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We study electromagnetically induced transparency (EIT) using quantized fields in a dissipative optome-
chanical system with two mechanical oscillators coupled to each other via the Coulomb interaction. The weak
probe field is a finite bandwidth squeezed vacuum field. In the absence of the Coulomb coupling, we show
that an EIT dip is observable in the homodyne spectrum of the output field even for the squeezed vacuum field
at the single-photon level. We find that the thermal environment has a negative impact on the EIT behavior.
In the presence of the Coulomb coupling, we show that double EIT dips appear in the homodyne spectrum of the
output field. The separation between the two EIT dips can be used to measure the Coulomb coupling strength.
Compared to the case of the purely dissipative coupling, the combined dispersive and dissipative coupling can
make the EIT dip broader and the minimum value of the EIT dip smaller.

DOI: 10.1103/PhysRevA.107.013524

I. INTRODUCTION

The phenomenon of electromagnetically induced trans-
parency (EIT) was first observed in a three-level atomic
medium, in which the absorption of a weak coherent probe
field could be vanished by applying a strong-coupling field
to the atomic medium [1]. The EIT with a squeezed vacuum
probe field in an atomic medium was also demonstrated ex-
perimentally [2,3]. The EIT with a squeezed vacuum plays
an important role in storing and retrieving the squeezed
vacuum [4,5].

The EIT effect was predicted theoretically [6] and demon-
strated experimentally [7] in a dispersive optomechanical
system, in which a mechanical oscillator is coupled to an
optical field in the cavity via radiation pressure and the cavity
resonance frequency is modified by the motion of the me-
chanical oscillator. The EIT in the dispersive optomechanical
system has been applied for slow light [8], single-photon
routers [9], light storage [10], and precise measurement of
the electrical charge [11]. Later, the double EIT with two
transparency windows was observed in different three-mode
dispersive optomechanical systems, in which two mechanical
oscillators are coupled to a common cavity field via radiation
pressure [12], two coupled mechanical oscillators are coupled
to a common cavity field via radiation pressure [13], a me-
chanical oscillator is coupled to a cavity field via radiation
pressure and to a qubit via the Jaynes-Cummings interaction
[14], and one mechanical oscillator is coupled to a cavity field
via radiation pressure and to the other mechanical oscillator
via the Coulomb interaction [15]. For the EIT with a weak
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coherent probe field [6,7,12–15], the influence of the thermal
noise of the mechanical oscillator on the EIT has not been
considered. It has been shown that the EIT with quantized
fields can be observed in a dispersive optomechanical system
even in the presence of the mechanical thermal noise [16].
Moreover, the double EIT with quantized fields was observed
in a dispersive optomechanical system where two mechanical
oscillators are coupled via the Coulomb interaction and it
was found that the double EIT can be used to measure the
temperature of the environment [17].

The other kind of optomechanical coupling is the dissi-
pative optomechanical coupling, which is characterized by
the dependence of the cavity decay rate on the displacement
of the mechanical oscillator [18]. The dissipative optome-
chanical system has recently attracted considerable attention
as it was predicted that the dissipative optomechanical cou-
pling offers the unique advantage of allowing the cooling of
the mechanical oscillator in the unresolved-sideband regime
[18–22]. Experimentally, the combination of the dispersive
and dissipative coupling can cool a mechanical oscillator from
room temperature to 126 mK [23] and the purely dissipative
coupling can cool a mechanical oscillator from room temper-
ature to 1.8 K [24]. Moreover, the dissipative optomechanical
coupling has been realized in a number of optomechanical
setups, such as a microdisk coupled to an oscillating waveg-
uide [25], a Michelson-Sagnac interferometer with a movable
membrane [23], a freestanding optical waveguide coupled to
a whispering-gallery mode [24], a split-beam nanocavity [26],
and a freestanding carbon nanotube coupled to an optical
cavity [27]. In such a system, a variety of nonlinear phenom-
ena have been explored, including high-precision detection
[26,28–31], quadrature squeezed light [32–34], second-order
correlation of the output light [33], quadrature squeezing
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of the mechanical oscillator [35–37], normal mode splitting
[38,39], and the EIT effect [39]. In Ref. [39] it was shown
that the EIT behavior with a weak coherent probe field in
the dissipative optomechanical system is similar to the case
of dispersive optomechanical coupling.

In this paper we investigate EIT with quantized fields in
a dissipative optomechanical system with two mechanical
oscillators which are mutually coupled via the Coulomb in-
teraction. When the Coulomb coupling is absent, an EIT dip
is observed at the line center of the homodyne spectrum of
the output field by applying a strong-coupling field. We find
that the temperature of the environment is detrimental to the
EIT behavior. When the Coulomb coupling is present, two
symmetric EIT dips are observed in the homodyne spectrum
of the output field in the presence of a strong-coupling field.
The spacing between the two EIT dips can be used to measure
the Coulomb coupling strength. Compared to the purely dissi-
pative coupling case, we show that the EIT dip becomes wider
and its minimum value becomes smaller under the combined
effects of dispersive and dissipative coupling.

The paper is structured as follows. In Sec. II the studied
model is introduced and the equations of motion of the system
operators are derived and solved in the steady state. In Sec. III
the measurement of the output field is described and the an-
alytical expression for the homodyne spectrum of the output
field is given. In Sec. IV we discuss the homodyne spectrum
of the output field in the absence of Coulomb coupling in
the purely dissipative optomechanical system. In Sec. V we
analyze the homodyne spectrum of the output field in the
presence of Coulomb coupling in the purely dissipative op-
tomechanical system. In Sec. VI we show the influence of the
combined dispersive and dissipative optomechanical coupling
on the EIT behavior in the homodyne spectrum of the output
field in the absence and presence of the Coulomb coupling. In
Sec. VII the main results of this work are summarized.

II. MODEL

The model to be considered is an optomechanical
Michelson-Sagnac interferometer [23] with two mechanical
oscillators (MO1 and MO2) separated by a distance r0, as
shown in Fig. 1. One mechanical oscillators MO1 is placed
in the optical cavity and is interacting with the cavity field
driven by a strong-coupling field at frequency ωc. The other
mechanical oscillator MO2 is placed outside the cavity and
is coupled to the mechanical oscillator MO1 through the
Coulomb interaction [15,17]. The mechanical oscillator MO1

is partially transmitting. The two mechanical oscillators are
approximated as damped harmonic oscillators with effective
mass mj , resonance frequency ω j , and damping constant γ j

( j = 1, 2). Their displacement and momentum operators are
denoted by q1 and q2 and by p1 and p2, respectively. It
has been demonstrated experimentally that the dispersive and
dissipative couplings can take place between the cavity field
and the mechanical oscillator MO1 [23]. Thereby the cavity
resonance frequency and the cavity decay rate can be changed
by the motion of the mechanical oscillator MO1, denoted
by ω0(q1) and κ (q1), respectively. The Hamiltonian of the
coupled system in a frame rotating at the coupling frequency
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FIG. 1. Sketch of the Michelson-Sagnac interferometer formed
by three fixed perfect reflecting mirrors (M1, M2, and M3) and a fixed
beam splitter (BS). The mechanical oscillator MO1 is placed at the
middle point between two mirrors M2 and M3. The two mechanical
oscillators MO1 and MO2 are coupled via the Coulomb interaction,
and the equilibrium distance between them is r0. A strong-coupling
field with amplitude εc and a quantized field cin are sent into the
cavity. The output field from the cavity is cout. Here q1 and q2 are the
displacements of the two mechanical oscillators MO1 and MO2 from
their respective equilibrium positions.

ωc is given by

H = h̄[ω0(q1) − ωc]c†c + 1

2

(
m1ω

2
1q2

1 + p2
1

m1

)

+ 1

2

(
m2ω

2
2q2

2 + p2
2

m2

)
+ H12

+ ih̄
√

2κ (q1)[c†(εc + cin ) − c(εc + c†
in )], (1)

where the first term is the energy of the cavity field, c (c†) is
the annihilation (creation) operator of the cavity field satisfy-
ing the Bose commutation relation [c, c†] = 1, the second and
third terms are the energies of the two mechanical oscillators
MO1 and MO2, respectively, the fourth term H12 represents
the interaction energy between the two mechanical oscillators
due to the Coulomb coupling, the last term describes the
interactions of the cavity field with the coupling field and the
quantum field cin entering the beam splitter, and the amplitude

εc of the coupling field can be calculated as εc =
√

℘

h̄ωc
, with

℘ the power of the coupling field. The incident quantized field
cin has a center frequency of ωp = ωc + ω1 and a finite band-
width of �, which can be produced by a degenerate parametric
amplifier [40]. The quantized field cin has vanishing mean
value 〈cin〉 = 0 and the frequency correlation functions [40]

〈cin(ω)cin(�)〉 = 2π
M�2

�2 + (ω − ω1)2
δ(ω + � − 2ω1),

〈cin(ω)c†
in(−�)〉 = 2π

(
N�2

�2 + (ω − ω1)2
+ 1

)
δ(ω + �),

(2)
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where N is the mean number of photons in the squeezed
vacuum field and M is the correlation between the two pho-
tons in the squeezed vacuum field. The parameters N and M
satisfy the inequality |M| � √

N (N + 1) [40–42]. For a pure
squeezed vacuum field, the equality holds [40–42]. In this
case, N = sinh2 r and M = |M|eiφ = √

N (N + 1)eiφ , where
r is the squeezing parameter and φ is the squeezing phase.
The antinormally ordered correlation function has a broad-
band contribution coming from the incident vacuum noise.
When M = 0, Eq. (2) describes a thermal field with the mean
photon number N�2

�2+(ω−ω1 )2 around ω = ω1, which is phase
independent [41]. It has been shown that injecting a squeezed
vacuum light into an optomechanical system can generate the
squeezing of the mechanical oscillator [35,42] and enhance
the sideband cooling of the mechanical oscillator [43].

It is assumed that the electrodes on the two mechanical
oscillators MO1 and MO2 are charged by the bias gate volt-
ages U1 and −U2, respectively. Thus the charges carried by
the electrodes on the two mechanical oscillators MO1 and
MO2 are C1U1 and −C2U2, respectively, where C1 and C2

are the capacitances of the bias gates on the two mechanical
oscillators MO1 and MO2, respectively. Hence the interaction
energy H12 is given by

H12 = −C1U1C2U2

4πε0|r0 + q1 − q2| , (3)

where ε0 is the permittivity of free space. When the displace-
ments q1 and q2 of the two mechanical oscillators from their
respective equilibrium positions are much smaller than the
distance r0, the interaction energy H12 is approximated to
second order in q1−q2

r0
, which yields

H12 ≈ −C1U1C2U2

4πε0r0

(
1 − q1 − q2

r0
+ q2

1

r2
0

+ q2
2

r2
0

− 2q1q2

r2
0

)
,

(4)

where the first term is constant and does not affect the dy-
namics of the two mechanical oscillators; the second term is
a linear term, which can be absorbed into the definition of the
equilibrium positions of the two mechanical oscillators; the
term proportional to q2

1 (q2
2) results in a shift in the mechanical

frequency, which is much smaller than the bare mechanical
frequency ω1 (ω2) and thus can be neglected; and the term
proportional to q1q2 represents the coupling between the two
mechanical oscillators. Thus the interaction energy H12 is
given by

H12 = h̄λ0q1q2, (5)

where λ0 = C1U1C2U2

2π h̄ε0r3
0

is the Coulomb coupling strength
[15,17,44,45] and can be adjusted by changing the charges
carried by the two mechanical oscillators.

For a small displacement q1 of the mechanical oscillator
MO1, the cavity resonance frequency ω0(q1) and the cavity
decay rate κ (q1) can be approximated to first order in q1

[23,25],
ω0(q1) ≈ ω0 + χ0q1,

(6)
κ (q1) ≈ κ + g0q1,

where ω0 and κ are the cavity resonance frequency and the
cavity decay rate for q1 = 0, respectively, and χ0 and g0

represent the dispersive and dissipative coupling strengths
between the cavity field and the mechanical oscillator MO1,
respectively. Similarly,

√
2κ (q1) can be approximated to first

order in q1,
√

2κ (q1) ≈ √
2κ (1 + g0

2κ
q1). The dimensionless

displacement and momentum operators of the mechanical os-

cillators are represented by Qj =
√

mjω j

h̄ q j and Pj = p j√
h̄m jω j

,

with [Qj, Pk] = iδ jk ( j, k = 1, 2). The Hamiltonian of the sys-
tem becomes

H = h̄(ω0 − ωc)c†c + h̄χQ1c†c + 1

2
h̄ω1

(
Q2

1 + P2
1

)

+ 1

2
h̄ω2

(
Q2

2 + P2
2

) + h̄λQ1Q2 + ih̄
√

2κ
(

1 + g

2κ
Q1

)

× [c†(εc + cin ) − c(εc + c†
in )], (7)

where χ = χ0

√
h̄

m1ω1
, g = g0

√
h̄

m1ω1
, and λ = λ0

h̄√
m1ω1m2ω2

.

The Heisenberg equations of motion for the system opera-
tors give

Q̇1 = ω1P1,

Ṗ1 = −χc†c − ω1Q1 − i
g√
2κ

[c†(εc + cin ) − c(εc + c†
in )]

− λQ2 − γ1P1 + ξ1,

Q̇2 = ω2P2,

Ṗ2 = −ω2Q2 − λQ1 − γ2P2 + ξ2,

ċ = −[κ + gQ1 + i(ω0 − ωc + χQ1)]c

+
√

2κ

(
1 + g

2κ
Q1

)
(εc + cin ), (8)

where we have included the damping and noise terms. The
ξ1 (ξ2) is the thermal Brownian noise arising from the ther-
mal coupling of the mechanical oscillator MO1 (MO2) to
its surrounding environment; they average to zero 〈ξ j〉 = 0
( j = 1, 2) and the frequency correlation functions

〈ξ j (ω)ξk (�)〉 = 2πδ jkγ j
ω

ω j

[
1 + coth

(
h̄ω

2kBT

)]
δ(ω + �),

(9)

where kB is the Boltzmann constant and T is the temperature
of the mechanical oscillators’ environment ( j, k = 1, 2). The
steady-state solutions of Eq. (8) can be obtained by setting all
the time derivatives equal to zero, which are given by

P1s = 0,

Q1s = 1

ω1

(
−χ |cs|2 + i

g√
2κ

(cs − c∗
s )εc − λQ2s

)
,

P2s = 0,

Q2s = − λ

ω2
Q1s,

cs = μεc

κ + gQ1s + i�
, (10)

where � = ω0 − ωc + χQ1s is the effective cavity detuning,
including the frequency shift induced by the dispersive op-
tomechanical coupling, and μ = √

2κ (1 + g
2κ

Q1s). The Q1s
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FIG. 2. Sketch of the homodyne measurement of the output field.
The output field c̃out (t ) and a strong local oscillator cLO(t ) are com-
bined through a lossless 50:50 beam splitter, where c̃out (t ) is defined
as the sum of the output field cout (t ) from the cavity and the inci-
dent quantized field cin (t ). Here PD denotes photodetector and SA
spectrum analyzer.

and Q2s are the steady-state displacements of the two me-
chanical oscillators MO1 and MO2, respectively, and cs is
the steady-state amplitude of the cavity field. Note that Q1s

not only depends on cs due to the dispersive and dissipative
optomechanical couplings between the cavity field and the
mechanical oscillator MO1, but also depends on Q2s due to the
Coulomb coupling between the two mechanical oscillators,
Q2s is dependent on Q1s due to the Coulomb coupling between
the two mechanical oscillators, and cs is dependent on Q1s due
to the dissipative optomechanical coupling between the cavity
field and the mechanical oscillator MO1.

III. THE OUTPUT FIELD AND ITS MEASUREMENT

The optical field exiting the cavity has many frequency
components, whose frequencies in the original frame are ωc ±
nω1 (n is integer). The incident quantized field is centered
around ωp = ωc + ω1; thus we are interested in the compo-
nent of the output field at the probe frequency ωp. In order to
detect the component of the output field at frequency ωp, we
consider a homodyne measurement scheme. The output field
c̃out (t ) is combined with an intense local oscillator cLO(t ) at
frequency ωp on a 50:50 beam splitter, as indicated in Fig. 2.
In a rotating frame at the frequency ωc of the coupling field,
cLO(t ) = cLOe−iδ0t , where δ0 = ωp − ωc. The intensities of
the two output fields of the beam splitter are measured by the
two photodetectors, respectively. Then the difference between
the two photocurrents of the two photodetectors is fed into the
spectrum analyzer. When cLO is real, the homodyne spectrum
X (ω) of the output field provided by the spectrum analyzer is
found to be

〈[c∗
LO(t )c̃out (t ) + c.c.][c∗

LO(t ′)c̃out (t
′) + c.c.]〉

= c2
LO

2π

∫
dω e−iω(t−t ′ )X (ω). (11)

In order to investigate the EIT phenomenon in the homo-
dyne spectrum X (ω) of the output field, we need to find the
fluctuation in the output field. The steady-state mean value of
the output field makes no contribution to the homodyne spec-
trum X (ω) because it is at the frequency ωc of the coupling
field. For a strong-coupling field, the intracavity photon num-
ber |cs|2 is large, satisfying |cs|2 � 1. Thus it is reasonable
to write the system operators in Eq. (8) as Qj = Qjs + δQj ,
Pj = Pjs + δPj , ( j = 1, 2), and c = cs + δc, where the fluc-
tuations δQj , δPj , and δc are much smaller compared to
the corresponding steady-state mean values Qjs, Pjs, and cs,
respectively. Keeping the first order in the fluctuations, we
obtain the quantum Langevin equations for the fluctuations

δQ̇1 = ω1δP1,

δṖ1 = β∗δc + βδc† − ω1δQ1 − λδQ2 − γ1δP1

+u∗cin + uc†
in + ξ1,

δQ̇2 = ω2δP2,

δṖ2 = −ω2δQ2 − λδQ1 − γ2δP2 + ξ2,

δċ = −(κ + gQ1s + i�)δc + αδQ1 + μcin, (12)

where α = g( εc√
2κ

− cs) − iχcs, β = −(χcs + i g√
2κ

εc), and

u = i g√
2κ

cs. Note that Eq. (12) is linear in the fluctuations. It
can be solved by taking the Fourier transform to the frequency
domain. We can find the displacement fluctuation δQ1(ω) of
the mechanical oscillator MO1 and the fluctuation δc(ω) of
the cavity field. The output field from the cavity is related
to the cavity field via the input-output formalism cout (t ) =√

2κ (q1)c(t ) − cin(t ) [46]; thus the fluctuation of the out-
put field is found to be δcout (ω) = μδc(ω) + gcs√

2κ
δQ1(ω) −

cin(ω). In order to study the absorption of the quantized probe
field by the system, we define the output field as c̃out (t ) =
cout (t ) + cin(t ) and obtain the fluctuation of the output field

δc̃out (ω) = E (ω)cin(ω) + F (ω)c†
in(−ω) + V1(ω)ξ1(ω)

+V2(ω)ξ2(ω), (13)

where

E (ω) = gcs√
2κ

A1(ω) + μB1(ω),

F (ω) = gcs√
2κ

A2(ω) + μB2(ω),

V1(ω) = gcs√
2κ

A3(ω) + μB3(ω),

V2(ω) = gcs√
2κ

A4(ω) + μB4(ω), (14)

A1(ω) = 1
d (ω)ω1R2(ω)K∗(−ω)[β∗μ + K (ω)u∗], A2(ω) =

1
d (ω)ω1R2(ω)K (ω)[βμ + K∗(−ω)u], A3(ω) = 1

d (ω)ω1R2(ω)

K (ω)K∗(−ω), A4(ω) = − 1
d (ω)λω1ω2K (ω)K∗(−ω), B1(ω) =

1
K (ω) [αA1(ω) + μ], B2(ω) = 1

K (ω)αA2(ω), B3(ω) = 1
K (ω)

αA3(ω), B4(ω) = 1
K (ω)αA4(ω), d (ω) = R2(ω)[R1(ω)K (ω)

K∗(−ω) − ω1β
∗K∗(−ω)α − ω1βK (ω)α∗] − λ2ω1ω2K (ω)

K∗(−ω), R1(ω) = ω2
1 − ω2 − iγ1ω, R2(ω) = ω2

2 − ω2 −
iγ2ω, and K (ω) = κ + gQ1s + i(� − ω). In Eq. (13) the first
two terms are from the incident quantized field, in which the
first term is at the probe frequency ωp and the second term is
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at the Stokes frequency 2ωc − ωp generated by the interaction
between the coupling field and the mechanical oscillator MO1

[16], and the last two terms are from the thermal noises of the
two mechanical oscillators.

Using the correlation functions of the incident quantized
field cin(ω) and the thermal noises ξ j (ω) ( j = 1, 2) and
ignoring the fast oscillating terms (e±2iω1t ), we obtain the
homodyne spectrum X (ω) of the output field

X (ω) = E (ω + ω1)E (−ω + ω1)
M�2

�2 + ω2
+ |E (ω + ω1)|2 N�2

�2 + ω2
+ E∗(−ω + ω1)E∗(ω + ω1)

M∗�2

�2 + ω2

+ |E (−ω + ω1)|2 N�2

�2 + ω2
+ |E (ω + ω1)|2 + |F (−ω + ω1)|2 + |V1(ω + ω1)|2γ1

ω + ω1

ω1

[
1 + coth

(
h̄(ω + ω1)

2kBT

)]

+ |V1(−ω + ω1)|2γ1
ω − ω1

ω1

[
1 + coth

(
h̄(ω − ω1)

2kBT

)]
+ |V2(ω + ω1)|2γ2

ω + ω1

ω2

[
1 + coth

(
h̄(ω + ω1)

2kBT

)]

+ |V2(−ω + ω1)|2γ2
ω − ω1

ω2

[
1 + coth

(
h̄(ω − ω1)

2kBT

)]
, (15)

where the first four terms with coefficient N or M are the
contributions of the incident quantized field, the next two
terms without coefficients N and M are the contributions
of the incident vacuum noise, and the last four terms are
the contributions of the thermal noises of the two mechan-
ical oscillators. In the following numerical calculations, we
use the parameters which are similar to those in the first
experiment realizing the cooling of a mechanical oscillator
through the combined dissipative and dispersive optomechan-
ical coupling [23]: The wavelength of the coupling field
λc = 2πc

ωc
= 1064 nm, the effective masses of the mechani-

cal oscillators m1 = m2 = 80 ng, the resonance frequencies
of the mechanical oscillators ω1 = ω2 = ωm = 2π×136 kHz,
the quality factors of the mechanical oscillators Q′

1 = Q′
2 =

5.8×105, and the damping rates of the mechanical oscilla-
tors γ1 = ω1/Q′

1 = γ2 = ω2/Q′
2 = 2π×0.23 Hz. The cavity

decay rate is κ = 0.05ω1 	 ω1; thus the system operates in
the resolved-sideband regime. Moreover, the linewidth of the
incident quantized field is � = 2κ and the coupling field is
tuned to the red mechanical sideband; thus the effective cavity
detuning is � = ω1. The other parameters are chosen appro-
priately so that the system is working in the stable regime.

IV. EIT IN THE HOMODYNE SPECTRUM X (ω) IN THE
ABSENCE OF COULOMB COUPLING IN THE PURELY

DISSIPATIVE OPTOMECHANICAL SYSTEM

If the position of the mechanical oscillator MO1 and
the reflectivity of the beam splitter in the optomechanical
Michelson-Sagnac interferometer are chosen appropriately,
only the dissipative optomechanical coupling exists in this
system [19]. In this section we show how the power ℘ of
the coupling field, the parameters N and M of the incident
quantized field, and the temperature T of the environment
affect the homodyne spectrum X (ω) of the output field in
the absence of the Coulomb coupling between the two me-
chanical oscillators in the purely dissipative optomechanical
system. We choose the dissipative optomechanical coupling
rate g = −2π×0.1 Hz [19,23]. Without the Coulomb cou-
pling λ = 0, when the power of the coupling field is ℘=
20 μW, the steady-state displacement q1s of the mechanical

oscillator MO1 is found to be about −2.285×10−13 m, which
is very small, and thus the approximation of κ (q1) in Eq. (6)
is reasonable.

We first evaluate the homodyne spectrum X (ω) at ω = 0,
at which the EIT is expected in the presence of the coupling
field. For a pure squeezed vacuum field with the squeezing
phase φ = 0 and large values of N , N ≈ M, we obtain

X (0) ≈ N[E (ω1) + E∗(ω1)]2 + |E (ω1)|2 + |F (ω1)|2

+ 2|V1(ω1)|2γ1 coth

(
h̄ω1

2kBT

)
. (16)

We assume that the power of the coupling field is ℘= 20 μW
and the temperature of the environment is T = 1 mK. For
N = 10 and M = √

N (N + 1) ≈ 10, in Eq. (16), the first term
N[E (ω1) + E∗(ω1)]2 coming from the squeezed vacuum field
is about 5.4×10−6, which is close to 0, the sum of the next
two terms arising from the incident vacuum noise is about
0.04, and the last term originating from the thermal noise
of the mechanical oscillator MO1 is about 0.16. In princi-
ple, the contribution of the squeezed vacuum field can be
obtained by doing the experiment in the presence and ab-
sence of the squeezed vacuum field and by subtracting the
results, i.e., X (0) − X (0)|N=0. In some sense, the contribution
of the squeezed vacuum field indicates perfect transparency
at ω = 0. For N = 10 and M = 0, the incident quantized
field is phase independent. In this case, X (0) = 2N |E (ω1)|2 +
|E (ω1)|2 + |F (ω1)|2 + 2|V1(ω1)|2γ1 coth( h̄ω1

2kBT ). In the ex-
pression of X (0), the first term 2N |E (ω1)|2 coming from the
incident quantized field is about 0.46 by using the above pa-
rameters. Thus the contribution of the incident quantized field
does not exhibit perfect transparency at ω = 0. For N = 5 and
10, the squeezing parameters of the squeezed vacuum field are
found to be r ≈ 1.54 and 1.87, respectively, and the degrees of
squeezing of the squeezed vacuum field are −10 log10 e−2r ≈
13.4 and 16.2 dB, respectively. Currently, 15-dB squeezed
vacuum states of light can be achieved experimentally [47].
In Fig. 3 the homodyne spectrum X (ω) of the output field is
plotted as a function of the normalized frequency ω/ωm in
the absence and presence of the coupling field when λ = 0,
N = 5, M = √

N (N + 1) and 0, and T = 1 mK. We start with
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FIG. 3. Homodyne spectrum X (ω) as a function of the normal-
ized frequency ω/ωm in the absence (dotted curve) and presence of
the coupling field with different powers when λ = 0, N = 5, M =√

N (N + 1) and 0, and T = 1 mK. The long-dashed curve, solid
curve, medium-dashed curve, dash-dotted curve, short-dashed curve,
and solid curve with one circle marker are for M = √

N (N + 1) and
℘= 5, 10, 15, 20, 25, and 30 μW, respectively, and the short-dashed
curve with two circles is for M = 0 and ℘= 20 μW.

the case that the incident quantum field is phase dependent
[M = √

N (N + 1)]. Without the coupling field (℘= 0), it is
seen that the homodyne spectrum X (ω) has a Lorentzian line
profile centered at ω = 0. In the presence of the coupling
field (℘ 
= 0), the homodyne spectrum X (ω) exhibits an EIT
window centered at ω = 0. The reason is that the incident
squeezed vacuum field at frequency ωp destructively inter-
feres with the quantum anti-Stokes field at frequency ωc + ω1

built up in the cavity due to the interaction between the strong-
coupling field and the mechanical oscillator MO1. Moreover,
the EIT window becomes wider if the power℘of the coupling
field increases, which is the same as that for the EIT with a
weak coherent probe field in the dispersive optomechanical
system [6,7] and in the dissipative optomechanical system
[39]. For ℘= 5, 10, 15, 20, 25, and 30 μW, the linewidths of
the EIT dips are about 0.003ωm, 0.006ωm, 0.009ωm, 0.012ωm,
0.014ωm, and 0.017ωm, respectively, and the minimum values
of X (ω) at ω = 0 are about 0.65, 0.34, 0.23, 0.18, 0.15,
and 0.13, respectively. Hence the minimum value of X (ω) at
ω = 0 decreases with increasing power℘of the coupling field.
If the incident quantized field is phase independent (M = 0),
it is found that the minimum value of X (ω) at ω = 0 for
M = 0 and ℘= 20 μW is about 0.43, which is larger than
that for M = √

N (N + 1) and ℘= 20 μW. The linewidth
of the EIT dip is about 0.012ωm, which is almost the same
as that for M = √

N (N + 1) and ℘= 20 μW. Moreover, we
find that the depth of the EIT dip for M = 0 and ℘= 20 μW
is about half that for M = √

N (N + 1) and ℘= 20 μW. In
Fig. 4 the homodyne spectrum X (ω) of the output field is
plotted as a function of the normalized frequency ω/ωm for
different squeezing phases φ of the squeezed vacuum field
when λ = 0, N = 5, M = √

N (N + 1)eiφ , ℘= 10 μW, and
T = 1 mK. When the squeezing phase φ is increased from 0
to 5π/6, it is seen that the homodyne spectrum X (ω) exhibits
an EIT dip at ω = 0. When φ = π , the homodyne spectrum
X (ω) does not exhibit an EIT dip at ω = 0; instead, there is a
small peak at ω = 0 and the peak value of X (ω) at ω = 0 is

FIG. 4. Homodyne spectrum X (ω) as a function of the nor-
malized frequency ω/ωm for different squeezing phases φ of the
squeezed vacuum field when λ = 0, N = 5, M = √

N (N + 1)eiφ ,
℘= 10 μW, and T = 1 mK. The curves from top to bottom (dotted
curve, dash-dotted curve, short-dashed curve, medium-dashed curve,
long-dashed curve, solid curve with one circle, solid curve with two
circles, solid curve with three circles, and solid curve) correspond to
φ = 0, π/6, π/4, π/3, π/2, 2π/3, 3π/4, 5π/6, and π , respectively.

about 0.84. For φ = 0, π/6, π/4, π/3, π/2, 2π/3, 3π/4, and
5π/6, the minimum values of X (ω) at ω = 0 are about 0.34,
0.37, 0.41, 0.46, 0.59, 0.71, 0.76, and 0.81, respectively, and
the linewidths of the EIT dips are approximately equal (about
0.006ωm). Hence, increasing the squeezing phase φ from 0 to
5π/6, the minimum value of X (ω) at ω = 0 becomes larger,
the linewidth of the EIT dip almost remains unchanged, and
the depth of the EIT dip at ω = 0 becomes smaller. There-
fore, the EIT behavior is most pronounced when φ = 0. For
the remainder of the paper, we consider the cases of M =√

N (N + 1) and 0.
Figure 5 plots the homodyne spectrum X (ω) of the output

field versus the normalized frequency ω/ωm in the absence
and presence of the coupling field when λ = 0, N = 1 and
5, M = √

N (N + 1) and 0, and T = 10 and 50 mK. First we
consider the case of M = √

N (N + 1). For a given tempera-
ture T , in the presence of the coupling field with the power
℘= 20 μW, it is seen that the EIT dip still exists in the homo-
dyne spectrum X (ω) even if the mean photon number of the
squeezed vacuum field is N = 1 and 5, the minimum values of
the two EIT dips for N = 1 and 5 are almost the same (about
1.60 for T = 10 mK and about 7.91 for T = 50 mK), and the
linewidths of the two EIT dips for N = 1 and 5 are almost the
same (about 0.012ωm). Comparing the curves for℘= 20 μW,
N = 5, and M = √

N (N + 1) in Fig. 5 with those in Fig. 3,
we note that the minimum value of the EIT dip increases with
the rise of the temperature T and thus the temperature T of
the environment has a negative effect on the EIT behavior.
Additionally, the above numerical results for the EIT with
the quantized field are similar to those for the EIT with the
quantized field in the dispersive optomechanical system [16].
Next we look at the case of M = 0. For a given temperature
T , with the coupling field (℘= 20 μW), it is seen that the EIT
dip still appears in the homodyne spectrum X (ω) when N = 1
and 5 and the linewidths of the two EIT dips for N = 1 and 5
are almost equal (about 0.012ωm), which are almost the same
as those in the case of M = √

N (N + 1). When T = 10 mK,
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FIG. 5. Homodyne spectrum X (ω) as a function of the normal-
ized frequency ω/ωm for different values of the parameter N in the
absence (dotted curves) and presence (solid and dashed curves) of
the coupling field with the power ℘= 20 μW when λ = 0, M =√

N (N + 1) and 0, and (a) T = 10 mK and (b) T = 50 mK. In each
plot the upper three curves are for N = 5 and the lower three curves
are for N = 1; the solid curves are for M = √

N (N + 1) and the
dashed curves are for M = 0.

the minimum values of the two EIT dips for N = 1 and 5
are about 1.67 and 1.85, respectively. When T = 50 mK, the
minimum values of the two EIT dips for N = 1 and 5 are
about 7.97 and 8.16, respectively. Hence, for the given values
of the parameters T and N , the minimum value of the EIT
dip for M = 0 is larger than that for M = √

N (N + 1). We
compare the curves for ℘= 20 μW, N = 5, and M = 0 in
Fig. 5 with those in Fig. 3 and find that the minimum value
of the EIT dip becomes larger for a higher temperature T and
thus the temperature T of the environment is detrimental to
the EIT behavior. Note that the temperature T = 10 mK is
reachable by current dilution refrigerators [48].

In the above analysis, the center frequency of the incident
quantized field is ωp = ωc + ω1. If the incident quantized
field is centered around ωp = ωc + 2ω1, the homodyne spec-
trum X (ω) of the output field in Eq. (11) still exhibits an
EIT dip in the presence of the strong-coupling field, which
is the result of the destructive interference between the in-
cident quantized field at frequency ωp = ωc + 2ω1 and the
second-order upper sideband generation at frequency ωc +
2ω1 generated by the interaction of the strong-coupling field
with the mechanical oscillator MO1. In the resolved-sideband
limit ω1 � κ , if the strong-coupling field is red detuned
from the cavity resonance with � = ω1, the intensity of the

second-order upper sideband generation at frequency ωc +
2ω1 is much smaller than the intensity of the quantum anti-
Stokes field at frequency ωc + ω1 since the frequency ωc +
2ω1 of the second-order upper sideband generation is far away
from the cavity resonance frequency ω0 while the frequency
ωc + ω1 of the quantum anti-Stokes field is close to cavity
resonance frequency ω0. Therefore, the depth of the EIT dip
in the homodyne spectrum X (ω) for the quantized probe field
at frequency ωp = ωc + 2ω1 is much smaller than that for the
quantized probe field at frequency ωp = ωc + ω1.

V. DOUBLE EIT IN THE HOMODYNE SPECTRUM X (ω)
IN THE PRESENCE OF COULOMB COUPLING IN THE
PURELY DISSIPATIVE OPTOMECHANICAL SYSTEM

In this section we discuss the effects of the Coulomb cou-
pling strength λ, the parameters N and M of the incident
quantized field, and the temperature T of the environment on
the homodyne spectrum X (ω) of the output field in the pres-
ence of the Coulomb coupling between the two mechanical
oscillators in the purely dissipative optomechanical system.
The dissipative optomechanical coupling rate is still chosen
to be g = −2π×0.1 Hz [19,23]. When the Coulomb coupling
strength is λ = κ and the power of the coupling field is
℘= 20 μW, the steady-state displacement q1s of the mechan-
ical oscillator MO1 is about −2.291×10−13 m, which is very
small, and thus the approximation of κ (q1) in Eq. (6) is valid.
In Fig. 6 the homodyne spectrum X (ω) of the output field
is plotted as a function of the normalized frequency ω/ωm

for different Coulomb coupling strengths λ in the presence
of the coupling field when N = 5, M = √

N (N + 1) and 0,
℘= 10 and 20μW, and T = 1 mK. For the fixed values of the
parameters ℘ and M, in the absence of the Coulomb coupling
(λ = 0), there is only a single EIT dip in the homodyne spec-
trum X (ω), which is the same as that in Fig. 3. For the fixed
values of ℘ and M, in the presence of the Coulomb coupling
(λ 
= 0), it is seen that the two symmetric EIT dips appear
in the homodyne spectrum X (ω). When M = √

N (N + 1) or
0, the linewidths of the double EIT dips for λ = 0.5κ and
κ are almost identical (about 0.003ωm for ℘= 10 μW and
about 0.006ωm for ℘= 20 μW). When M = √

N (N + 1), the
minimum values of the double EIT dips for λ = 0.5κ and
κ are about 0.66 and 0.69 for ℘= 10 μW and about 0.34
and 0.34 for ℘= 20 μW. When M = 0, the minimum values
of the double EIT dips for λ = 0.5κ and κ are about 0.69
and 1.19 for ℘= 10 μW, respectively, and about 0.46 and
0.35 for ℘= 20 μW, respectively. When M = √

N (N + 1)
or 0 and ℘= 10 or 20 μW, the locations of the double EIT
dips for λ = 0.5κ and κ are at frequencies ω = ±0.0125ωm

and ±0.025ωm, respectively. Hence, with increasing Coulomb
coupling strength λ, the separation D between the two EIT
dips becomes larger. The dependence of the separation D
between the two EIT dips on the Coulomb coupling strength
λ is shown in Fig. 7. It is seen that the separation D between
the two EIT dips increases linearly with increasing Coulomb
coupling strength λ. This result is the same as that for the
double EIT with a weak coherent probe field in the disper-
sive optomechanical system with two mechanical oscillators
coupled via the Coulomb interaction [15]. Thus it is possi-
ble to determine the Coulomb coupling strength λ between

013524-7



SUMEI HUANG, LI DENG, AND AIXI CHEN PHYSICAL REVIEW A 107, 013524 (2023)

FIG. 6. Homodyne spectrum X (ω) as a function of the normal-
ized frequency ω/ωm for different Coulomb coupling strengths λ in
the presence of the coupling field when N = 5, M = √

N (N + 1)
and 0, T = 1 mK, and (a) ℘= 10 μW and (b) ℘= 20 μW. In each
plot the upper three curves are for M = √

N (N + 1) and the lower
three curves are for M = 0; the dash-dotted, solid, and dashed curves
represent λ = 0, 0.5κ , and κ , respectively.

the two mechanical oscillators from a measurement of the
separation D between the two EIT dips in the homodyne
spectrum X (ω). Note that the double EIT in the homodyne
spectrum X (ω) is induced by the Coulomb coupling between
the two mechanical oscillators with identical frequencies. This
is different from the previous work [12], where the double
EIT in a dispersive optomechanical system is generated by the
frequency difference between the two mechanical oscillators.

FIG. 7. Separation D between the two EIT dips as a function of
the Coulomb coupling strength λ/κ when N = 5, M = √

N (N + 1),
℘= 20 μW, and T = 1 mK.
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FIG. 8. (a) Energy-level diagram of the optomechanical sys-
tem. Here |n + 1, n1, n2〉 ↔ |n, n1, n2〉 is the excitation at the cavity
frequency ω0, |n, n1, n2〉 ↔ |n, n1 + 1, n2〉 is the mechanical ex-
citation at frequency ω1, the coupling field drives the transition
|n + 1, n1, n2〉 ↔ |n, n1 + 1, n2〉, and the Coulomb coupling drives
the transition |n, n1 + 1, n2〉 ↔ |n, n1, n2 + 1〉, where n, n1, and n2

are the intracavity photon number, the phonon number of the MO1,
and the phonon number of the MO2, respectively. (b) Energy-level
diagram of the optomechanical system in the dressed-state picture.
Here |n, ±〉 are the two dressed states generated by the Coulomb
coupling, whose frequency difference is λ.

The double EIT phenomenon can be explained by the
energy-level diagram of the system shown in Fig. 8. The
Coulomb coupling between the two states |n, n1 + 1, n2〉
and |n, n1, n2 + 1〉 leads to the generation of the two
dressed states |n,±〉 = 1√

2
(|n, n1 + 1, n2〉 ± |n, n1, n2 + 1〉)

[7,14,15], whose frequencies are ω̃± = ωm ± λ
2 , respectively.

In the reference frame rotating at the frequency ωm, the fre-
quencies of the two dressed states become ω± = ± λ

2 , which
are the positions of the two transparency dips shown in Fig. 6.
The two transparency windows at ω = ω± in Fig. 6 are the
results of the destructive interferences between the incident
quantized field at frequency ωp and the quantum anti-Stokes
fields at frequencies ωc + ω̃± generated by the interactions
of the coupling field at frequency ωc with the two dressed
states at frequencies ω̃±, respectively. The separation between
the two transparency dips is D = ω+ − ω− = λ. Thus the
separation D between the two transparency dips is equal to
the Coulomb coupling strength λ, which is consistent with
the numerical result shown in Fig. 7. It is worth mentioning
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FIG. 9. Homodyne spectrum X (ω) as a function of the normal-
ized frequency ω/ωm for different values of the parameter N in the
presence of the coupling field when λ = 0.5κ , M = √

N (N + 1) and
0,℘= 20 μW, and (a) T = 10 mK and (b) T = 20 mK. In each plot
the upper two curves are for N = 5 and the lower two curves are
for N = 1; the solid curves are for M = √

N (N + 1) and the dashed
curves are for M = 0.

that the maximum value of the Coulomb coupling strength
in Figs. 6 and 7 is taken to be λ = κ = 2π×6.8 kHz, which
is on the same order of magnitude as the Coulomb coupling
strength 2π×3.1 kHz between two mechanical oscillators in
the experiment in [45]. Figure 9 shows the homodyne spec-
trum X (ω) of the output field versus the normalized frequency
ω/ωm in the presence of the coupling field for λ = 0.5κ , N =
1 and 5, M = √

N (N + 1) and 0,℘= 20 μW, and T = 10 and
20 mK. Let us first consider the case of M = √

N (N + 1).
For a given temperature T , it is seen that the double EIT
dips still appear in the homodyne spectrum X (ω) for N = 1
and 5 and the double EIT dips for N = 1 and 5 almost have
the same minimum values (about 3.18 for T = 10 mK and
about 6.35 for T = 20 mK) and the same linewidths (about
0.006ωm). Comparing the curves for λ = 0.5κ , N = 5, M =√

N (N + 1), and ℘= 20 μW in Fig. 9 with those in Fig. 6,
it is found that the minimum values of the double EIT dips
increase with increasing temperature T due to the increase
of the mechanical thermal noises. Therefore, the temperature
T of the environment leads to the degradation of the double
EIT behavior. Similar results can be obtained in the case of
M = 0. For a given temperature T , when M = 0, the dou-
ble EIT dips still exist in the homodyne spectrum X (ω) for
N = 1 and 5 and the linewidths of the double EIT dips for
N = 1 and 5 are almost equal (about 0.006ωm), which are

FIG. 10. Homodyne spectrum X (ω) as a function of the normal-
ized frequency ω/ωm in the absence (dotted curve) and presence
of the coupling field with different powers when λ = 0, N = 5,
M = √

N (N + 1) and 0, and T = 1 mK. The long-dashed, solid,
medium-dashed, and dash-dotted curves are for M = √

N (N + 1)
and ℘= 5, 10, 15, and 20 μW, respectively, and the short-dashed
curve is for M = 0 and ℘= 20 μW.

almost the same as those in the case of M = √
N (N + 1).

When T = 10 mK, the minimum values of the double EIT
dips for N = 1 and 5 are about 3.22 and 3.30, respectively.
When T = 20 mK, the minimum values of the double EIT
dips for N = 1 and 5 are about 6.38 and 6.47, respectively.
Hence, for the fixed values of the parameters T and N , the
minimum values of the double EIT dips for M = 0 are larger
than those for M = √

N (N + 1). Comparing the curves for
λ = 0.5κ , N = 5, M = 0, and℘= 20 μW in Fig. 9 with those
in Fig. 6, we find that the minimum values of the double EIT
dips become larger for a higher temperature T . Hence, the
temperature T of the environment has a negative impact on
the double EIT behavior.

VI. EIT IN THE HOMODYNE SPECTRUM X (ω)
IN THE PRESENCE OF COMBINED DISPERSIVE

AND DISSIPATIVE COUPLING

In this section we investigate the effect of the combination
of dispersive and dissipative optomechanical coupling on the
EIT behavior in the homodyne spectrum X (ω) of the output
field. The dispersive and dissipative coupling strengths are
chosen to be χ = 2π×0.4

√
2 Hz and g = −2π×0.1

√
2 Hz,

respectively [23].
First we consider the case without the Coulomb coupling

between the two mechanical oscillators. When λ = 0 and
℘= 20 μW, the steady-state displacement q1s of the mechan-
ical oscillator MO1 is about −3.888×10−13 m, which is very
small, and thus the approximations of ω0(q1) and κ (q1) in
Eq. (6) are reasonable. In Fig. 10 the homodyne spectrum
X (ω) of the output field is plotted against the normalized
frequency ω/ωm in the absence and presence of the coupling
field when λ = 0, N = 5, M = √

N (N + 1) and 0, and T =
1 mK. We begin with the case of M = √

N (N + 1). Without
the coupling field (℘= 0), we observe a Lorentzian line shape
in the homodyne spectrum X (ω). With the coupling field
(℘ 
= 0), an EIT window can be observed in the homodyne
spectrum X (ω). For ℘= 5, 10, 15, and 20 μW, the linewidths
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FIG. 11. Homodyne spectrum X (ω) as a function of the normal-
ized frequency ω/ωm for different Coulomb coupling strengths λ in
the presence of the coupling field when N = 5, M = √

N (N + 1)
and 0, ℘= 10 μW, and T = 1 mK. The upper three curves are for
M = √

N (N + 1) and the lower three curves are for M = 0. The
dash-dotted, solid, and dashed curves represent λ = 0, 0.5κ , and κ ,
respectively.

of the EIT dips are about 0.011ωm, 0.021ωm, 0.029ωm, and
0.036ωm, respectively, and the minimum values of X (ω) at
ω = 0 are about 0.18, 0.10, 0.07, and 0.06, respectively. For
M = 0, it is found that the minimum value of X (ω) at ω = 0
for ℘= 20 μW is about 0.15, which is larger than that for
M = √

N (N + 1) and ℘= 20 μW. The linewidth of the EIT
dip is about 0.036ωm, which is almost the same as that for
M = √

N (N + 1) and ℘= 20 μW. Comparing these numer-
ical results with those obtained from Fig. 3, we find that
the linewidth of the EIT dip in the case of the combined
dispersive and dissipative coupling is larger than that in the
case of the purely dissipative coupling, and the minimum
value of the EIT dip at ω = 0 in the case of the combined
dispersive and dissipative coupling is less than that in the case
of the purely dissipative coupling. Therefore, compared to the
purely dissipative coupling case, the combined dispersive and
dissipative coupling can lead to an increasing linewidth of the
EIT dip and a decreasing minimum value of the EIT dip.

Next let us look at the case with the Coulomb coupling
between the two mechanical oscillators. When λ = κ and℘=
10 μW, we find that the steady-state displacement q1s of the
mechanical oscillator MO1 is about −1.945×10−13 m, which
is very small, and thus the approximations of ω0(q1) and κ (q1)
in Eq. (6) are valid. In Fig. 11 the homodyne spectrum X (ω)
of the output field is plotted versus the normalized frequency
ω/ωm for different Coulomb coupling strengths λ in the pres-
ence of the coupling field when N = 5, M = √

N (N + 1)
and 0, ℘= 10 μW, and T = 1 mK. For a given value of the
parameter M, without the Coulomb coupling (λ = 0), only
a single EIT dip is seen in the homodyne spectrum X (ω).

For a given value of M, with the Coulomb coupling (λ 
=
0), two symmetric EIT dips are observed in the homodyne
spectrum X (ω). When M = √

N (N + 1) or 0, the double EIT
dips for λ = 0.5κ and κ are located at ω = ±0.0125ωm and
±0.025ωm, respectively, and the linewidths of the double
EIT dips for λ = 0.5κ and κ are 0.0105ωm and 0.012ωm,
respectively. When M = √

N (N + 1), the minimum values
of the double EIT dips for λ = 0.5κ and κ are almost the
same (about 0.177). When M = 0, the minimum values of the
double EIT dips for λ = 0.5κ and κ are about 0.229 and 0.176,
respectively. The comparison of these results with those for
the purely dissipative coupling case shown in Fig. 6 reveals
that the combined dispersive and dissipative coupling can
result in an increase in the linewidths of the double EIT dips
and a decrease in the minimum values of the double EIT dips.

VII. CONCLUSION

We have demonstrated the propagation of a quantized
probe field in a dissipative optomechanical system with two
mechanical oscillators coupled to each other through the
Coulomb interaction. Without the Coulomb coupling, an EIT
dip appears in the homodyne spectrum of the output field, al-
lowing the possibility of using the dissipative optomechanical
system to realize quantum memory of a squeezed vacuum. We
showed that the squeezing phase of the squeezed vacuum field
has an impact on the depth of the EIT dip. We found that
the temperature of the environment leads to the degradation
of the EIT behavior. With the Coulomb coupling, two EIT
dips appear in the homodyne spectrum of the output field.
We found that the distance of the double transparency win-
dows can be used to detect the Coulomb coupling strength.
The two EIT dips show that the system becomes transparent
simultaneously at two different frequencies of the quantized
probe field; hence such a system has potential applications
in double-channel optical communication and double-channel
quantum information processing [49]. In contrast to the case
of the purely dissipative coupling, the combination of the
dispersive and dissipative coupling can make the linewidth
of the EIT dip larger and the minimum value of the EIT dip
smaller.
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