the field spectrum to deviate the |a|2 from the original
ones. It is more obvious to see the modified quadrature Xc (in the
system rotating at the resonant cavity frequency) due to the shift
δF . The parameters are chosen as gm = 10−5κ , ωm = 10κ , which are
scaled with the field damping rate κ and Q = ωm/γm = 104.

a realistic experiment, one can detect a small frequency shift
(up to 10−3κ) based on the stabilized driving laser frequency
by the Pound-Drever-Hall (PDH) technique [34–36].

The purpose of our current work is to present an alternative
approach to measure the shift δF < κ . Figure 2 illustrates
the basic mechanism for the measurement, where an OMS is
driven by two driving fields under the frequency condition

|�2 − �1| = ωm. (7)

Under such a condition the mechanical oscillation demon-
strates particular behaviors as compared with the situations of
only one driving laser field. This difference can be understood
from the stabilized cavity field in the time domain. When
the frequencies of two laser drives well satisfy the match
condition in Eq. (7), an optomehcanical nonlinearity will be
enhanced so that the amplitude and phase of the mechanical
resonator will be fully locked, irrespective of the change of
drive amplitude E [37,38]. Meanwhile, the cavity-field pattern
(the distribution of the frequency components) will be locked
as well, but the associated amplitudes of the sidebands vary
proportionally with the drive amplitude E . This character
can be seen from the stabilized cavity intensity equivalent
to the intracavity photon number |a|2 = (X 2

c + P2
c )/2 or the

stabilized cavity-field quadrature Xc for the different E =
106κ (the red solid curve) and E = 1.1 × 106κ (the black
dash-dotted curve) in Fig. 2. As seen from the simulated
results in Fig. 2, the black dash-dotted curve and the red solid
curve are similar (proportional to each other) because they

FIG. 3. The variations of the zeroth- and first-order sideband
with the detuning induced by an external force. The system parame-
ters are the same as those in Fig. 2, and the drive amplitude is kept to
be E = 1.1 × 106κ .

have the same spectrum pattern but different amplitudes of
the frequency components. When an external force is applied,
the induced frequency shift δF changes the effective detuning
of the two drives simultaneously, such that the match condi-
tion in Eq. (7) is still satisfied. Therefore, the blue-dashed and
green-dotted curves in Fig. 2 are also similar, indicating that
the amplitude and phase of the mechanical resonator will be
still locked after a shift δF . However, such a shift of drive de-
tuning will modify the cavity field spectrum from the original
one to another, e.g., the transition from the red-solid curve to
the blue-dashed curve in Fig. 2. Such redistribution of cavity
sidebands, manifesting as the modifications of the real-time
cavity field shown in Fig. 2, can be sufficiently perceivable to
realize a measurement with high resolution.

One choice is with the real-time cavity photon number

|a(t )|2 =
∑

l

{∫
dωCl (ω) cos(ωt ) +

∫
dωDl (ω) sin(ωt )

}
,

(8)

where Cl (ω) and Dl (ω) are peaked at ω = lωm (l � 0). Under
two simultaneous driving fields, it is impossible to have an
analytical form of the above like the one in Eqs. (5) and (6),
but the Fourier components Cl and Dl can be found numeri-
cally with the evolved |a(t )|2. Figure 3 displays the changes
of two components C0 at ω = 0 and

√
C2

1 + D2
1 at ω = ωm,

which determine the pure displacement dm and the oscilla-
tion amplitude Am in Eq. (4), respectively. Due to the linear
resonance effect, the high-order sidebands of |a(t )|2 (l � 2)
have a negligible effect on the mechanical motion. The pure
displacement dm in Eq. (4), for example, is decided by three
forces, the radiation pressure proportional to the component
C0, the spring restoring force proportional to the displacement
dm itself, as well as the measured external force proportional
to δF . A relation demonstrated in Fig. 3 indicates how the
radiation pressure is lowered by the balance of these forces at
the equilibrium point (the spring force and radiation pressure
are opposite to the external force).

We here adopt another approach based on the cavity field

a(t ) = 1√
2

[Xc(t ) + iPc(t )]

= 1√
2

∑
n

{∫
dωAn(ω) cos(ωt ) + i

∫
dωBn(ω) sin(ωt )

}
.

(9)

013529-3



ZE FENG YAN, BING HE, AND QING LIN PHYSICAL REVIEW A 107, 013529 (2023)

FIG. 4. The first-order cavity field sideband under two different
detuning combinations. Here the different combinations (�1,�2)
indicate the frequencies of the two used driving fields and the side-
band at the position ω1, which is defined in Eq. (10), is measured
for both combinations. After the shift δF = 0.1κ , the sideband peak
shifts from the red solid one to the blue dashed one, associated with
a decrease of the amplitude (the green dash-dotted lines delineate
the amplitude change). The parameters are chosen to be the same as
those in Fig. 2 and the drive amplitude is set to be E = 106κ .

Each component of |a(t )|2 in Eq. (8) comes from the contribu-
tions of all terms in the above, so that the behaviors of An(ω)
and Bn(ω) are different from those of Cn(ω) and Dn(ω). Here
in Fig. 4, the two examples of the first cavity field sideband
are with �1 = 5κ,�2 = 15κ , and �1 = −5κ,�2 = −15κ ,
respectively. Though the analytical solution of the cavity field
under two driving fields is not available, the field spectrum can
be still analyzed numerically to find its components peaked
around nωm + |�1|, similar to the ones in Eq. (6). Under the
condition |�2 − �1| = ωm, the sidebands are enhanced by the
contributions from two different driving fields. When an exter-
nal force is applied to induce a frequency shift, say δF = 0.1κ ,
the sidebands are shifted accordingly as shown in Fig. 4. A
different feature from the scenarios of a single drive is that
the amplitude of a sideband will be modified together with its
frequency shift. Such amplitude changes are proportional to
the shifts δF , providing a possible way to detect the external
force.

IV. FORCE SENSING PERFORMANCE

A. Force-response relation

The first point one needs to know about the force sensing
performance is how the measured quantity varies with the
external force to be measured. To avoid possible confusion,
we adopt the following notation:

ωn = nωm + |�1|, (10)

where the integer n � 1 is the order of the sidebands for the
positions of all cavity field sidebands in Eq. (9). The corre-
sponding sideband intensity

n(n)
c (ωn) = A2

n(ωn) + B2
n(ωn), (11)

can be measured precisely through the input-output relation

aout(t ) = ain(t ) − √
κa(t ). (12)

We choose to work with the second-order sideband (n = 2)
because its intensity change is even larger. The correlation be-
tween the sideband intensity change δn(2)

c = |n(2)
c (ω2 + δF ) −

n(2)
c (ω2)| and the shift δF is shown in Fig. 5, where the linear

relation proves that a good scaling between the measured δn(2)
c

FIG. 5. The relations between the sideband intensity changes and
the induced shifts δF at different temperature. The mechanical quality
factor is fixed to be Q = 104 and the sideband intensity difference
is slightly modified by the increased temperature. The combination
of the two driving frequencies is �1 = −5κ , �2 = −15κ , while the
drive amplitude is E = 1.1 × 106κ . We here measure the sideband at
ω2 defined in Eq. (10). The fixed parameters are the same as those in
Fig. 2.

and the force that induces the δn(2)
c can be well established.

This linear relation is highly beneficial to the measurement of
unknown external forces.

B. Uncertainty in measurement

In a real experiment the measurement accuracy is limited
by the shot noise due to a statistics property. Therefore, we
define the following signal-to-noise ratio (SNR)

SNR =
∣∣n(2)

c,out(ω2; td ) − n(2)
c,out(ω2 + δF ; td )

∣∣√
n(2)

c,out(ω2; td ) +
√

n(2)
c,out(ω2 + δF ; td )

, (13)

as a figure of merit to discriminate the intensity change due to
the frequency shift δF . What is measured according to Eq. (12)
is a flux of photons proportional to κ in the unit Hz, so the
measured spectrum change n(2)

c,out(ω2; td ) is an accumulated
amount over the measurement time td . Without loss of gen-
erality we set a detection time td = 1 s.

It is clear that the drive intensity is an important sys-
tem parameter relevant to the intensity change. Taking the
currently available experimental conditions into account, we
select a range of the drive intensity from E = 5 × 105κ to
1.1 × 106κ (the drive power is within 1 W for the optical
drive frequencies). Figure 6(a) displays the relations between
the SNR and the driving field amplitude E for three dif-
ferent detuning combinations under a fixed frequency shift
δF = 5 × 10−3κ . The SNR with the two drive frequencies
whose detuning is far away from the resonant point (the red
and blue ones) is obviously larger than the one due to the
combination with one resonant drive frequency (the black
one). This is because the nonlinear interaction between the
cavity mode and the mechanical mode, which determines
the cavity-field spectrum, becomes the strongest when it is
driven at the resonant point. Since the frequency shift in-
duced by the external force is so tiny as δF = 5 × 10−3κ , the
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FIG. 6. (a) The SNR versus the drive amplitude E/κ . The fre-
quency shift is assumed to be δF = 5 × 10−3κ and the difference in
the drive amplitude between two neighboring points in the figure is
fixed to be 2 × 104κ . These results indicate the SNR for three dif-
ferent combinations (�1, �2), where |�1 − �2| = ωm. For all these
combinations we measure the sideband at the locations of ω2 defined
in Eq. (10). (b) The SNR versus the frequency shift δF /κ . The
drive amplitude is fixed to be E = 1.1 × 106κ , and the difference of
the frequency shift between two neighboring points in the figure is
δF = 10−4κ . The SNR also increases linearly with the increasing of
frequency shift (a logarithmic scale is used for the vertical axis). The
fixed parameters are the same as those in Fig. 2.

amplitude change of the second-order sideband is less obvious
under the strongest optomechanical interaction. On the other
hand, the optomechanical interaction is relatively weak at the
off-resonant point, e.g., �1 = −5κ and �2 = −15κ . Espe-
cially when the detuning is farther away from the resonant
point, e.g., �1 = −8κ and �2 = −18κ , the optomechanical
interaction will be even weaker, losing the amplitude and
phase locking for the mechanical oscillation unless the drive
amplitude E is enhanced to compensate for the weakened
cavity field. In this case, a tiny frequency shift induced by
external force (under a fixed drive amplitude E ) will bring
about more obvious modification to the cavity-field spectrum.
For the comparison between the blue-detuned combination
�1 = −5κ , �2 = −15κ and the red-detuned one �1 = 5κ ,
�2 = 15κ , the first leads to the higher intensities n(2)

c,out(ω2; td )
and n(2)

c,out(ω2 + δF ; td ) in Eq. (13) to realize a higher SNR.
To a force sensor, the range of the weak forces to be

detected is another important figure of merit. In Fig. 6(b),
we fix the drive intensity at E = 1.1 × 106κ and vary the
frequency shift from δF = 10−4κ to δF = 5 × 10−3κ by a
step 10−4κ . Over this range of the shifted detuning, the SNR
for the different drive combinations vary so dramatically that
we need to use a logarithmic scale for the illustrated SNR.
We find that high SNR can be achieved over a considerable
range of the frequency shift δF so that the force sensor can
work well to detect a wide range of weak forces.

Based on the above results, we can estimate the sensitivity
of our scheme under the currently available experimental con-
ditions. The SNR for a frequency shift δF = 5.0 × 10−3κ is

about 1.72 × 105 given the drive amplitude E = 1.1 × 106κ

and the detunings �1 = −5κ , �2 = −15κ in Fig. 6(a). The
corresponding laser power is about 157 mW with the wave-
length around λ = 1537 nm. If one regards SNR = 1 as the
detection limit, the minimum frequency shift δF,min = 2.9 ×
10−8κ can thus be discriminated under such conditions. In
practice, a cavity with its length L = 1 mm and a finesse 9.4 ×
105 (corresponding to the damping rate κ = 1 MHz), together
with a mechanical resonator with a mass m = 10−12 kg and
frequency ωm = 10 MHz, is feasible to be fabricated with the
current experimental technology [33]. Therefore, the limit of
a weak force that can be detected is

F = mω2
mδL

= mω2
m

(
L/ω0

c

)
δF,min

= 2.4 × 10−18N, (14)

i.e., at the level of attonewton. This sensitivity can be further
improved with the system parameters. For example, if we
increase the finesse by one order (9.4 × 106), the required
laser power can be reduced to be 15.7 mW and the limit of
the detected weak force can be decreased to 7.6 × 10−20N .

C. Robustness against thermal noise

In a realistic environment of nonzero temperature, the sys-
tem is coupled to the thermal environment and the associated
thermal noise can considerably influence the system dynam-
ics, especially in the measurements at the quantum level. For
this reason, most precise measurement schemes require an
ultra-low-temperature environment for their performance, as
the examples in Refs. [10–12,18]. Such a requirement limits
the applicability of those force sensing schemes.

An advantage of the dynamical scenario under two driving
fields satisfying the condition in Eq. (7) is that the mechani-
cal oscillation can be completely locked without changing it
amplitude and phase even if the drive power is varied within
a certain range [37,38]. Meanwhile, the noise perturbations
can hardly affect such a locked mechanical oscillation as well.
This feature can facilitate the performance of the force sensing
at room temperature. In the numerical calculations, we can
apply a random function generated with MATLAB to simulate
the thermal noise drive term

√
2γmξm(t ) in Eq. (1).

The thermal noise only adds small corrections to the
evolved cavity fields as shown in Fig. 7 since the contribu-
tions from the coherent pumps always dominate. However, a
detailed comparison between the noise corrections δ|a|2 due
to the thermal noise explains why the scenario of two drives
is better for a precise measurement. Compared to the δ|a|2
existing in a singly driven scenario, which is illustrated in
Fig. 7(a), the corresponding correction δ|a|2 in our proposed
doubly driven scenario can be suppressed to a very low level
as in Fig. 7(b). For our used sideband intensity in the mea-
surement, the thermal noise existing at different temperatures
only slightly modifies it; see Fig. 5.

V. EXPERIMENTAL FEASIBILITY

Previously, a different two-pump scenario was imple-
mented by detuning two drive tones from the cavity resonant
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FIG. 7. The evolved intracavity photon number |a|2 and the
corresponding correction δ|a|2 by the thermal noise at the room
temperature T = 300 K. In the left frames, the red curve is for T = 0
and the blue dashed one is for T = 300K. In (a) the system is driven
by a single field detuned at �/κ = −5, while in (b) the system
is driven by two fields with �1 = −5κ , �2 = −15κ , respectively.
The mechanical quality factor is fixed to be Q = 104 and the drive
amplitude is E = 106κ . The other fixed parameters are the same as
those in Fig. 2.

frequency ω0
c to ω0

c + ωm and ω0
c − ωm, respectively, realiz-

ing a different type of dynamical instability [39]. The basic
techniques in that experiment are applicable to the current
scheme. One flexibility to the current scheme is that only
the condition in Eq. (7) is the most essential; that is, to
keep the frequency difference between the two tones to be
as close to the mechanical frequency as possible. Despite the
different performance at the different working points as shown
in Fig. 6, the concerned dynamical behaviors can be always
realized by an adjustment of driving laser power, as long as
such a frequency difference can be maintained. The acousti-
coptic modulator (AOM) [40] or single-sideband modulator
(SSB) [41]) can be applied to adjust the drive frequencies to
approach the condition.

Certainly it is ideal to have two completely stable driving
laser frequencies to avoid the indistinguishably of the fre-
quency shift by the external force from the laser frequency
shifts themselves. It is possible to apply the PDH technique
for stabilizing laser frequencies [34–36]. Compared with the
other schemes based on PDH or other techniques mentioned
in Introduction, the effect of thermal noise can be negligible
in our approach. With regard to the feasibility with the current
experimental technology, our scheme is a workable alternative
to force sensing.

VI. SUMMARY

By an example of pumping an optomechanical system by a
two-tone field with properly matched frequencies, we present
a detailed description of an approach to weak force sensing.
Different from previous proposals, the setup works with a
nonlinear dynamical mechanism, which induces a measurable
change of the cavity-field sidebands in the presence of an
external weak force to be measured. Instead of determining
the cavity frequency shift by the external force, we realize
a detectable amplitude change in the cavity-field spectrum
by such a system manifesting a fully locked mechanical
oscillation. The cavity-field modification upon its transition
between two locked patterns associated with the locked me-
chanical oscillation provides a possible way of force sensing.
The setup is relatively simple without a more complicated
structure, but the requested sensitivity can be achieved with
a robustness against thermal perturbation. The sensitivity to
the level of attonewton is achievable with the currently avail-
able experimental conditions. These features considerably
relax the setup requirement on force sensing to a very tiny
level.
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