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Waveguiding driven by the Pancharatnam-Berry phase
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We theoretically and numerically investigate the properties of waveguides based on the Pancharatnam-Berry
phase, obtained by a longitudinally periodic rotation of the optic axis in a transversely twisted birefringent
medium. In this paper we study the case where the period of the longitudinal modulation is chosen so that a net
accumulation of geometric phase in propagation occurs. First, the interplay between different contributions to
the optical potential is addressed. Second, a continuous evolution of the polarization structure of the quasimodes
is observed in the numerical simulations. We explain it by a combination of plane-wave-based models and gauge
transformations. We discover that, beyond the longitudinal oscillations, the polarization of the quasimode also
varies through its cross section. The analogies with respect to charged particles moving in a magnetic field are
outlined.
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I. PANCHARATNAM-BERRY PHASE IN TWISTED
ANISOTROPIC MATERIALS

The propagation of plane waves in homogeneous
anisotropic media is well understood: their refractive index
depends on the direction of the electric field, with in general a
nonparallel condition between the electric field E and the dis-
placement vector D [1]. Mathematically, anisotropic materials
are defined by a dielectric tensor εD = diag(εx′x′ , εy′y′ , εz′z′ ),
where x′, y′, z′ identify the principal dielectric axes. In uni-
axial materials, two eigenvalues, namely, εx′x′ and εz′z′ , are
identical and named ε⊥, whereas εy′y′ = ε‖ is the dielectric
constant along the optic axis n̂ = ŷ′, see Fig. 1(a). When the
wave vector k is normal to the optic axis, the two indepen-
dent eigenmodes are the extraordinary and ordinary waves,
perceiving respectively the refractive indexes n‖ = √

ε‖ and
n⊥ = √

ε⊥. This is the configuration used in wave plates,
which control the light polarization via the phase retarda-
tion �φ = k0�nL, where �n = n‖ − n⊥ is the birefringence,
k0 is the vacuum wave number, and L is the length of the
anisotropic material along the propagation direction z. From
a mathematical point of view, the propagation of optical plane
waves in anisotropic materials can be described using the
Jones formalism, where a two-component vector fully deter-
mines the electromagnetic field [2].

A surprising new effect arises when the Jones calculus
is applied to a twisted anisotropic material, i.e., a material
whose optic axis varies across the transverse plane xy orthog-
onal to the wave vector k. If we name θ the angle between

*jisha.chandroth.pannian@uni-jena.de
†alessandro.alberucci@uni-jena.de

the optic axis and the axis y [see Fig. 1(a)], when �φ = π

(half-wave plate, HWP) a circular polarized beam accumu-
lates a transverse phase modulation given by ±2θ (x, y), the
sign depending on the handedness of the impinging photons
[3,4] [see Fig. 1(b)]. This phase term is a manifestation of
geometric phase, which is added to the dynamic phase (the
optical path in optics) occurring when the Hamiltonian of
a system is subject to a change in propagation [5]. First
introduced in a quantum-mechanical framework and in the
presence of a periodic evolution by Sir Michael Berry in 1984
[6], a specific type of geometric phase was actually discovered
by Pancharatnam 30 years earlier while studying polarized
waves [7]. In the presence of a varying polarization along the
propagation direction z, Pancharatnam found that an optical
beam acquires a phase proportional to the corresponding area
subtended by the polarization state trajectory on the Poincaré
sphere. When the polarization trace of a circularly polarized
beam propagating in a wave plate is drawn on the Poincaré
sphere, it is evident that the phase term ±2θ is a manifestation
of the mechanism described by Pancharatnam (for a more
detailed discussion see Sec. II A). Berry showed that, for a
helicity α, the application of the Pancharatnam’s idea to this
case provides [3]

�ϕgeo(ζ ) = arg

[
cos2

(
ζ

2

)
+ sin2

(
ζ

2

)
e2iα(θ2−θ1 )

]
, (1)

where �ϕgeo is the phase delay observed when two optical
beams propagate in two anisotropic material encompassing a
relative rotation θ2 − θ1, computed for the z-dependent phase
retardation ζ = k0�nz. For small relative rotations θ2 − θ1,
the geometric delay �ϕgeo follows a sinusoidal trend versus
the propagation distance, see, e.g., Fig. 1(b). This phase is
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FIG. 1. Optical propagation in a rotated anisotropic material.
(a) Definition of the local reference system x′y′z′ rotated of an angle
θ with respect to the laboratory framework xyz. In x′y′z′ the dielectric
tensor is always diagonal. (b) PBP delay between light propagation
in xyz and x′y′z′ versus the retardation ζ in the case of circularly
polarized plane waves. The rotation angle θ is 15◦.

today called the Pancharatnam-Berry phase (PBP) in honor
of its two fathers [8].

Probably due to technological constraints in manufacturing
twisted anisotropic materials, the idea of wave front manipu-
lation through the PBP has not been pursued until early in
2000, the year in which the first experimental demonstration
was accomplished using subwavelength metallic gratings with
a point-dependent orientation [9]. The idea was applied some
years later in liquid crystals, where the local optic axis can
be controlled by a proper shaping of the boundary conditions
[10–12]. The field literally exploded when wave front shaping
was demonstrated in metasurfaces, ultrathin metamaterials
featuring subwavelength structures. To observe PBP modula-
tion, the basic elements of metasurface must lack rotational
symmetry, thus mimicking the response of an anisotropic
material [13–16]. Currently, PBP is a central topic in modern
optics, setting a new frontier for the control of light propaga-
tion [8].

As stated above, the phase modulation proportional to the
local twist angle appears when the material is an infinitely
thin HWP; that is, the propagation distance is negligible with
respect to the Rayleigh distance of the beam. The interplay

between diffraction and PBP has been investigated both in
longitudinally invariant and periodically modulated twisted
geometries, where the PBP action is modeled by effective
potential(s) dependent on the local rotation angle θ [17–20].
In both cases, it has been demonstrated how the effective po-
tential acting on the photons can be tailored to realize optical
waveguides even in the absence of a gradient in the refrac-
tive index [19,20], with potential applications in topological
photonics [21]. In this paper we use the more compact name
Berry waveguide. Finally, the existence of the potential has
been demonstrated experimentally in the nonlinear regime in
liquid crystals [22].

Here we investigate theoretically and numerically the opti-
cal propagation in a twisted material, periodically modulated
with a period 
 = λ/�n to allow the accumulation of PBP in
propagation, with an approach that recalls quasiphase match-
ing in nonlinear optics. We discuss how the polarization
structure of the localized quasimode evolves as the twisting
of the material is increased. We show how higher-order ef-
fects, related with the nonadiabatic changes in the material
parameters and mainly modeled via local gauge transforma-
tions, deeply impact light propagation. We emphasize how the
point-dependent twisting of the material is responsible for a
very strong spin-orbit interaction, the latter being tunable with
the maximum rotation angle applied to the medium.

II. OPTICAL PROPAGATION IN A PERIODIC
ANISOTROPIC STRUCTURE

Neglecting the longitudinal component along the
propagation distance z, the electric field can be depicted
as a two-component vector ψ = (Ex; Ey). The approximate
field ψ then obeys the vectorial Helmholtz equation ∇2ψ +
k2

0ε · ψ = 0, where ε is determined by the local twist angle
θ (x, y, z). Given that the longitudinal component is neglected,
hereafter we restrict the dielectric tensor ε to the transverse xy
components. Specifically, it is ε = R−1(θ ) · εD · R(θ ), where
R(θ ) = (cos θ, sin θ ; − sin θ, cos θ ). The dielectric permittiv-
ity tensor can also be written as εi j = δi jε⊥ + εanin j (i, j =
x, y, z) [23], where εa = ε‖ − ε⊥ is the optical anisotropy.
Given that we allow only for rotations of the optic axis in the
plane xy, the relative dielectric permittivity tensor is

ε = ε⊥I + εa

(
sin2 θ − cos θ sin θ

− cos θ sin θ cos2 θ

)
. (2)

Incidentally, in terms of the Pauli matrices σ i (i = 1, 2, 3),
it is R(θ ) = eiσ2θ (x,y,z), where we recall that σ1 = (0, 1; 1, 0),
σ2 = (0,−i; i, 0), and σ3 = (1, 0; 0,−1). The two-component
electric field obeys

∇2ψ + k2
0

{
εI − εa

2
[σ1 sin (2θ ) + σ3 cos (2θ )]

}
· ψ = 0,

(3)
where ε = (ε⊥ + ε‖)/2. Terms proportional to the optical
anisotropy εa can be rearranged in the form of a magnetic
interaction

Hper = −εa

2
[σ1 sin (2θ ) + σ3 cos (2θ )] = 1

2
σ · Beff , (4)

where we introduced the Pauli vector σ = σ1ê1 + σ2ê2 +
σ3ê3 and where Beff = −εa[sin(2θ )ê1 + cos(2θ )ê3]
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represents an effective magnetic field [24–26], here defined
within a three-dimensional vector space spanned by unit
vectors êi (i = 1, 2, 3). Following our definition, Beff is
antiparallel to ê3 for θ = 0. Invariance to global rotation
is automatically satisfied by the scalar product in Eq. (4).
Finally, given that rotations of 180◦ do not vary the optical
properties of the anisotropic slab, the angle formed by Beff in
the e1e3 plane is double the physical angle made by the optic
axis in the transverse plane xy.

Once rewritten in the paraxial limit, Eq. (3) closely re-
calls the Pauli equation for a massive particle subject to a
homogeneous scalar potential (term proportional to ε) and to
a fictitious magnetic field having a constant amplitude but a
changing direction within the plane the plane e1e3. In optical
terms, this shows that there are no refractive index gradients in
this configuration. The effective magnetic field also explains
the fundamental role played by geometric phase in driving the
optical propagation [8,27].

For the sake of simplicity, hereafter we focus on the (1 +
1)D case setting ∂y = 0. To correctly apply the paraxial con-
ditions, we rewrite the field ψ in an inhomogeneously rotated
system ψ′ = R[θ (x, z)] · ψ, i.e., we apply a local gauge trans-
formation. A similar approach is used when describing the
Majorana spin flip occurring, for example, in magnetic traps
[28]. Given the dielectric tensor is now diagonal everywhere,
the light wave fulfills the following vectorial equation [19]:

∂2ψ′

∂z2
− iσ2 ·

(
2
∂θ

∂z

∂ψ′

∂z
+ ∂2θ

∂z2
ψ′

)
+ k2

0εD · ψ′ −
(

∂θ

∂z

)2

ψ′

= −∂2ψ′

∂x2
+

(
∂θ

∂x

)2

ψ′ + i
∂2θ

∂x2
σ2 · ψ′ + 2i

∂θ

∂x
σ2 · ∂ψ′

∂x
.

(5)

The left-hand side (LHS) of Eq. (5) models the propagation
of plane waves in a longitudinally rotated twisted material,
with no gradients along the transverse direction x. Let us
now define the 2 × 2 matrix N = (n⊥, 0; 0, n‖). The paraxial
approximation (i.e., setting ∂2

z ψ′ = 0) is correctly applied to
Eq. (5) if the transformation ψ′ = eik0Nz · u is carried out,
where u is the slowly varying vectorial envelope. Remarkably,
the rotating field transformation factors out the different phase
velocities of the ordinary and extraordinary components: for
example, a field u featuring a circular polarization conserves
its polarization in propagation.

We now specialize our treatment to periodic modulations
of the twisting angle along the propagation direction by set-
ting θ (x, z) = H (z)�(x); that is, the spatial dependence of the
twisting angle θ can be separated. The function �(x) provides
the transverse shape of the rotation angle, whereas the peri-
odic function H (z) = H (z + 
) determines the modulation
of the rotation along the propagation direction z. We further
assume 
 = λ/�n, where λ/�n is the birefringence period
providing the natural oscillation of the optical polarization in
the material (i.e., the full wave plate length). This matching
between the natural oscillation and the external modulation
allows a net accumulation of PBP in propagation [19].

As described by Eq. (5), to first approximation optical
propagation in twisted anisotropic materials has strong sim-
ilarities with the same process in inhomogeneous isotropic

FIG. 2. Polarization evolution of initially CP plane waves
mapped on the Poincaré sphere for three different longitudinal mod-
ulation of the rotation angle. The profile of θ is (a) uniform along z,
(b) a square wave, and (c) a sinusoidal modulation. The maximum
rotation angle is π/8 in all the three cases. The black curve in each
panel is the case for a uniform and vanishing angle θ .

materials: (i) a diffraction operator tending to broaden the
beam along the transverse direction; (ii) a wave front mod-
ulation proportional to the transverse gradient in the optical
properties of the material. In our case the gradient is imposed
on the twisting angle and provides a point-dependent phase
modulation associated with a change in the polarization with
z. Actually, an intuitive model can be formulated by investi-
gating the propagation of plane waves (i.e., in the absence of
diffraction) in materials that are treated as homogeneous along
the transverse direction x but change periodically along the
propagation direction z. Physically speaking, this approach
is exact for very slow rotations of the optical axis along the
transverse direction x. In the limit of small birefringence �n,
this case can be solved by applying the Jones’ formalism to a
stack of infinitely thin layers (see Appendix B). With the as-
sumptions made, the optical propagation depends only on the
phase retardation ζ = k0�nz. The interplay with diffraction
can then be accounted for in a second stage.

A. Plane-wave solution in the presence of a longitudinal
modulation of the twisting angle

Let us start from a brief summary of the circularly polar-
ized (CP) plane-wave propagation in an anisotropic material
where the longitudinal modulation follows a square-wave
function of duty cycle 50%, and its behavior in comparison
with the longitudinally homogeneous case. Figure 2(a) shows
that the polarization on the Poincaré sphere in a homogeneous
anisotropic medium traces meridians, which one being dic-
tated by the rotation angle θ . By computing the solid area of
the corresponding closed path, for a distance z = 
/2 (HWP
length) a phase retardation 2(θ2 − θ1)—corresponding to the
solid angle subtended by the path on the Poincaré sphere
[7]—between differently rotated axes is accumulated, see also
Eq. (1). In the next half period (i.e., up to z = 
), the accumu-
lated phase delay vanishes because the same amount of phase
delay but inverted in sign (in the Pancharatnam approach the
clockwise or counterclockwise nature of the oriented closed
path has to be accounted for [7,8]) is summed up. Thus, no
net accumulation in propagation is occurring, in agreement
with Eq. (1).

From the geometrical interpretation, a simple solution to
accumulate PBP in propagation is to modify the motion of the
polarization in the Poincaré sphere in the second half period,
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/2 < z < 
. This can be accomplished by changing the
direction of the optic axis θ in the second half period. The eas-
iest case is the symmetrical one: the optic axis is flipped with
respect to the y axis by setting θ → −θ at the end of the first
half period (z = 
/2, HWP distance). As shown in Fig. 2(b),
the paths along the two half periods are geometrically equiva-
lent, yielding a total phase accumulation of 4(θ2 − θ1). In the
perspective of Eq. (1), the sign of α needs to be changed to ac-
count for the mirror flipping operated on the optic axis. Given
we used a generic relative rotation θ2 − θ1, our considerations
hold valid when the position θ2 − θ1 → H (z)�(x) is made,
where H (z) is a square wave of duty cycle 50%. Thus, after
propagating across a length 
 the field returns to its initial
polarization state, but has acquired a phase delay of geometric
origin equal to 4�(x) [8]. This cycle can then be repeated,
leading to a progressive accumulation of a transverse phase
gradient of geometric origin. The full behavior of the Stokes
parameter is plotted in Fig. 10(a) in Appendix A.

We now turn our attention to the case of a sinusoidal lon-
gitudinal modulation of the optical axis, thus avoiding abrupt
discontinuities along the optical path. The polarization path
for one birefringence length is plotted in Fig. 2(c). PBP is
still accumulated, but with a value now given by π� for small
angles (see next section for details) [19]. As a matter of fact, a
smaller area than the square wave modulation is enclosed by
the path. The most important difference is that the final point
does not correspond anymore to the initial one. As shown
in the next section, the eigenvectors in this case comprise a
nonvanishing S1 component; that is, the path does not cross the
two poles. Consequently, the plane-wave propagation already
proves that the exact quasimodes are not circularly polarized,
at least in a PBP waveguide when a nonvanishing and finite
longitudinal gradient in θ is present.

B. Quasimodes in the transversely homogeneous case

Due to the periodic nature of the system, eigenwaves of the
system can be found considering one single oscillation period,
z ∈ [z0, z0 + 
]. Hereafter we consider only sinusoidal wave-
forms for H (z). We also fix �(x) = �0 f (x), where the peak
of f (x) is equal to unity; accordingly, the scalar parameter �0

is the maximum rotation applied to the anisotropic material.
The numerically computed eigenvectors and eigenvalues in
the case θ (z) = �0 sin(2πz/
) are plotted as a function of
�0 in Fig. 3 (see Appendix B for the employed numerical
method). For a vanishing �0, the polarization states move
along the meridian of the Poincaré sphere containing both
the poles (CPs) and the diagonal or antidiagonal linear po-
larization (defined with respect to the reference system xy).
Stated otherwise, there is a sinusoidal oscillation of the Stokes
parameters S2 and S3, while S1 is null in every point of the
path (see, e.g., Fig. 10 in Appendix A). As �0 assumes small
but finite values, the trajectory moves away from the meridian
and acquires a small component along S1, see Fig. 3(a) [29].
Up to �0 ≈ 45◦, the S1 value increase of the eigenstate is
linear with �0. The growth of S1 then gets steeper, with an
inflection point around �0 ≈ 110◦ and eventually reaching a
local maximum around �0 ≈ 117◦. After the local maximum,

FIG. 3. Properties of quasimodes in a sinusoidally rotated
anisotropic material infinitely extended along the transverse direc-
tion. (a) Stokes parameters of the eigenmode (corresponding to the
polarization assumed at the start of each longitudinal period) and
(b) the corresponding geometric phase delay �ϕgeo gained across
a single rotation period versus the maximum rotation angle �0. In
panel (c) the evolution of the eigenmodes over the Poincaré sphere is
shown for �0 = 4◦, 24◦, 44◦, and 86◦, from the longest to the smallest
circuit, respectively. The dashed line in panel (b) corresponds to the
geometric phase computed under the small rotation approximation,
providing �ϕgeo = π�0. Due to the symmetry of the system, another
set of eigenmodes with opposite Stokes parameters and opposite
phase delay exists.
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FIG. 4. Longitudinal evolution of the quasimodes shown in
Fig. 3. Behavior versus z of the Stokes parameters (a) S1, (b) S2, and
(c) S3 versus the phase retardation ζ = k0�nz. The corresponding
maximum rotation angles �0 are reported in the legend in panel (b).
(d) Average of the Stokes parameters over one birefringence length
versus the angle �0.

S1 oscillates close to the maximum possible value S1 = 1 in
a quasiperiodic fashion. The oscillation period varies between
70◦ and 90◦. Remarkably, S2 is always vanishing, no matter
how large the rotation angle is. The accumulated phase delay
plotted in Fig. 3(b) is linearly increasing versus �0 for small
S1, then undergoing a downwards bending around S1 = 0.25.
For large enough S1, the accumulated PBP varies in a non-
monotonic fashion, following the changes in the polarization,
as first pointed out by Pancharatnam. An overview of the
polarization paths on the Poincaré sphere for four values of
�0 is shown in Fig. 3(c).

From the theoretical side, in the limit of small anisotropy
γ = �n/n � 1, plane wave obeys the following vectorial
equation (details of the computation can be found in Ap-
pendix A):

i
∂u
∂ζ

= −∂θ

∂ζ
[sin (ζ )σ1 + cos (ζ )σ2] · u, (6)

where ζ is the phase retardation introduced earlier. In the
resonant case θ (ζ ) = �0 sin(ζ ), and Eq. (6) yields

i
∂u
∂ζ

= −�0

2
[sin 2ζ σ1 + (1 + cos 2ζ )σ2] · u. (7)

We are interested in the averaged behavior of the field versus
ζ . We thus neglect the oscillating terms explicitly dependent
on ζ in Eq. (7). We find

i
∂u
∂ζ

= −�0

2
σ2 · u. (8)

The eigenvectors of Eq. (8) are the two circular polarizations,
with an accumulated phase of ±π�0 over one single birefrin-
gence length 
. The theory agrees with the numerical results
shown in Figs. 3 and 4 once we realize that the discrepancy
from circular polarization is due to the terms depending ex-
plicitly on ζ in a periodic manner.

In a more formal way, the quasimodes of the Floquet-like
vectorial equation (7) are investigated by expanding the solu-

tion as a Bloch wave [30]

u(ζ ) = eiβζ
∑

m

umeimζ . (9)

The corresponding eigenvalue problem in the rotated frame-
work for small anisotropies and in the paraxial limit reads

βum = −mum + �0

4
[2σ2um + (σ2 − iσ1)um−2

+ (σ2 + iσ1)um+2]. (10)

According to Eq. (10), for small �0 the quasimodes are circu-
larly polarized with a phase �ϕgeo = 2πβ = ±π�0 [Eq. (10)
provides β = ±�0/2], the sign being determined by the hand-
edness of the CP wave (i.e., the photon spin). This is in
agreement with the numerical results plotted in Fig. 3(b) for
�0 up to 50◦. The polarization of u is constant in propagation
only in the rotated framework: when the transformation back
to the laboratory framework is carried out, the CP will be
retained only at the beginning and at the end of a birefringence
length, whereas the Stokes vector will evolve periodically.
As shown in Fig. 10 in Appendix A, S3 versus ζ remains
sinusoidal in this limit, whereas S2 follows sinusoidal curves
which are flattened around z = 
/4 and z = (3/4)
, with
a corresponding increase in |S1| in the same regions. This
is confirmed for �0 up to 50◦ by the exact evolution along
z of the polarization plotted in Fig. 4. An additional effect
observed in the numerical solution is that the value of S1 in
z = 0 is not vanishing, see Figs. 3(a) and 4(a). This can be
explained from Eq. (10) once the terms u±1 are accounted for,
see Appendix A. Even in this limit, the associated eigenvalue
β (i.e., the local optical delay �ϕgeo) remains unperturbed,
in accordance with the full simulations for �0 < 50◦. The
higher-order harmonics um (|m| > 1) become relevant when
�0 > 50◦, as witnessed by a strong deformation in S3 versus
z, see Fig. 4(c). Finally, Fig. 4(d) shows how only the average
value of S1 is different from zero, whereas S2 and S3 conserve
a periodic motion with a vanishing average.

C. Coupling with diffraction

The terms on the RHS of Eq. (5) stem from the Laplacian
operator, i.e., they originate from the natural spreading of light
in space. In the case of twisted anisotropic materials, com-
plicated effects arise from the coupling between neighboring
points in the transverse plane. Indeed, a wave of a given linear
polarization can solely correspond to a local eigensolution
(extraordinary or ordinary polarized) of Maxwell’s equations.
Diffraction transports a portion of this local eigensolution to
adjacent regions where the optic axis is differently oriented,
in turn leading to a continuous local change in the beam
polarization and phase. In agreement with the case of plane
waves discussed in the previous section, a localized solution
of the electromagnetic equation in this geometry needs to be
periodic along z. The purpose of the current section is to find
a simplified equation for the continuous component of the
optical field using the normalized coordinates ζ = k0�nz and
η = x/λ. In the equation for the paraxial field u in the rotated
system [Eq. (5)] explicit terms from the imaginary unit can
be found. Accounting solely for the continuous wave (cw)
component in the rotated system, such a term can be canceled
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out in the limit γ = �n/n � 1 by means of an additional
z-independent gauge transformation (the detailed computation
can be found in Appendix C). The new field v is defined by
the transformation

u = eiσ1�(x)/2 · v, (11)

i.e., a complex phase term equal to �(x)/2. The proportion-
ality factor 0.5 comes from the average of a sine square,
the latter stemming from the polarization rotation due to the
anisotropy multiplied by the externally imposed longitudinal
sinusoidal modulation. Remarkably, the gauge transformation
(11) appears only in the presence of diffraction, i.e., the
interaction between light propagating in different positions
x is accounted for. After writing the Fourier series v(ζ ) =∑

m vmeimζ with vm being a slowly varying envelope with
respect to ζ , the cw component of the field v0 satisfies the
following Pauli-like equation (see Appendix D):

iγ
∂v0

∂ζ
= − 1

8π2n2

∂2v0

∂η2
− γ�

2

[
cos

(
�

2

)
σ2

+ sin

(
�

2

)
σ3

]
· v0 + 1

32π2n2

(
∂�

∂η

)2

v0. (12)

The right-hand side of Eq. (8) is transformed to the term
contained in the square brackets in Eq. (12). As a matter of
fact, the gauge transformation expressed by Eq. (11) modifies
the spin-orbit coupling due to the multiplication between the
original operator σ2 and the gauge operator eiσ1�(x)/2, in turn
introducing a term containing σ3 proportional to sin(�/2).
The spin-dependent phase modulation proportional to the lo-
cal amplitude of the rotation angle �(x) demonstrated with
the plane-wave model [see Fig. 3(b)] is thus still at work
[19], but with an additional rotation of the polarization related
with the finite size of the structure. The Stokes vector of the
resulting structured beams in the rotated framework shows
a nonvanishing component S1, beyond the dominant circular
polarization component given by S3. This effect is superposed
to the nonvanishing S1 predicted by Eq. (7) in the plane-wave
limit and plotted in Fig. 3. Finally, the ratio between the two
components of the Stokes vector also varies along the beam
cross section.

To conclude this section, we discuss the effect of the gauge
transformation given by Eq. (11) on the polarization of the
quasimodes. The cw component in the rotated framework
reads

u0 = cos

(
�

2

)
v0 + i sin

(
�

2

)
σ1 · v0. (13)

According to Eq. (13), the polarization of a portion of the
quasimode [proportional to cos( �

2 )] found from Eq. (12) re-
mains unvaried after the gauge transformation. On the other
side, the remaining part proportional to sin( �

2 ) is subject to
a flip of its spin, i.e., the sign of the Stokes vector is in-
verted. The inversion occurs with eigenvalues ±i for the CP
x̂′ ± iŷ′, respectively. When v0 is CP (i.e., in the presence of
a quasimode), the corresponding polarization of u0 strongly
depends on the value of �. For � = 90◦, the two contributions
have the same weight, but encompassing a phase difference
of 0 or π , according to which eigenvalue is considered. The
corresponding overall polarization is thus linearly polarized

along the vertical or the horizontal direction. For other values
of � the polarization is instead elliptical. Finally, for small �

Eq. (13) becomes u0 ≈ v0 + 0.5i�(x)σ1 · v0.

III. NUMERICAL SIMULATIONS

We simulated the behavior of light in a twisted anisotropic
material by using a combination of finite difference time
domain (FDTD) and finite element method (FEM) soft-
ware. For FDTD, we used the open-source code MEEP [31].
For FEM, we used the commercial software COMSOL Mul-
tiphysics® [32]. Both the numerical simulators solve the
complete Maxwell equations, thus accounting for the full
vectorial nature of the field and for light rays propagating
at wide angles with respect to the main carrier propagating
along z. Here in the main text we will present solely the results
calculated with the FDTD code. Details of FDTD simulations
are provided in Appendix E, whereas the comparison with
FEM results is carried out in Appendix F.

A. Potential and quasimodes

As input condition for the numerical simulations, we do
not consider a generic Gaussian profile, but we instead prefer
the quasimode profile predicted in Ref. [19] using a simpli-
fied theoretical model. This approach allows us to directly
address the validity range of the two models (i.e., the model
in Ref. [19] and the one discussed in this paper) in describ-
ing PBP-based optical waveguides. To first approximation
the quasimodes are CP modes subject to the following spin-
dependent potential [19]:

V (x) = −S(0)
3 k0�n

2
�(x)

+ 1

4nk0

[(
∂�

∂x

)2

+ k2
0 (�n)2�2(x)

]
. (14)

The quantity S(0)
3 is the third Stokes parameter sampled at the

beginning of the longitudinal sinusoidal oscillation. A shift of
π in the sine (i.e., HWP longitudinal shift in real space) yields
a change in sign in the first term, i.e., the photon spin cor-
responding to waveguiding is switched. Equation (14) is the
effective potential once the light propagation is recast for the
scalar field A in the form i∂zA = −[1/(2nk0)]∂2

x A + VA. This
means that light is attracted towards regions where V is lower,
in agreement with the quantum-mechanical convention. The
three terms composing the potential V have a simple physical
interpretation. The first term comes from the net accumulation
of PBP due to the periodic longitudinal rotation of the optic
axis. The second term and the third terms are Kapitza-like
terms proportional to the square of the gradient of the rotation
angle θ [20]. Essentially, a periodic modulation of the phase
generates a local modulation of the transverse wave vector kx,
in turn changing the equivalent kinetic energy due to its de-
pendence on the square of kx. In agreement with Eq. (12), the
term depending on the longitudinal derivative is O[(�n)2] and
can be neglected in the adiabatic limit. In practice, for a fixed
material the approximation will start to fail for large enough
twisting angle, given that this phase term depends quadrati-
cally on �0. Hereafter we set the wavelength to λ = 1µm and
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FIG. 5. Theoretical model in the limit of purely CP quasimodes.
Photonic potential (a) V and (b) the corresponding fundamental
mode (the intensity profile is shown) versus x. From shallower
to deeper potential well (corresponding to a narrower fundamental
mode), the maximum rotation angle �0 is 10◦ (blue), 20◦ (orange),
60◦ (green), 90◦ (red), and 120◦ (magenta). In panel (a), solid and
dashed lines correspond to the full potential evaluated from the entire
Eq. (14) or only its first term, respectively.

the birefringence to �n = 0.2. The longitudinal shape of the
modulation is kept sinusoidal in the remainder of the paper.
The transverse distribution of the optic axis is assumed to
be Gaussian by setting �(x) = �0 exp [−(x2/w2

D)]. Figure 5
summarizes the behavior of the potential. The first term in
Eq. (14) is the most important term, assuming a confining or a
repelling nature according to the spin of the impinging wave.
The term proportional to (∂x�)2 takes a typical W shape and is
negligible with respect to the other two terms for wD > 1 µm.
Finally, the term proportional to �2 is intrinsically defocus-
ing (i.e., a positive hump), achieving an amplitude of about
20% of the overall potential for �0 = 120◦. This is visible
in Fig. 5(a), where the potential versus x for different �0 is
plotted.

To address the confinement strength of the photonic ef-
fective potential, the value of V can be transformed into an
effective gradient in the refractive index δn. Recalling that
V ≈ −2nk0δn, we obtain for example δn ≈ 0.05 for V = 1 ×
106 m−1. In Fig. 5(b) the corresponding fundamental quasi-
mode width versus x for several �0 is shown. In our case the
beam width—defined as w = 2[

∫
x2I (x)dx/

∫
I (x)dx]1/2—

spans from 5.4 µm at �0 = 1◦ to 1.3 µm at �0 = 90◦.

B. Propagation of quasimodes

At the entrance of the twisted material we used the quasi-
mode calculated from Eq. (14) (see Appendix E for the
employed procedure). A survey of the intensity distribution
versus the twisting angle �0 is provided in Fig. 6. In agree-
ment with the strong spin-orbit coupling of our system, the

FIG. 6. Full numerical simulation of the light propagation for CP
inputs of opposite helicity. Time-averaged intensity distribution cal-
culated via FDTD simulations for (a)–(d) RCP and (e)–(h) LCP input
polarization for wD = 3 µm and increasing �0 from left to right. The
scalar eigenfunctions of the potential given by Eq. (14) are used as
the transverse shape of the input. The white solid lines represent the
spreading that would occur in the case of a homogeneous material.
Finally, the anisotropic material starts in z = 2 µm.

general behavior for �0 lower than 90◦ strongly depends on
the wave handedness: RCP (right CP) undergoes a net con-
finement while propagating [Figs. 6(a)–6(d) shows the case
wD = 3 µm; additional simulations not shown here demon-
strate that an analogous behavior is found for larger wD],
whereas the LCP (left CP) waves spread more than would oc-
cur in a homogeneous cell, see Figs. 6(e)–6(h). In each panel
the white solid lines show the corresponding unconstrained
diffraction (width 1/e2). With reference to the confined case,
the quasimodes are a very good approximation: the envelope
of the beam propagates with very small oscillations for �0 up
to 90◦. At these large angles, the trapping is retained, but the
observed breathing amplitude is quite large. Indeed, at large
�0 a new propagation regime arises: the optical propagation
does not significantly depend anymore on the input helicity.
A precursor of this behavior is already visible in Fig. 6(h),
where at �0 = 90◦ an appreciable portion of the input power
is guided, even for the polarization where defocusing takes
place for lower angles. This behavior is in remarkable agree-
ment with the plane-wave model plotted in Fig. 3, where
the accumulation of PBP stops to monotonically increase
for �0 > 110◦. The dependence of the power coupled to the
quasimode versus �0 and the input polarization is plotted
in Fig. 7. For small angles the whole system response is
analogous to a circular birefringent material [see Fig. 7(a)],
where the confinement and defocusing of the beam depends
on the handedness at the input. This is similar to what hap-
pens in cholesteric liquid crystals, where a helically twisted
uniaxial behaves at large scales like a circularly birefringent
material [23]. The two curves for different spins starts to flex
towards each other around �0 ≈ 50◦, eventually crossing in
�0 = 120◦. Figure 7(b) shows the guided power when the
input polarization is linearly polarized. At small rotations
the behavior is almost polarization-independent, in agreement
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FIG. 7. Effects of the gauge transformation on the polarization
of the guided quasimodes. Power coupled to the Berry waveguide
for input (a) circular, and (b) linear vertical and horizontal polar-
izations versus the maximum rotation angle �0. Symbols are values
extrapolated from the FDTD simulations, whereas the shaded regions
are the theoretical predictions from Eq. (13). Theoretical predictions
corresponds to a surface because we are considering a range for the
possible width of the quasimode, see the main text. The waveguide
parameters are the same as for Fig. 6. The guided power is measured
in z = 200 µm by integrating the intensity around the origin x = 0
on a window of overall size 10 µm.

with Fig. 7(a). As the twisting gets larger the two curves
diverge from each other in a symmetric way. Stated otherwise,
the degeneracy between the vertical (parallel to y) and the
horizontal (parallel to x) polarization is broken. Around �0 =
120◦ the optimal coupling to the quasimode occurs for the ver-
tical polarization, whereas the orthogonal polarization reaches
its maximum broadening due to the presence of a repelling
potential. The general trend of the FDTD simulations (lines
with symbols in Fig. 7) is in qualitative agreement with the
plane-wave model developed in Sec. II B and with the gauge
transformation Eq. (13) (shaded regions in the same figure).
In other words, the quasimodes are no more CP because (i) a
linear polarization component emerges due to the longitudinal
simulations, even in the plane-wave limit; and (ii) the polar-
ization dependence of the guiding effect strongly depends on
the twisting angle due to the local gauge transformation, or,

in more physical terms, due to the strong transverse coupling
between regions with different twisting, ultimately induced by
the natural tendency of light to diffract.

For the sake of quantitative comparison, on the theoretical
side we compute the overlap integral between a nonstructured
input beam and the quasimode in a simplified manner. We take
a given Gaussian beam at the input, with an x-independent
polarization, selected as indicated by the legends in Fig. 7. To
find an approximation for the structured localized mode, the
transformation given by Eq. (13) is then applied to this beam
(i.e., the latter is v0 in this case), but with a polarization given
by the plane-wave model computed for each value of �0, see
Fig. 3. The final step is to compute the overlap between the
two spinors. We stress that, (i) to account for the variations
in the width of the quasimode versus �0 (see Fig. 5), we
consider two different widths for the quasimode: 1 and 5 µm,
corresponding to the edges of the shaded region; (ii) the exact
v0 is already a structured beam, whereas here its polarization
is taken to be invariant through its cross section.

C. Full characterization in terms of Stokes parameters

A deeper understanding on the physical mechanism behind
the light confinement is achieved when the Stokes parameters
of the propagating beams are plotted. Figures 8 and 9 show
the Stokes parameters corresponding to the trapped beam
plotted in Figs. 6(a)–6(d). The Stokes parameters are shown
in proximity of the input interface (Fig. 8) and deep inside the
waveguide (Fig. 9) to show the effects of the mode coupling
and the stationary localized wave, respectively. For very small
angles (�0 = 1◦), the mode computed from Eq. (14) describes
very well the propagating quasimode: the two Stokes parame-
ters S2 and S3 vary sinusoidally with a period given by 
 and
a relative shift of a quarter of period, 
/4, whereas S1 is neg-
ligibly small. For �0 = 5◦ the situation is very similar, except
for the appearance of a nonvanishing S1, in accordance with
Fig. 3(a). For �0 = 45◦ a discrepancy in the polarization at
the input interface is observed, with the emission of polarized
radiation modes. In the bulk the sinusoidal variation of S2 and
S3 is observed, but, unlike for smaller angles, S1 is quite large,
and encompasses a large z-invariant value superposed with
a smaller sinusoidal oscillation of period 
. For �0 = 90◦
the coupling gets worse, with the periodicity being lost near
the input interface. The oscillatory behavior of S2 and S3 is
recovered into the bulk, although now the dominant compo-
nent is S1, the latter behaving similar to what is predicted
by the plane-wave model plotted in Fig. 4(a). A large (about
180◦) phase shift of the longitudinal oscillation between the
center and the tails of the guided mode is observed for all
the three Stokes parameters, even when the stationary regime
is achieved: the quasimode is thus structured even along the
transverse direction. The described dynamics confirms that
the polarization of the quasimode follows at least qualitatively
Eq. (13), and that the plane-wave approach to calculate the
phase delay shown in Fig. 3(b) is quite reliable even in the
presence of a local twisting. We thus evince that the breath-
ing behavior observed in the intensity profile (Fig. 6) is due
to a mismatch between the approximated quasimode (pseu-
doscalar) and the real mode, the latter being highly structured
both along the longitudinal and the transverse direction.
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FIG. 8. Polarization transient at the input interface. Stokes
parameters nearby the input interface extracted from FDTD simu-
lations, plotted for �0 = 1◦, 5◦, 45◦, and 90◦ from top to bottom,
respectively. The input is a RCP mode with shape found from the
potential (14).

IV. SUMMARY OF THE MAIN RESULTS

This work contains the following main results:
(1) In a transversely invariant but longitudinally rotated

anisotropic material subject to a finite gradient in the twisting
angle, it is possible to control all the Stokes parameters using a
sample length corresponding to the full wave plate (FWP), see
Figs. 3 and 4. Indeed, a tunable amount of S1 can be achieved
by changing the amplitude of the local modulation. A nonvan-
ishing S2 can be finally arranged by a constant relative rotation
of the optic axis [i.e., by rotating the whole Poincaré sphere
in Fig. 3(c)]. To confirm this numerical result theoretically,
we found a new vectorial paraxial equation [Eq. (6)] by an
exact power expansion in the medium normalized anisotropy

FIG. 9. Stationary distribution for the polarization state of the
quasimode. Parameters are the same of Fig. 8, but at the end of the
numerical grid, i.e., for z > 250 µm.

γ = �n/n. Periodic solutions in terms of Floquet series con-
firm that the quasimodes are circularly polarized for small
rotations, but with an increasing S1 as rotation gets larger [see
Eq. (10)]. The eigenvalue stays unperturbed for small rota-
tions, thus showing that the first and main term in the photonic
potential given by Eq. (14) remains valid in this limit.

(2) As a direct consequence of the previous point, the
quasimode of a Berry waveguide featuring a finite longi-
tudinal gradient cannot be purely circularly polarized. In
particular, a constant component S1 appears as the rotation is
increased, a fact confirmed by the full numerical simulations
of the Maxwell’s equations. Moreover, the exact polarization
of the quasimode will vary along the cross section, thus pro-
viding a full structured beam both along the transversal and
the longitudinal direction.

013523-9



CHANDROTH P. JISHA et al. PHYSICAL REVIEW A 107, 013523 (2023)

(3) The transverse coupling due to diffraction in a trans-
versely inhomogeneous twisted sample can be modeled using
point-dependent gauge transformations. This, in turn, yields
the appearance of a Kapitza potential proportional to the trans-
verse gradient of the twist [see the last term in Eq. (12)],
and of a point-dependent rotation of the polarization, see
Eq. (13). This is another factor making the quasimode a fully
structured beam [33], even in the transverse plane. In par-
ticular, the gauge transformation directly modifies the local
change in polarization, see the term between square brackets
in Eq. (12). Incidentally, such a term survives even in the case
of square-wave modulation along the longitudinal direction
for the rotation angle θ , where the path of the polarization
eigenmodes always crosses the two poles in the plane-wave
limit. Accordingly, in the numerical simulations the polar-
ization of the localized wave is transversely variant, and the
coupling between circularly polarized inputs and the quasi-
modes drastically changes as the twisting ramps up.

(4) Both the plane-wave model and the gauge transforma-
tion predict that the average polarization of the quasimode
in the rotated paraxial framework tends to become linearly
polarized as the rotation angle increases. This is numerically
confirmed by the emergence of a guided mode even when the
CP at the input has a helicity corresponding to a defocusing
potential according to Eq. (14), see Fig. 6(h). This behavior
was erroneously attributed by some of us to the Kapitza effect
in the Supplemental Material of Ref. [19].

(5) Despite the changes in the polarization described in
the previous points, the mode profile calculated by solving
the scalar equation with the potential given by Eq. (14) pro-
vides a very good approximation for intensity profile of the
fundamental quasimode, for angles in our case up to 90◦.
This is the first time that such a quantitative comparison is
carried out, given that in Ref. [19] we used only Gaussian
beams of fixed width as input fields. We also showed that the
transverse Kapitza potential is negligible, if subwavelength
twisting of the material is left out: from Fig. 5, the interplay
between the accumulated PBP and the longitudinal Kapitza
effect determines the light propagation. Given that the Kapitza
term is quadratic in the rotation angle, the PBP dominates
at low angles, whereas the defocusing contribution of the
Kapitza term becomes more and more relevant as the rotation
is increased.

(6) For very large rotation angles, several new effects
come into play. Even in the adiabatic limit (small anisotropy
�n), the accumulated PBP is no more monotonic [see
Fig. 3(b)] given that the polarization path on the Poincaré
sphere strongly differs from simple circles already in the
plane-wave limit, see Fig. 3(c). The real propagation is indeed
way more complex than Eq. (6), as several new terms propor-
tional to γ 2 and higher powers of γ provide a non-negligible
contribution owing to the faster changes in the polarization,
see Appendix A. This means that the first term in the photonic
potential given by Eq. (14) is wrong in this limit, a limitation
not found in Ref. [19]. To mention only a single effect related
to fast variations in the polarization, in the adiabatic limit gov-
erned by Eq. (7) the longitudinal Kapitza effect is evidently
absent, see also the results based upon the Jones formalism
plotted in Fig. 3(b).

V. CONCLUSIONS

In this paper we investigated theoretically and numer-
ically the waveguiding observed in a periodically twisted
anisotropic material and based upon a transverse gradient in
the Pancharatnam-Berry phase. With respect to our previous
work, we improved the theory by accounting for higher-order
effects by implementing a combination of plane-wave models
and gauge transformations. The model clearly shows that the
guided modes feature a point-dependent polarization even
across the transverse plane. For small angles, a purely circular
polarized beam in the rotated paraxial framework approxi-
mates well the confined mode, the transverse shape of the
beam being in good agreement with the scalar potential origi-
nating from the PBP. For larger rotations, all the three Stokes
parameters (including S1) are not vanishing, in disagreement
with the intuitive picture based upon a plane wave in the
presence of a longitudinal modulation in the form of a square
wave. Furthermore, as the rotation increases the helicity of the
quasimode starts to flip and the mode to be strongly structured
along its cross section.

Although already observed in the nonlinear regime [22],
the experimental realization of continuous PBP waveguides
in the linear regime is the next step: different approaches
to achieve this aim are currently pursued, including pho-
topolymerization of liquid crystals [12,34,35], multistack of
inhomogeneously rotated liquid crystals plates [36], and fem-
tosecond writing of transparent materials [37]. As pinpointed
in this article, these waveguides would support structured
modes [38], thus representing an important advance in the
current research about multimodal optical communications
[33,39], both in the classical [40] and in the quantum regime
[41]. In a broader physical perspective, our paper confirms a
strict relation between twisted anisotropic media and propa-
gation of charged particles in a magnetic field, proposing this
optical platform as a promising candidate for the theoretical
and experimental investigation of gauge-related and spin-orbit
effects in an optical system [42–49].
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APPENDIX A: PLANE-WAVE PROPAGATION IN
LONGITUDINALLY TWISTED MATERIALS

We first apply the slowly varying envelope approximation
(SVEA) to Eq. (5) by setting ψ′ = eik0Nz · u, where N =
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(n⊥, 0; 0, n‖) [19]. We obtain

2ik0N · eik0Nz · ∂u
∂z

− iσ2 ·
(

2ik0
∂θ

∂z
N · eik0Nz · u + ∂2θ

∂z2
eik0Nz · u

)

−
(

∂θ

∂z

)2

eik0Nz · u = 0. (A1)

After multiplying both the sides of Eq. (A1) by e−ik0Nz, we
find that

2ik0N · ∂u
∂z

+ 2k0
∂θ

∂z
σ̃2(z) · N · u − i

∂2θ

∂z2
σ̃2(z) · u

−
(

∂θ

∂z

)2

· u = 0, (A2)

where

σ̃2(z) = cos (k0�nz)σ2 + sin (k0�nz)σ1. (A3)

σ̃2 oscillates along z with the same period given by the mate-
rial birefringence. We want to express Eq. (A2) solely in terms
of Pauli matrices. At this purpose we set N = nI − �n

2 σ3,
where n = (n⊥ + n‖)/2 is the refractive index perceived by a
circular polarization. Direct substitution into Eq. (A2) yields

2ik0

(
nI − �n

2
σ3

)
· ∂u

∂z
+ 2k0

∂θ

∂z
[F (z)σ2 + G(z)σ1] · u

− i
∂2θ

∂z2
[cos (k0�nz)σ2 + sin (k0�nz)σ1] · u

−
(

∂θ

∂z

)2

u = 0, (A4)

where we introduced F (z) = n cos(k0�nz) + i �n
2 sin(k0�nz)

and G(z) = n sin(k0�nz) − i �n
2 cos(k0�nz). We are inter-

ested in the resonant case when the external modulation given
by θ (z) is synchronized with the natural oscillation of the po-
larization setting 
 = λ/�n. From Eq. (A4) this corresponds
to a continuous-wave component coming from the terms de-
pending on θ (z). The inversion operator of the matrix factor
in front of ∂zu is(

nI − �n

2
σ3

)−1

= 1

n

1

1 − (
�n
2n

)2

(
I + �n

2n
σ3

)
. (A5)

Applying the inversion operator (A5) to (A4) we find

2ik0n
∂u
∂z

+ K

(
I + �n

2n
σ3

)[
Xσ2 + Y σ1 −

(
∂θ

∂z

)2
]

· u = 0,

(A6)
where we set

X = 2k0
∂θ

∂z
F (z) − i

∂2θ

∂z2
cos (k0�nz), (A7)

Y = 2k0
∂θ

∂z
G(z) − i

∂2θ

∂z2
sin (k0�nz), (A8)

K = [1 − (γ /2)2]−1. (A9)

For the sake of compactness, we introduce the normalized
anisotropy γ = �n/n. Computation of the operator multipli-
cation in Eq. (A6) yields

i
∂u
∂z

= K
i(γ /2)X − Y

2k0n
σ1 · u − K

X + i(γ /2)Y

2k0n
σ2 · u

+ K

2k0n

(
I + γ

2
σ3

)(
∂θ

∂z

)2

· u. (A10)

By expanding K in a power series of the normalized
anisotropy γ , Eq. (A10) can be recast as a power series of γ

itself. Before doing that, it is convenient to introduce the phase
retardation ζ = k0�nz, i.e., to normalize the propagation dis-
tance with respect to the natural rotation of the polarization
vector. Equations (A7)–(A9) can then be expressed as a
quadratic polynomial in γ :

X

n2 = k2
0[aX (θ )γ + bX (θ )γ 2], (A11)

Y

n2 = k2
0[aY (θ )γ + bY (θ )γ 2], (A12)

K ≈ 1 +
(γ

2

)2
. (A13)

The new terms defined in the above equations are

aX (ζ , θ ) = 2 cos ζ
∂θ

∂ζ
, (A14)

bX (ζ , θ ) = i

(
sin ζ

∂θ

∂ζ
− cos ζ

∂2θ

∂ζ 2

)
, (A15)

aY (ζ , θ ) = 2 sin ζ
∂θ

∂ζ
, (A16)

bY (ζ , θ ) = −i

(
cos ζ

∂θ

∂ζ
+ sin ζ

∂2θ

∂ζ 2

)
. (A17)

Next we expand Eq. (A10) in a power series of γ , halting the
series at the linear order. Equation (A10) then yields

i
∂u
∂ζ

= −1

2
(aY σ1 + aX σ2) · u + γ

2

[(
iaX

2
− bY

)
σ1

−
(

iaY

2
+ bX

)
σ2 +

(
∂θ

∂ζ

)2
]

· u. (A18)

Using Eqs. (A14) and (A16), for small values of the
anisotropy Eq. (A18) turns into

i
∂u
∂ζ

= −∂θ

∂ζ
[sin (ζ )σ1 + cos (ζ )σ2] · u. (A19)

We now consider the resonant case, where the optic axis is
periodically modulated with a period equal to λ/�n in the
real space. Thus, after taking a sinusoidal oscillation in the
form θ (ζ ) = �0 sin(ζ ), we find

i
∂u
∂ζ

= −�0

2
[sin 2ζ σ1 + (1 + cos 2ζ )σ2] · u. (A20)

From the Bloch-Floquet theorem, the quasimode can be ex-
pressed as

u(ζ ) = eiβζ
∑

m

umeimζ , (A21)
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where β is the associated eigenvalue. Next step is inserting
the ansatz Eq. (A21) into Eq. (A20). For each integer m the
following relation is found:

βum = −mum + �0

4
[2σ2um + (σ2 − iσ1)um−2

+ (σ2 + iσ1)um+2]. (A22)

Equation (A22) shows that the components um of different
parity (i.e., the terms um corresponding to m either even or
odd) form two independent sets of values. In the case of small
rotations (i.e., small �0), the oscillations of the field amplitude
are small, which means um ≈ 0 for m �= 0. Equation (A22)
then provides

βu0 = �0

2
σ2 · u0. (A23)

From the latter it is straightforward to find that the eigen-
vectors are the two CPs |L〉 and |R〉, with the associated
eigenvalues β = ±�0/2. In the real-space coordinates, the
phase delay acquired at each HWP length is π�0, in agree-
ment with the numerical simulations shown in Fig. 3.

At the next order, we have u±1 �= 0. In this case Eq. (A22)
provides an additional eigenvalue equation

�β u±1 =
[
�0

2
σ2 − (β0 ± 1)I

]
u±1, (A24)

where we supposed β ≈ β0 + �β, and where β0 = �0/2 is
the eigenvalue at the lowest approximation order, as deter-
mined by Eq. (A23). The eigenvectors are still circularly
polarized. The two eigenvalues are ±(�0 + 1) and ±1, re-
spectively, the sign depending on the sign of m. The solutions
|�β| = �0 + 1 are not acceptable because they are inconsis-
tent with the full eigenvalue equation (A22). On the other
side, solutions featuring |�β| = 1 are acceptable because they
imply a shift of 2π in the eigenvalue according to Eq. (A21),
thus representing the same solution according to the ansatz
expressed by Eq. (A23). Summarizing, the simultaneous so-
lution of Eqs. (A23) and (A24) tells us that the beam at z = 0
is circularly polarized with an eigenvalue equal to β0. An
additional component with |m| = 1 is present, providing a
small change in the beam polarization, even in the rotated
framework. This latter oscillation is actually responsible for
the nonvanishing S1 even in z = 0, see Fig. 4(a). To conclude,
we notice that this simplified approach does not allow us to
quantify the relative weight of the two components u0 and
u±1, the latter evidently requiring the components um for
|m| > 1 to be accounted for.

Figure 10(a) compares the Stokes parameters in the labo-
ratory framework when only u0 is nonvanishing to the case
where a u1 component with a 10% amplitude of u0 is present
[Fig. 10(b)]. Comparison with the full numerical simulations
is discussed in the main text in Sec. II B. To help the com-
parison, here we stress out the computation to connect the
rotated and the laboratory framework. The wave function in
the laboratory framework is linked to the coefficients um via

ψ = eiβζ eik0n⊥ζ

×
(

cos θ
∑

m ux,meimζ − sin θ
∑

m uy,mei(m+1)ζ

sin θ
∑

m ux,meimζ + cos θ
∑

m uy,mei(m+1)ζ

)
.

(A25)

FIG. 10. (a) The Stokes parameters versus the phase retardation
for a CP wave in the rotated framework rotated back to the laboratory
frame. Only u0 is nonvanishing in this case. (b) Stokes parameters
versus phase retardation when u1 = −0.1u0. In both panels the blue
dashed curve is S3, S2 the green lines with symbol, S1 the solid red
lines. The values used for �0 are 0◦, 7.5◦, 15◦, 22.5◦, 30◦

In the limit of small angle θ = �0 sin ζ , considering only u0 �=
0, we find

ψ0 ≈
(

ux,0

uy,0eiζ

)
+ �

2i

(−uy,0eiζ

ux,0

)
, (A26)

where the common phase (β + k0n⊥)ζ has been removed for
the sake of clarity. For � = 0, the limit of a homogeneous
wave plate is correctly retrieved. When considering the terms
for |m| = 1 we obtain

ψ0 ≈ · · · +
(

ux,1eiζ + ux,−1e−iζ

uy,1e2iζ + uy,−1

)

+ �

2i

( −uy,−1 − uy,1e2iζ

ux,−1e−iζ + ux,1eiζ

)
. (A27)

The presence of terms not explicitly dependent on ζ demon-
strates how the harmonics for |m = 1| affect the average value
of ψ0, in agreement with Fig. 10(b).

APPENDIX B: JONES MATRIX IN A LAYERED
TWISTED MATERIAL

In the circular basis (|L〉, |R〉) and for unidirectional light
propagation, the Jones matrix for a transversely homogeneous
slab of uniaxial material of thickness δ and twisted by an angle
θ is

J(δ, θ ) = eink0δ

(
cos

( k0�nδ
2

) −i sin
( k0�nδ

2

)
e2iθ

−i sin
( k0�nδ

2

)
e−2iθ cos

( k0�nδ
2

)
)

= eink0δe−i k0�nδ

2 (ŝ·σ) = eink0δ[1− �n
2n (ŝ·σ )], (B1)

where ŝ(θ ) = cos(2θ )x̂ − sin(2θ )ŷ. When the eigenvalues of
the exponential matrix are computed, we correctly retrieve
the ordinary and extraordinary plane waves as eigensolution
of the system, but rotated by an angle θ with respect to the
framework xy.

For a stack of infinitely thick layers of overall thickness L,
the total transfer function is given by the multiplication of N
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matrices J(δ, θm), each of them calculated in the limit δ → 0.
This approach is valid in the limit of slow variations for the
angle θ on the scale λ/�n, i.e., in the adiabatic limit. Dubbing
L the overall length of the twisted material, we have δ = L/N ;
finally, in the limit of infinitely thin layers the transmission
matrix in the absence of back-reflections is

Jtotal = lim
N→∞

N∏
m=1

[
I + ik0n

L

N

(
1 − γ

2 e2iθm

− γ

2 e−2iθm 1

)]
.

(B2)

From Eq. (B2) we deduce that the propagation of a plane wave
in a longitudinally twisted geometry can be normalized with
respect to the normalized anisotropy γ = �n/n.

The fundamental properties of the solutions to Eq. (B2) can
be better visualized if we use the last expression in Eq. (B1).
We find that

Jtotal = eink0L lim
N→∞

N∏
m=1

e−i k0�n[ŝ(θm )·σ]
2

L
N . (B3)

According to Eq. (B3), if θ = θ (ζ ) the optical propagation
depends only on the phase retardation k0�nδ, except for a
phase term corresponding to the dynamic phase of a CP wave.
Once Jtotal is known, the corresponding eigenmodes (i.e., the
polarization at each full wave plate [FWP] distance) and the
eigenvalues (i.e., the associated geometric phase) can be nu-
merically computed using standard algebraic methods.

APPENDIX C: MODELLING OF THE TRANSVERSE
COUPLING

We start by considering only the right-hand side (RHS) of
Eq. (5); let us call it the operator L̂. Applying the SVEA [see
the definition of u before Eq. (A2) in Appendix A], we find

L̂ = −∂2u
∂x2

+
(

∂θ

∂x

)2

u + i
∂2θ

∂x2
σ̃2 · u + 2i

∂θ

∂x
σ̃2 · ∂u

∂x
. (C1)

The aim of the current section is to develop the transverse
coupling alone, considering the minimal coupling with the
evolution of the field along z. From Eq. (A4) we can use the
simplified equation

2ik0

(
nI − �n

2
σ3

)
· ∂u

∂z
= L̂, (C2)

i.e., we account only for the term providing the first derivative
of the field along the propagation coordinate z. Application of
the operator defined by Eq. (A5) to both sides provides

2ik0n

K

∂u
∂z

=
(

I + γ

2
σ3

)
· Q̂(x)u

+
[(

σ2 − iγ

2
σ1

)
cos (k0�nz)

+
(

σ1 + iγ

2
σ2

)
sin (k0�nz)

]
· P̂(x)u, (C3)

where K has been defined in Eq. (A9) and

Q̂(x) = − ∂2

∂x2
+

(
∂θ

∂x

)2

, (C4)

P̂(x) = i
∂2θ

∂x2
+ 2i

∂θ

∂x

∂

∂x
. (C5)

Introducing the normalized transverse coordinate η = x/λ
and the retardation ζ = k0�nz, Eq. (C3) can be recast as

iγ
∂u
∂ζ

= 1

8π2n2 (T 0 + T 1γ + T 2γ
2 + · · · ) · u. (C6)

Until the order γ 2 we find

T 0 = Q̂(η)u + [σ2 cos (ζ ) + σ1 sin (ζ )]P̂(η)u, (C7)

T 1 = 1

2
σ3 · Q̂(η)u + i

2
[σ2 sin (ζ ) − σ1 cos (ζ )] · P̂(η)u,

(C8)

T 2 =
(

1

2

)2

T 0. (C9)

Equation (C6) explicitly states that the effects of diffraction
can be described as a power expansion in the normal-
ized anisotropy γ . We finally take the resonant case setting
θ (η, ζ ) = �(η) sin(ζ ). At the lowest order in γ and consider-
ing only the averaged term along the propagation coordinate
ζ , the field evolves according to

iγ
∂u
∂ζ

≈ 1

8π2n2

[
−∂2u

∂η2
+ 1

2

(
∂�

∂η

)2

u

+ iσ1

2
·
(

∂2�

∂η2
u + 2

∂�

∂η

∂u
∂η

)]
. (C10)

The term proportional to σ1 can be eliminated by employing
the gauge transformation u = eiσ1�/2 · v, in turn providing the
final result

iγ
∂v

∂ζ
≈ 1

8π2n2

[
−∂2v

∂η2
+ 1

4

(
∂�

∂η

)2

v

]
. (C11)

APPENDIX D: DERIVATION OF THE COMPLETE MODEL

We can now derive the whole model for the optical prop-
agation combining the results derived in Appendixes A and
C. Joining Eqs. (C6) and (A19), in the normalized coordinate
system ηζ we find

i
∂u
∂ζ

= −∂θ

∂ζ
[sin (ζ ) σ1 + cos (ζ )σ2] · u

+ 1

8π2n2γ
(T 0 + T 1γ + T 2γ

2 + · · · ) · u. (D1)

In the limit of small anisotropy and in the resonant case
H (ζ ) = sin(ζ ), Eq. (D1) provides

iγ
∂u
∂ζ

= −γ�(η)

2
{sin (2ζ ) σ1 + [1 + cos (2ζ )]σ2} · u

+ 1

8π2n2

{
−∂2u

∂η2
+ 1

2

(
∂�

∂η

)2

u + i

2
{sin (2ζ ) σ2

+[1 + cos (2ζ )]σ1}
(

∂2�

∂η2
+ 2

∂�

∂η

∂

∂η

)
u
}
. (D2)
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FIG. 11. Long FEM simulations for small rotation angles. Maps
on the plane xz of the electric field components (a) Ex , (b) Ey, and
(c) of the corresponding time-averaged Poynting vector component
along the propagation distance z. A snapshot of the time-dependent
electric fields for 180 µm < z < 200 µm is shown in panels (a) and
(b). The maximum rotation angle is �0 = 1◦ and wD = 8 µm. Input
is a Gaussian of width 6.6 µm.

Equation (D2) describes the evolution of waves, including
the beam variations occurring inside any single birefrin-
gence length. Equation (12) in the main text is then
derived by rewriting the field as a Bloch wave and con-
sidering only the cw component. The last step is carried
out in a simplified manner by averaging the ζ -dependent
coefficients over a birefringence length. For a more accu-
rate approach, see Eq. (A22). Finally, the terms explicitly
dependent on i can be factored out by using a gauge trans-
formation, in full analogy with what has been done to achieve
Eq. (C11).

APPENDIX E: DETAILS OF THE FDTD
IMPLEMENTATION

The FDTD is run using a continuous source with a wave-
length of 1 µm. The switching parameters of the source are

FIG. 12. Comparison of the output intensity profile computed
with FDTD and FEM simulations. The normalized intensity cross
section in z = 50 µm is plotted versus x for three different values of
�0, the latter being labeled at the top of each panel; the width of the
twisting distribution is wD = 8 µm. Solid red and green dashed lines
correspond to FEM and FDTD, respectively. In both the simulators,
the input is a circularly polarized Gaussian beam with a width equal
to the effective fundamental mode.

FIG. 13. Comparison of light evolution computed via FDTD and
FEM simulations. (a) Intensity distribution for a Gaussian input
of waist 2.4 µm over the plane x for �0 = 45◦ and wD = 8 µm,
computed with FEM (left side) and FDTD (right side). (b) Corre-
sponding evolution versus z of the Stokes parameters on the beam
axis x = 0 µm; blue and red lines correspond to FDTD and FEM
simulations, respectively.

chosen such that to achieve the stationary solutions inside
the temporal duration of our simulations. To inject the quasi-
mode as input on the FDTD simulations, we first generate
a fictitious isotropic material with a refractive index profile
matching the potential given by Eq. (14). The polarization
is then transformed into circular by inserting a homogeneous
layer of anisotropic material with thickness corresponding to
a QWP. The dielectric permittivities of the QWP are taken
identical to the twisted material to minimize the reflection
at the input interface, the latter implying a change in the
polarization actually transmitted into the structured material.

The time-average intensity is derived from the fields oscil-
lating in time by either applying a low-pass Savitzky-Golay
filter or by time averaging the electric field saved in one tem-
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poral oscillation (21 points are saved in one oscillation) after
the stationary regime is achieved. We verified that the two
approaches yield the same results, with the first method pre-
senting some small residual oscillation along the propagation
direction. Analogously, the Stokes parameters are retrieved by
deriving the complex amplitude of the field from the positions
of the maxima in the temporal oscillation of the field. Notice
that this procedure tacitly assumes a negligible amount of
back-reflection in the twisted material. Also in this case, a
more robust procedure based upon best fitting of the whole
wave function along one period provides no substantial differ-
ences.

APPENDIX F: FEM SIMULATIONS AND COMPARISON
WITH FDTD RESULTS

During our numerical efforts we found that FDTD simu-
lations for very small angles (lower than 5◦) do not converge
properly, even with spatial steps of about 20 nm. In particular,
the intensity profile and the two Stokes parameters S2 and S3

achieve a convergence, but the simulations predict a spurious
S1 component encompassing a nonvanishing error versus the
coarseness of the numerical grid. Curiously, such a behavior
does not take place for large angles. After several tests, we
deduced that the error comes from the interpolation function
used by the program to interpolate the given point-dependent
function for the dielectric tensor, with the most critical point
being the interface between the twisted material and the QWP
layer. To verify the accuracy of the numerical results for
small �0, we used COMSOL Multiphysics® to simulate the
light propagation, but using a Gaussian beam at the input,
with a waist equal to the theoretical value predicted from
Eq. (14). In COMSOL we employed the frequency domain
calculation available in the Wave Optics module. We first
simulated the case �0 = 1◦ and wD = 8 µm over a long cell
(length 200 µm), see Fig. 11. The confinement occurs as
shown in Fig. 6(a), with the Stokes parameters converging

in a smooth way. To save time, we then switched to shorter
cells (length 60 µm along the propagation direction) to val-
idate the FDTD simulations versus the maximum rotation
angle �0. To further relax the numerical requirements, we

focused on the case wD = 8 µm. In both the simulators, we
took a Gaussian beam placed in z = 0 µm in air, whereas
the twisted material starts at z = 2 µm. Figure 12 shows the
intensity cross-section computed in z = 50 µm with FDTD
(green dashed lines) and FEM (red solid lines). A very good
agreement is found between the two methods. Small differ-
ences can be seen on the tails, with the FEM case showing
some ripples. This is due to the perfectly matched layer (PML)
boundary conditions, inducing non-negligible back reflections
from the edges of the grid. Such reflections increases with �0,
explaining the growing differences in the tails of the predicted
field. Figure 13 provides more details. The full intensity dis-
tribution in the plane xz shows some small difference in the
beam amplitude, see Fig. 13(a). Beyond the numerical reflec-
tions discussed above, small discrepancies can be ascribed to
slightly different definitions of the input Gaussian beam. The
Stokes parameters versus z are very smooth in the case of
the FDTD, whereas fast variations are observed in the FEM
results, see Fig. 13(b). This validates our previous statement
that in the FEM simulations the spurious numerical reflection
from the grid edges are much stronger than in the FDTD,
at least for the PML parameters (default setting) we chose.
Indeed, the back reflections are greatly reduced when an air
buffer is inserted between the PML and the twisted material
(condition we used in the plotted results), demonstrating that
the standard PML does not work properly in our case. Sum-
marizing, the case of light propagating in a twisted anisotropic
material is highly demanding from a numerical point of
view, even in the linear regime: extreme attention should
be paid when numerical simulations are performed in these
geometries.
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