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The degenerate case of normal incidence and reflection of an optical beam (both paraxial and nonparaxial) at a
plane isotropic dielectric interface, which is azimuthally symmetric in terms of the momentum-spatial variation
of Fresnel coefficients but not in terms of the fundamental polarization inhomogeneity of the incident field,
requires in-depth analyses. In this paper, we use the reflection and transmission coefficient matrix formalism
to derive an exact field expression of a normal-reflected diverging beam. The availability of the exact field
information allows controlled variations of the system parameters, leading to significant dynamics of phase and
polarization singularities hitherto unanticipated in the literature. We carry out a detailed exploration of these
dynamics in our simulated system, and also verify them experimentally by using an appropriate setup. We then
use Barnett’s formalism to determine the associated orbital angular momentum (OAM) fluxes, leading to a subtle
interpretation and mathematical characterization of spin-orbit interaction (SOI) in the system. Our paper thus
represents a nontrivial unification of the most fundamental electromagnetic reflection and transmission problem
at a plane dielectric interface and the emerging areas of optical singularity dynamics with their understanding
in terms of OAM flux and SOI. The normal-incidence–retroreflection geometry being especially amenable to
applications, these beam-field phenomena are anticipated to have applications in interface characterization,
particle rotation and manipulation, and other nano-optical processes.
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I. INTRODUCTION

Any real optical beam, unlike an ideal plane wave, is math-
ematically composed of infinite constituent ideal plane waves
[1]. These plane waves are associated to their individual wave
vectors, all of which together create a non-point-like distri-
bution in the momentum space. In a reflection-transmission
analysis of such a “composite” optical beam—even at the
simplest of surfaces such as a plane isotropic dielectric
interface—each constituent plane wave must be transformed
and subsequently combined appropriately to obtain the cor-
rect forms of the complete reflected and transmitted beam
fields. The spatial dispersion of Fresnel coefficients [2], or
equivalently, the momentum-spatial variation of the reflection
and transmission coefficient matrices [3] come into play in
this context, giving rise to distorted complicated reflected and
transmitted field profiles. As a result, the centroids of the
reflected and transmitted intensity distributions are generally
shifted from the geometrically expected positions. The longi-
tudinal shift, which is along the central plane of incidence, is
known as the Goos-Hänchen (GH) shift; and the transverse
shift, which is perpendicular to the central plane of incidence,
is known as the Imbert-Fedorov (IF) shift [2–28].

A significant degenerate situation, however, is observed
when the central incident wave vector is normal to the dielec-
tric interface (referred to as the normal incidence or reflection
case in the present paper). Due to normal incidence of the
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central wave vector, no specific central plane of incidence is
obtained, with respect to which the longitudinal and transverse
directions would be defined. Physically, the conventional GH
and IF shifts disappear in this situation [2]. However, the
azimuthally symmetric variation of Fresnel coefficients (with
respect to the orientations of the constituent wave vectors),
combined with the inhomogeneous polarization profile of the
composite incident beam field, gives rise to substantially com-
plex beam-field phenomena that accompany the complicated
reflected and transmitted field profiles.

Standard analyses of the normal-incidence case are present
in the literature [29–33]. However, to our knowledge, a
detailed exploration of phase and polarization singularity
dynamics in a normal-reflected beam field has not been
worked out yet. Understanding the nature of these funda-
mental electromagnetic-optical phenomena would offer novel
methodologies to explore interface characteristics and emerg-
ing nano-optical processes such as particle trapping, rotation
and manipulation. Additionally, one may anticipate that the
exact information on orbital angular momentum (OAM) flux
would aid such nano-optical applications, because the OAM
flux density rather than the OAM density is responsible for
OAM transfer across any interface [34,35]. The OAM flux
density is related to the OAM density via a continuity equa-
tion, and the inconsistencies posed by OAM density in the
decomposition of total angular momentum (AM) into spin
and orbital parts is resolved by OAM flux density. However, a
complete characterization of OAM flux in a normal-reflected
beam field is not currently present in the literature.

In the present paper, we aim to unravel the above-
mentioned unexplored areas by analyzing normal optical
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FIG. 1. Example schemes of optical systems for beam reflection simulations and experiments. (a) A diverging beam with a nonzero central
angle of incidence θi0. (b) A normally incident focused beam (standard experimental setup). (c) A normally incident diverging beam and a
virtual screen. Here, ki0 and kr0 are respectively the incident and reflected central wave vectors; the z(S) = 0 surface is the interface separating
the dielectric media of refractive indices n1 and n2; and SR is the screen. In (b), k00 is the initial wave vector; BS is a beam splitter; and LN is a
converging lens that focuses the beam at z(S) = 0.

beam reflection at a plane isotropic dielectric interface by
using the reflection and transmission coefficient matrix for-
malism [3]. Based on a simulated diverging beam reflection
model, we first formulate an exact mathematical description
of the reflected field profile that completely characterizes the
inherent polarization inhomogeneity of the reflected field (a
collimated final output field in two dimensions). We then
utilize this complete field information to explore complex
optical singularity dynamics in the beam field. Two interre-
lated but distinctly characterized classes of generic optical
singularities are phase and polarization singularities [35]. In
a two-dimensional (2D) beam cross section, a phase singular-
ity is a point with an indeterminate phase of the beam field
[35–42], whereas a polarization singularity is a point or line
with at least one indeterminate property of the polarization
ellipse (e.g., a C-point singularity is an isolated circular-
polarization point with an indeterminate “ellipse orientation”)
[35,40,41,43–54]. We impose appropriate conditions on the
presently considered system to observe the phase singularity
formation in a spin-polarized component field, and an as-
sociated polarization singularity formation in the total field.
The degeneracy of the normal incidence gives rise to a
second-order phase singularity, and a corresponding “cen-
ter” polarization-singular pattern [35]. We then deviate from
the central singularity condition via controlled variations of
the input polarization—thus splitting the second-order phase
singularity to a pair of first-order singularities, and the po-
larization singularity to a pair of C-point singularities with
connected “lemon” polarization patterns [35,43]. A significant
singularity dynamics is thus observed via controlled variations
of the system.

Subsequently, we experimentally observe the singular-
ity dynamics by using an appropriate setup. Our simulated
system and experimental setup designs, though differing con-
sidering the practicality of the experiment, are equivalent
from the perspective of wave-vector distribution in momen-
tum space. So, the experimentally observed phenomena show
similar behaviors as those demonstrated in the simulation,
thus verifying the generality and fundamental nature of the
discussed singularity dynamics.

The association of spatially varying phase functions
to the spin-polarized component fields implies that each
spin-component field carries its own OAM. This is a man-
ifestation of spin-orbit interaction (SOI) in the system
[17–21,26,28,34,42,55–63]. The SOI originally occurs due
to the inhomogeneous reflection process of the composite
optical beam, establishing the coupling between spin angular
momentum (SAM) and OAM. But its signature is retained
in the subsequent collimated beam due to AM conservation,
and is manifested as the coupling between the spin and orbital
characteristics. We use Barnett’s AM flux density formalism
[34] to explore these orbital characteristics by quantifying the
OAM fluxes associated to the above-mentioned phase profiles
of the spin-component fields. As the controlled variation of the
input polarization alters the phase profiles, giving rise to an
interesting singularity dynamics, the associated OAM fluxes
vary correspondingly, restructuring the SOI. We explore these
OAM flux properties in detail, along with discussing the
single-photon interpretation of a nonseparable state represen-
tation of the beam field.

We thus present here a detailed exploration of the optical
singularity dynamics and the associated SOI characteristics
in a normal-reflected beam field. Due to the availability of
the complete field information, further variations of the op-
tical system can be performed—potentially leading to many
other interesting phenomena. The availability of exact OAM
information is anticipated to be immensely useful in particle
trapping and rotation, near-field analysis, nanoprobing, and
other nano-optical applications [31].

II. THE SIMULATED OPTICAL SYSTEM

A. A brief context

A reflection analysis and simulation for a general nonzero
angle of incidence (of the central wave vector) can be easily
performed by using a diverging beam model as shown in
Fig. 1(a). Such a model is especially convenient for our ray-
tracing analysis and simulation purposes [3] as compared to
a focused beam model, because the pointlike focus formation
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FIG. 2. The simulated optical system to analyze the normal in-
cidence and reflection of a diverging optical beam (description in
the text). The incident beam coordinate system I (x(I ), y(I ), z(I ) ), the
dielectric interface coordinate system S(x(S), y(S), z(S) ), and the re-
flected beam coordinate system R(x, y, z) are related as follows: (1)
−ẑ(S), is the outward normal to the interface; (2) ẑ(I ) ‖ ki0, the cen-
tral incident wave-vector direction; (3) ẑ ‖ kr0, the central reflected
wave-vector direction; (4) ŷ(I ) = ŷ(S) = ŷ; and (5) due to normal
incidence, x̂(I ) = x̂(S) = −x̂ and ẑ(I ) = ẑ(S) = −ẑ. For the simulation
we have considered a virtual collimating lens L2 and a virtual obser-
vation screen SR.

due to geometrical ray tracing is avoided in a diverging beam
model. The constituent wave vectors in a diverging and a con-
verging beam model, though arranged differently in position
space, occupy equivalent regions in momentum space. So,
Fresnel reflection analyses of these two composite beams are
physically equivalent.

However, the system of Fig. 1(a) cannot be experi-
mentally realized for a normal-incidence case, because the
screen would hinder the beam incidence. A standard normal-
incidence analysis usually follows the scheme of Fig. 1(b) that
includes a beam splitter to extract the reflected beam for obser-
vation [29–31,64–66]. Nevertheless, there is no forbiddance
to simulate normal incidence using the system of Fig. 1(a),
if the screen is considered as a virtual screen [Fig. 1(c)]. So,
for the purpose of the present paper, we present the simulated
results considering the scheme of Fig. 1(c), and subsequently
present the experimental results by using the standard scheme
of Fig. 1(b). The equivalence of our two sets of results auto-
matically verifies the validity of this approach.

B. The system

A complete optical system based on the scheme of Fig. 1(c)
is shown in Fig. 2, where a collimated beam is (1) first di-
verged through a lens L1 (with focus OF and focal length
F1 = −OF OI ), then (2) reflected at the dielectric interface
between the media of refractive indices n1 and n2, subse-
quently (3) collimated by a virtual lens L2 (focal length F2 =

OF OI + OI OS + OSOR), and finally (4) observed at a virtual
screen SR.

Since the initial and final beams are collimated, it is suffi-
cient to perform our analysis based only on the electric-field
amplitude vector profiles, by suppressing all k · r − ωt phase
terms. We consider an initial collimated Gaussian beam-field
profile, as a function of (x(I ), y(I ) ) in the I coordinate system
(Fig. 2), as

E (I )
0 = E (I )

0x + ei�EE (I )
0y = E (I )

0x x̂(I ) + ei�EE (I )
0y ŷ(I ), (1a)

E (I )
0x = E00 GI cos θE , E (I )

0y = E00 GI sin θE , (1b)

GI = e−ρ (I ) 2/w2
0 , ρ (I ) = (x(I ) 2 + y(I ) 2)

1
2 , (1c)

where E00 is the central field magnitude, w0 is the half beam
width, and (θE ,�E ) are the angle and relative-phase param-
eters to determine the polarization of E (I )

0 . The objective
here is to obtain the final output field at the screen SR. For
this purpose, we first decompose the initial input beam into
constituent rays, along each of which a family of wavefront-
surface elements is considered to propagate. We then calculate
the evolution of the field at these surface elements by tracing
a complete ray path of the form P0 → PI → PS → PR → P,
as shown in Fig. 2. By collecting the field information for
each such end point P, we finally obtain the complete field
information at the screen SR. The relevant derivation steps are
shown in the Appendix.

The above procedure is capable of computationally pro-
ducing exact field information even for a highly diverging
beam and for any general central angle of incidence θi0

[3], even though it is difficult in general to obtain an exact
final analytical expression. However, owing to the relative
simplicity of the presently considered normal-incidence case
(θi0 = 0◦), the final field expression at the screen SR is exactly
calculable—which we have obtained as a function of (x, y) in
the R coordinate system (Fig. 2) as

E = EX + ei�EEY , EQ = EQ
x x̂ + EQ

y ŷ, (Q = X,Y ), (2)

where EX and EY are the individual outputs correspond-
ing to the component input fields E (I )

0x and E (I )
0y respectively

[Eq. (1a)], defined by (cE = cos θE , sE = sin θE )

EX
x = C1cE (1 − C2u2), EX

y = −C1C2cE uv, (3a)

EY
x = C1C2sE uv, EY

y = −C1sE (1 − C2v
2), (3b)

with the various terms defined as

u = x/F2, v = y/F2, ρ = (x2 + y2)
1
2 , (4a)

α = F2/|F1|, wR = αw0, GR = e−ρ2/w2
R , (4b)

σ = ρ/F2, N = n2
2/n2

1 − 1, β = (
n2

2

/
n2

1 + Nσ 2
) 1

2 ,

(4c)

C1 = E00GR(β − 1)/[α(β + 1)], C2 = 2/(σ 2 + β ). (4d)

While the initial input component fields E (I )
0x and E (I )

0y
[Eq. (1a)] are respectively transverse-magnetic (TM) and
transverse-electric (TE), their individual outputs EX and EY

[Eq. (2)] are neither. This occurs due to the complexity of the
inhomogeneous reflection process at the dielectric interface.
Even though the lens L2 creates a final collimated output,
the inhomogeneous nature of the reflection alters the field
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FIG. 3. The component field profiles EX
x , EX

y , EY
x , and EY

y [Eqs. (3)] as functions of (x, y) at the output beam cross section, for θE = 45◦,
arbitrary �E , and the considered simulation parameters.

characteristics fundamentally, so that the polarization inhomo-
geneity is retained even in the collimated output beam.

However, the decomposition of E [Eq. (2)] in terms of
complex TM (x̂) and TE (ŷ) component fields is straightfor-
ward:

E = Ex + Ey = Ex x̂ + Ey ŷ, Eq = aq + i bq, (5a)

aq = EX
q + EY

q cos �E , bq = EY
q sin �E (5b)

(q = x, y). Subsequently, by writing x̂ = (σ̂+ + σ̂−)/
√

2 and
ŷ = (σ̂+ − σ̂−)/

√
2i, the decomposition of E in terms of com-

plex spin-component fields is obtained as

E = E+ + E− = E+ σ̂+ + E− σ̂−, E± = a± + i b±, (6a)

a± = (ax ± by)/
√

2, b± = (bx ∓ ay)/
√

2. (6b)

Equations (2)–(6) contain the complete information on the
presently considered inhomogeneously polarized final output
field. No assumption or approximation on the divergence of
the incident beam (output of L1) is made while deriving these
equations. So these exact expressions are applicable to all
divergences in the paraxial as well as nonparaxial regimes. In
the next section we establish a graphical approach to under-
stand and extract the field information contained in the above
equations.

III. THE NATURE OF POLARIZATION INHOMOGENEITY

For the simulations in the present paper, we consider the
following parameter values: refractive indices n1 = 1, n2 =
1.52; laser power P0 = 1 mW; free-space wavelength λ =
632.8 nm; half width of the input beam, w0 = 2 mm; focal
lengths of the lenses, F1 = −3 cm, F2 = 10 cm; and propa-
gation distances OI OS = 5 cm, OSOR = 2 cm [67]. The EX

x ,
EX

y , EY
x , and EY

y profiles [Eqs. (3)] for θE = 45◦ (and arbitrary
�E ) are shown in Fig. 3. As understood from Eqs. (3), EX

x and
EY

y are dominant field terms (approximately Gaussian form),
whereas EX

y and EY
x are second-order terms (four-lobe form

due to uv) representing small corrections to the field. This
nature is clearly understood by observing the differences in
the orders of magnitudes of the profiles of Fig. 3. We can thus
interpret that the input field E (I )

0x [Eq. (1a)] creates the dom-
inant field EX

x x̂ and the orthogonally polarized “correction”
field EX

y ŷ, whereas the input field E (I )
0y [Eq. (1a)] creates the

dominant field EY
y ŷ and the orthogonally polarized correction

field EY
x x̂. This form of expressing the fields is compara-

ble to the dominant-remnant field superposition described in
Ref. [68].

In the complete input field E (I )
0 [Eq. (1a)], the component

field E (I )
0y has a phase lead of �E over the component field

E (I )
0x —and hence this phase difference also appears between

EX and EY [Eq. (2)]. So, in terms of the profiles of Fig. 3,
EY

x superposes with EX
x with a phase lead �E to give a com-

plex x̂-polarized field Ex, whereas EY
y superposes with EX

y
with a phase lead �E to give a complex ŷ-polarized field Ey

[Eqs. (5)]. The superposition of Ex and Ey then gives the
complete field E [Eq. (5a)], which has a very complicated
form due to the above-mentioned effects.

The above discussion completely reveals the true nature of
the polarization inhomogeneity observed in the final output
beam field. Though we discuss this inherent nature in the
presently considered normal-incidence case based on Eqs. (3)
and the profiles of Fig. 3, we have verified based on the
formalism of Ref. [3] that the generic forms of Eqs. (2), (5),
and (6) seamlessly apply to all cases of general central angles
of incidence θi0. The generation of optical singularities in
Refs. [68,69], for example, relies on this generic form of field
decomposition. This inherent inhomogeneous polarization of
the field is attained originally due to the composite beam
reflection at the dielectric interface, and hence contains all the
information necessary for understanding the beam-shift and
spin-shift phenomena. For the purpose of the present paper,
we explore specific details of the optical singularities and
the relevant OAM characteristics by studying this polarization
inhomogeneity of the beam field.

IV. OPTICAL SINGULARITY DYNAMICS

A. Central phase singularity

In an inhomogeneously polarized beam field, if an iso-
lated point P exists where Ex and Ey have equal magnitudes,
then setting a phase difference π/2 between them creates
an isolated circular polarization, i.e., a C-point singularity,
at P [68] (the only exception occurs if |Ex|P = |Ey|P = 0,
creating a higher-order singularity [69]). If the C point is σ̂+

(σ̂−) polarized, then the component field E+ (E−) dominates
in the neighborhood with a uniform or near-uniform phase
profile, whereas the less intense (“remnant” [68]) field E−
(E+) manifests a phase singularity at that point. In particu-
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FIG. 4. Profiles of the functions a±, b+ [Eqs. (7)], and �+ [Eq. (8)] as functions of (x, y) at the output beam cross section, for θE = 45◦

and �E = +π/2.

lar, for the presently considered normal-incidence case, it is
understood from Eqs. (1)–(6) that the choice of θE = ±45◦
and �E = ±π/2 can generate such a singularity precisely
at the beam center. For the present paper, it is sufficient to
demonstrate the case of θE = 45◦ and �E = +π/2. The cases
involving θE = −45◦ and �E = −π/2 can be worked out in
the same way, and need not be discussed explicitly.

For the considered case of (θE ,�E ) = (45◦,+π/2), the
initial input field E (I )

0 [Eq. (1a)] is purely σ̂+ spin polar-
ized, and hence the σ̂− spin-polarized component field E−
[Eq. (6a)] is the dominant output (signifying a spin flip due
to reflection). This implies that the intended phase singularity
is to be observed in the phase of the less dominant σ̂+ spin-
polarized output field E+. In the light of the discussions of
Sec. III, we now establish a graphical understanding of the E±
fields [Eqs. (6)] in order to understand the phase singularity
formation.

By using (θE ,�E ) = (45◦,+π/2) in Eqs. (3), (5b), and
(6b), we obtain

a− = C1 − (C1C1/2) σ 2, b− = 0, (7a)

a+ = (C1C2/2)(v2 − u2), b+ = (C1C2/2) 2uv. (7b)

These a−, a+ and b+ profiles, as functions of (x, y), are
shown in Figs. 4(a), 4(b), and 4(c) respectively. The phase of
E+ is given by

�+ = tan−1(b+/a+), (8)

which, for the case of Eq. (7b), reduces to �+ = π − 2φ,
where φ is the azimuthal coordinate in the concerned xy plane
of the screen. Here, the π term is considered in order to follow
the phase convention of Ref. [3], along with limiting the phase
range as (−π, π ].

The variation of �+ satisfying d�+/dφ = −2 implies that
the field function E+ [Eq. (6a)] is a pure Laguerre-Gaussian
(LG) mode of index l = −2. The vortex of �+ can thus be
classified as a canonical vortex [56,63]. The �+ profile as a
function of (x, y) is shown in Fig. 4(d), which clearly shows
the l = −2 phase vortex at the beam center. This central phase
singularity is attributed to a+ = b+ = 0 at the beam center
[Figs. 4(b) and 4(c)], which makes the phase indeterminate.
In this way, by considering (θE ,�E ) = (45◦,+π/2), the in-
tended phase singularity is obtained at the normal-reflected
beam center.

While the initial input field contains only SAM, the gen-
eration of the phase vortex implies that the final output field

contains some amount of OAM as well. The complete analysis
given by Eqs. (2)–(8) clearly reveals that this OAM is obtained
due to the inhomogeneous nature of the reflection process—
which is a definite signature of SOI, manifesting itself as a
partial conversion from SAM to OAM.

B. Off-central phase singularities

As discussed in Ref. [68], shifting θE around the central
value (here 45◦) shifts the singularity to off-central posi-
tions. We explore this dynamics for the presently considered
normal-incidence case by considering shifted θE values θE =
45◦ + �θE , where | sin �θE | � 1. To obtain a singularity of
�+ [Eq. (8), for general a+ and b+] at a point, we require the
�+ value to be indeterminate at that point due to the condition
b+ = a+ = 0. This condition, by virtue of Eqs. (3), (4), (5b),
and (6b), for �E = +π/2 and for a general nonzero �θE ,
translates to

uv = 0, tan �θE = (v2 − u2)/β. (9)

Using these equations, we obtain the solutions for the singu-
larity points, as functions of �θE , as

(x1±, y1) = (±d0, 0), for �θE � 0, (10a)

(x2, y2±) = (0,±d0), for �θE � 0, (10b)

d0 = F2 tan �θE√
2

⎡
⎣N +

(
N2 + 4n2

2

n2
1 tan2 �θE

) 1
2

⎤
⎦

1
2

.

(10c)

We observe the dynamics of the off-central singularities
based on Eqs. (10) by varying only �θE , but keeping �E

constant. So we suppress the explicit mention of �E = +π/2
here onwards, wherever appropriate.

The simulated a+, b+, and �+ profiles for �θE = −0.05◦
(a �θE < 0◦ case) are shown in Figs. 5(a), 5(b), and 5(c),
respectively. In this case the condition a+ = b+ = 0 is
satisfied at two symmetrically opposite points (±d0, 0)
[Eq. (10a)] on the x axis—forming the phase singularities
at these two points. Also, the simulated a+, b+, and �+
profiles for �θE = +0.05◦ (a �θE > 0◦ case) are shown in
Figs. 5(d), 5(e), and 5(f), respectively, for which the condition
a+ = b+ = 0 is satisfied at two symmetrically opposite points
(0,±d0) [Eq. (10b)] on the y axis—generating the phase sin-
gularities at these two points.
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FIG. 5. Profiles of the functions a+, b+ [Eq. (6b)], and �+ [Eq. (8)] as functions of (x, y) at the output beam cross section, for �E = +π/2,
(a–c) �θE = −0.05◦, and (d–f) �θE = +0.05◦ [70].

Unlike the �θE = 0◦ case, however, the paired off-central
phase vortices are not canonical vortices, because the variation
of �+ around the vortices does not have a simple proportion-
ality relation with the azimuthal rotation around the vortices.
Such a vortex cannot be assigned an LG mode index l , but
instead can be described by assigning a topological charge
[35,36,43,63]

t = 1

2π

∮
C

∇�(r) · dr, (11)

where C denotes a closed contour around the vortex. The
�+ profiles of Figs. 5(c) and 5(f) show that, for a counter-
clockwise rotation around each of the vortices, �+ changes
by −2π . This implies that the topological charge of each of
the off-central vortices is t = −1. In contrast, the topological
charge of the pure LG mode �+ profile of Fig. 4(d) is identical
to its mode index: t = l = −2. This leads us to a significant
vortex dynamics, interpreted consistently in the following two
ways (see Supplemental Material [70]).

(1) In terms of Eq. (10a), as �θE approaches zero from
a negative value, the two t = −1 phase vortices situated at
symmetrically opposite positions on the x axis [Fig. 5(c)]
approach each other and merge at the origin to create a t =
l = −2 phase vortex [Fig. 4(d)].

(2) In terms of Eq. (10b), as �θE approaches zero from a
positive value, the two t = −1 phase vortices situated at sym-
metrically opposite positions on the y axis [Fig. 5(f)] approach
each other and merge at the origin to create a t = l = −2
phase vortex [Fig. 4(d)].

This observation thus reveals a remarkable dynamics of the
phase vortices, which has not been anticipated in the earlier
work of Ref. [68]. The SOI manifesting itself in the form
of a merger of two lower-order phase vortices to create a
higher-order phase vortex is a significant result obtained in
the present paper.

C. Polarization singularities

Due to the condition a+ = b+ = 0, the intensity of the
E+ field goes to zero at the singularity coordinates. From
a physical perspective, a nonzero field cannot exist with an
indeterminate phase. This nature is clearly observed in the
intensity profiles I+ = (n1/2μ0c)|E+|2 of the field E+ shown
in Figs. 6(a), 6(b), and 6(c) for �θE = −0.05◦, 0◦,+0.05◦
respectively [70].

Since E+ is exactly zero at the phase-singularity points, the
total field E contains pure σ̂− polarizations at these points due
to the contribution of the E− field only [Eq. (6a)]. Clearly,
both the fields E± are nonzero at the nearby points, and hence
the polarizations are elliptical in the vicinity. Thus, isolated
σ̂− polarizations are obtained in the total field E at the phase-
singularity points of E+ [Eq. (10)]—giving rise to C-point
polarization singularities [35,40,41,43–53] at these points.

The simulated total field profiles for �θE =
−0.05◦, 0◦,+0.05◦ are shown in Figs. 6(d), 6(e), and 6(f)
respectively, where the formation of the C-point singularities
is observed. The streamlines show lemon polarization
patterns [35,43] on the x axis and the y axis in the profiles
of Figs. 6(d) and 6(f) respectively, identifying the C-point
polarization singularities that correspond to the t = −1
phase singularities of Figs. 5(c) and 5(f). A higher-order
center polarization-singular pattern [35] is observed in the
profile of Fig. 6(e), that corresponds to the t = l = −2 phase
singularity of Fig. 4(d).

The two lemon patterns of Fig. 6(d) can be interpreted as a
pair of interconnected lemon patterns on a common horizon-
tal separatrix [35], and the same interconnectedness can be
interpreted for the two lemon patterns of Fig. 6(f) considering
a common vertical separatrix. With these interpretations, the
formation of the center singularity pattern in the profile of
Fig. 6(e) can be consistently understood in the following two
ways [70].

013522-6



OPTICAL SINGULARITY DYNAMICS AND SPIN-ORBIT … PHYSICAL REVIEW A 107, 013522 (2023)

FIG. 6. [(a)–(c)] Simulated intensity profiles I+ = (n1/2μ0c)|E+|2 for �θE = −0.05◦, 0◦, +0.05◦ and �E = +π/2. [(d)–(f)] Correspond-
ing total field profiles E [Eqs. (5) and (6)] [70]. The ellipticities of the polarization ellipses are not visually understandable, since the
σ̂−-polarized component field E− significantly dominates over E+. However, the arrangement of the polarization ellipses is understood by
generating the streamlines.

(1) As �θE approaches zero from a negative value, the two
horizontally separated lemon patterns approach each other
along the common horizontal separatrix and merge at the
origin to create a higher-order center singularity pattern.

(2) As �θE approaches zero from a positive value, the two
vertically separated lemon patterns approach each other along
the common vertical separatrix and merge at the origin to
create a higher-order center singularity pattern.

A significant polarization singularity dynamics is thus ob-
served in the reflected inhomogeneously polarized beam field,
which is intrinsically associated to the dynamics of the �+
phase singularities.

A phase singularity is not necessarily associated to a polar-
ization singularity in all general cases [68]. For instance, if the
presently considered σ̂− spin-polarized field E− is replaced
with a general elliptically polarized field, the total field at
the phase-singularity points of E+ would be elliptical—and
hence, no C-point singularity would be created in the total
field E . It is thus a special nature of the presently considered
polarization inhomogeneity that a polarization singularity is
obtained in the total field where one of the component fields
is phase singular. However, the most important result of this
analysis is the revelation of the interrelation between a phase-
singularity merger phenomenon and a polarization-singularity
merger phenomenon. As the two lower-order phase vortices
of Fig. 5(c) [or Fig. 5(f)] approach each other and merge to
form the higher-order phase vortex of Fig. 4(d), the two simple
lemon patterns of Fig. 6(d) [or Fig. 6(f)] also approach each
other and merge to form the higher-order center singularity
pattern of Fig. 6(e). This is a remarkable and previously unan-
ticipated SOI phenomenon which is much more significant
and fundamentally interesting than the commonly observed
partial conversion from SAM to OAM.

D. Singularity trajectories

The above formulation describes well-defined trajectories
of the singularity points at the beam cross section, with
respect to the variation of �θE . We first observe the vari-
ation d0 as a function of �θE [Eq. (10c)], as shown in
Fig. 7, for the presently considered simulation parameters.
Then, the coordinates (±d0, 0) for �θE � 0 and (0,±d0) for
�θE � 0 [Eqs. (10)], with d0 varying according to the plot
of Fig. 7, give the trajectories of the singularity points—as
shown in Fig. 8. These trajectories are comparable to, but
fundamentally different from, the displacement trajectories
of noncanonical vortices which move at the beam cross sec-
tion due to beam propagation [35,45,63].

FIG. 7. Variation of d0 [Eq. (10c)] as a function of �θE in
an example range [−0.3◦, +0.3◦], for the considered simulation
parameters.
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FIG. 8. Trajectories of the singularity points—the x and y axes.
The point pairs of the form (±d0, 0) and (0, ±d0) [Eqs. (10)], for
all d0 [Eq. (10c), Fig. 7], represent the positions of the singularity
pairs for �θE � 0 and �θE � 0 respectively. Representative points
are shown on these trajectories, with �θE values marked. Here, any
two adjacent points are separated by a �θE interval of 0.025◦.

V. EXPERIMENTAL DEMONSTRATIONS

A. The experimental setup

As discussed in Sec. II A, a standard setup following the
scheme of Fig. 1(b) is required for a normal-reflection exper-
iment. Our detailed experimental setup based on this scheme
is shown in Fig. 9. We first collimate a He-Ne laser beam
(λ = 632.8 nm) by using a lens pair (LP), and then assign
intended polarizations to it by using a combination of a half
wave plate (HWP), a Glan-Thompson polarizer (GTP), and a
quarter wave plate (QWP) (H , G1, and Q1). We then use a
beam splitter (BS) to partially reflect the beam towards a high
numerical aperture (NA) lens (LN ), which sharply focuses the
beam at an air-glass interface. A microscope objective lens
is used here as the high NA lens (specifications: focal length
1.60 mm, oil immersion NA 1.25, magnification 100X, manu-
facturer Edmund Optics). The reflected beam hence obtained
is collimated by the same lens LN , and is propagated towards a
CCD camera (CC) after partial transmission through the beam
splitter (BS).

To observe the singularity dynamics of the field function
E+ [Eq. (6a)], we extract it from the total field E by using
a QWP-GTP combination (QS and GS) before the camera.
Orienting the fast axis of QS along ŷ performs the transfor-
mation E±σ̂± → E±d̂±, where d̂± = (x̂ ± ŷ)/

√
2. Then, by

orienting the transmission axis of GS along d̂+, the field E+d̂+
is isolated and observed.

Considering the design difference between the simulated
system (Fig. 2) and the experimental setup (Fig. 9), we allow
the length scales of the simulated and experimental profiles to

FIG. 9. The experimental setup, comprising the following com-
ponents. LS , He-Ne laser; LP, collimating lens pair; H , half
wave plate (HWP); G1 and GS , Glan-Thompson polarizers (GTP);
Q1 and QS , quarter wave plates (QWP); BS , beam splitter; LN , high
numerical aperture (NA) lens; GP, glass plate (the z(S) = 0 surface
is used as the isotropic dielectric interface for reflection); CC , CCD
camera (as screen SR). The lens LN serves the purposes of both L1

and L2 of Fig. 2, and hence the coordinate systems I (x(I ), y(I ), z(I ) )
and R(x, y, z) are both defined with respect to the position of LN .

be different. In particular, the half width of the final collimated
beam (wR) in the experimental setup remains the same as
that of the initial collimated beam (w0), which we set here
as approximately 0.3 mm. Additionally, the high NA lens
makes the incident beam nonparaxial. This makes the field
E+ intense enough, thus easing the detection process of the
singularities using a CCD camera. This also allows us to use
a large enough �θE range, thus making the measurements
convenient.

It is to be noticed that, in the diverging beam model
[Fig. 1(c)], a ray incident from the x(S) > 0 (or x(S) < 0, y(S) >

0, y(S) < 0) region reflects and propagates back to the x(S) > 0
(or x(S) < 0, y(S) > 0, y(S) < 0) region. On the other hand, in
the focused beam model [Fig. 1(b)], a ray incident from the
x(S) > 0 (or x(S) < 0, y(S) > 0, y(S) < 0) region reflects and
propagates to the x(S) < 0 (or x(S) > 0, y(S) < 0, y(S) > 0) re-
gion. The experimental beam profiles obtained from the setup
of Fig. 9 are thus 180◦ rotated about ẑ, as compared to the
simulated profiles obtained from the system of Fig. 2. How-
ever, the field functions [Eqs. (3) and (4)] are invariant under
the transformation (x, y) → (−x,−y), because of which all
simulated profiles are symmetric under a 180◦ rotation about ẑ
(Figs. 3–6). For this reason, explicit consideration of such ro-
tations of the experimentally obtained profiles is not required.
This observation, nevertheless, reveals another subtle compar-
ison between the diverging and converging beam models.

B. Results

We first impose the central singularity conditions
(θE ,�E ) = (45◦,+π/2) by appropriately orienting G1 and
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FIG. 10. [(a)–(c)] Experimentally obtained I+ intensity profiles for �θE = −1.00◦, 0.00◦, +1.00◦ and �E = +π/2. [(d)–(f)] Correspond-
ing single-slit diffraction patterns. The diffraction patterns exhibit appropriate fringe dislocations at the positions of the singularities [the length
scales of (d), (e), and (f) are different from those of (a), (b), and (c), because the beam is expanded before passing through the single slit]. In (e),
as we move along a central bright fringe towards the singularity, the fringe bends left and aligns with the first-order bright fringe on the other
side of the singularity. This identifies a topological charge t = −2. In (d) and (f), as we move in a similar way, the central bright fringe bends
left and aligns with the first dark fringe on the other side, and also partially connects to the first-order bright fringe. This identifies a topological
charge t = −1. A technical aspect: In any directly displayed beam image, the y pixel count starts at the top and proceeds downwards. But in a
formal profile plot on the xy plane, the ŷ direction is vertically upwards. So the direct image is flipped vertically with respect to the true profile.
The images of the single-slit diffraction patterns shown in Ref. [71] are thus flipped. The true patterns for t = ±1 are shown in Ref. [60], and
are explained in terms of azimuthal energy flows in vortex beams.

Q1 [72]. We then rotate G1 to get different off-central angles
θE = 45◦ + �θE , and observe the corresponding I+ inten-
sity profiles. As anticipated, a central singularity is observed
for �θE = 0.00◦; a pair of symmetrically off-centered sin-
gularities on the x axis is observed for �θE < 0.00◦; and
a pair of symmetrically off-centered singularities on the y
axis is observed for �θE > 0.00◦. As �θE approaches zero
from a nonzero value, the off-central singularities gradually
approach each other and eventually merge at the center to
form the central singularity. Example I+ profiles, for �θE =
−1.00◦, 0.00◦,+1.00◦, are shown respectively in Figs. 10(a),
10(b), and 10(c) — which exhibit behaviors similar to those
of the simulated profiles of Figs. 6(a), 6(b), and 6(c) respec-
tively. This observation clearly verifies the correctness of the
simulated singularity dynamics.

Subsequently, we observe the topological charges of these
singularities by using single-slit diffraction [60,71]. We place
a lens in front of GS to expand the beam size, and then pass
the expanded beam through a single slit of width 0.6 mm,

oriented appropriately for the different �θE values (horizontal
for �θE = −1.00◦, vertical for �θE = 0.00◦ and +1.00◦).
The far-field diffraction patterns thus obtained are shown
in Figs. 10(d), 10(e), and 10(f) respectively. In each of
Figs. 10(d) and 10(f), two fringe dislocations appear at the
positions of the singularities. Each of these dislocations car-
ries the specific signatures of a topological charge t = −1.
This verifies that, for these two fields, the phase profile �+
has a topological charge t = −1 corresponding to each of its
two singularities, making the total topological charge t = −2
[Figs. 5(c) and 5(f)]. On the other hand, in Fig. 10(e), a
single fringe dislocation appears at the position of the cen-
tral singularity. This dislocation carries the specific signatures
of a topological charge t = −2, which verifies that, for this
field, the phase profile �+ has a single central singularity of
topological charge t = −2 [Fig. 4(d)].

Finally, we capture a series of I+ profile images for various
�θE values, and then computationally determine their singu-
larity coordinates. This generates a series of sample points on

013522-9



DEBNATH, KUMAR, BAISHYA, AND VISWANATHAN PHYSICAL REVIEW A 107, 013522 (2023)

FIG. 11. Experimentally obtained representative points on the
singularity trajectories, with �θE values indicated. Any two adjacent
points are separated here by a �θE interval of 0.25◦.

the trajectories of the singularities, which is shown in Fig. 11.
The distribution pattern of these trajectory points matches
well with that shown in Fig. 8, thus verifying the correctness
of the simulated trajectory characteristics.

In this way, the simulated singularity dynamics are exper-
imentally verified. The fact that the diverging and converging
beam models create similar dynamics of the singularities
is a remarkable result, and is consistent with our assertion
(Sec. II A) that the constituent wave vectors in both these
models occupy equivalent regions in momentum space.

VI. ORBITAL ANGULAR MOMENTUM
CHARACTERISTICS

Since the E+ field function for �θE = 0◦ is a pure LG
mode of index l = −2 (Sec. IV A), the associated OAM
is straightforwardly determined as −2h̄ per photon. Such a
direct determination, however, cannot be performed for the
�θE 	= 0◦ cases, since the associated phase vortices are non-
canonical (Sec. IV B). So, in the present section, we explore
the OAM characteristics in detail by explicitly calculating the
OAM fluxes associated to the E± fields.

Barnett’s AM flux density formalism [34,35] shows that,
for any 2D beam field in the form E = Ex x̂ + Ey ŷ (consider-
ing an isotropic dielectric medium of refractive index n), the
OAM flux density across a beam cross section is given by

Morb = nε0

2k
Im[(∂φEx )E∗

x + (∂φEy)E∗
y ], (12)

where k is the wave-vector magnitude 2π/λ in free space;
Im(Z ) represents the imaginary part of a complex quantity
Z; and ∂φ = x∂y − y∂x is the partial differential operator with
respect to the azimuthal variable φ. Using this formula for the
E± fields in the general form E± σ̂±, we obtain the general

expressions of their OAM flux densities as

M±
orb = nε0

2k
Im[E∗

±(∂φE±)]. (13)

For the presently considered fields, we use Eqs. (3)–(6) in
Eq. (13) along with �E = +π/2, and obtain

M±
orb = −n1ε0

2k

C2
1C2

2

[
C2sE cEσ 4 ± {(

c2
E − s2

E

)
(v2 − u2)

+C2σ
2
(
c2

E u2 + s2
Ev2

)}]
. (14)

The corresponding OAM fluxes across the entire beam
cross section are then obtained as

L±
orb =

∫ ∞

−∞

∫ ∞

−∞
M±

orb dx dy. (15)

Example M±
orb profiles for �θE = −0.05◦, 0◦,+0.05◦ [cor-

responding to the E profiles of Figs. 6(d), 6(e), and 6(f)
respectively] are shown in Fig. 12 [70]. As understood from
Barnett’s analysis [34,35], the fluxes L±

orb [Eq. (15)] are phys-
ically significant quantities, but a straightforward physical
significance of the flux densities M±

orb [Eqs. (13) and (14) and
Fig. 12] is restricted [for instance, in Figs. 12(d) and 12(f),
the local positive M+

orb values in the vortex neighborhoods are
apparently inconsistent with the topological charge t = −1 of
each vortex]. The restriction applies because any function M
that satisfies

∫ ∞

−∞

∫ ∞

−∞
M dx dy = 0 (16)

can be seamlessly added to M±
orb without changing the phys-

ically significant L±
orb results of Eq. (15). Such a function M

can be chosen, for example, by requiring to compensate for
apparent inconsistencies posed by the local M±

orb values. Nev-
ertheless, a certain degree of relevance of the M+

orb profiles of
Figs. 12(d), 12(e), and 12(f) can be clearly observed with the
�+ phase profiles of Figs. 5(c), 4(d), and 5(f) and with the I+
intensity profiles of Figs. 6(a), 6(b), and 6(c). As interpreted
by Berry [56] and Molina-Terriza et al. [73], the OAM of a
vortex beam is carried by the field surrounding the vortex,
but not by the vortex itself which is devoid of photons. By
comparing the present M+

orb, �+, and I+ profiles, we see that
the regions with larger intensities possess larger magnitudes of
M+

orb, as compared to the less intense regions in the neighbor-
hood of the vortices. This observation is indeed in agreement
with the interpretation by Berry [56] and Molina-Terriza et al.
[73].

The OAM fluxes L±
orb physically signify the rate of flow of

OAM across the entire beam cross section due to the individ-
ual σ̂± spin-polarized fields. It is very difficult to analytically
evaluate the integrals of Eq. (15) by using the M±

orb expres-
sions of Eq. (14), and it is sufficient to perform numerical
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FIG. 12. OAM flux density profiles M±
orb [Eq. (14)] of the fields E± [Eq. (6a)]. (a–c) M−

orb for �θE = −0.05◦, 0◦, +0.05◦. (d–f) M+
orb for

�θE = −0.05◦, 0◦, +0.05◦ [70].

integration here for the purpose of the present paper. The nu-
merically determined variations of L±

orb for the presently con-
sidered E± fields, in an example �θE range [−0.3◦,+0.3◦],
are shown in Fig. 13(a). Clearly, |L+

orb| is several orders of
magnitude higher than L−

orb, which is a direct manifestation
of the fact that the phase profile �+ has complicated spatial
variations (including singularities) at the beam cross section,
whereas the phase �− = tan−1(b−/a−) is approximately con-
stant [expressed by using Eqs. (3)–(6)].

But additionally, the power comparison of the fields
E± makes this difference even more significant. We cal-
culate the powers P± by integrating the intensities I± =

(n1/2μ0c)|E±|2 as

P± =
∫ ∞

−∞

∫ ∞

−∞
I± dx dy. (17)

The numerically obtained variations of P± in the �θE

range [−0.3◦,+0.3◦] are shown in Fig. 13(b)—clearly ex-
pressing the significant dominance of P− over P+. This
implies that, as compared to the field E−, the field E+ is able
to transmit a much higher amount of OAM across a beam
cross section [Fig. 13(a)] in spite of having a much smaller
number of photons [Fig. 13(b)]. Hence, the OAM per photon
of the field E+ massively outweighs that of the field E−.

FIG. 13. (a) Variations of the OAM fluxes L±
orb [Eq. (15)] as functions of �θE . Both the functions L±

orb have identical variations around the
central values (at �θE = 0◦) L+(0)

orb and 0h̄/s. (b) Variations of the powers P± [Eq. (17)] as functions of �θE . The functions P± have exact
opposite variations around the central values P (0)

± —implying some energy transfer from the field E− to the field E+ as |�θE | moves away from
0◦, while satisfying energy conservation. This energy gain of E+ is consistent with the evolution of the I+ profiles of Fig. 6. (c) Variations of
the “OAM per photon” l±

orb [Eq. (18)] as functions of �θE . The functions l±
orb vary around the central values −2h̄ and 0h̄. The variation of l−

orb

is represented here by multiplying it with a factor 1010.

013522-11



DEBNATH, KUMAR, BAISHYA, AND VISWANATHAN PHYSICAL REVIEW A 107, 013522 (2023)

Since each photon has an energy h̄ω, the numbers of
σ̂± spin-polarized photons passing through a beam cross
section per unit time are obtained as N± = P±/h̄ω. The
corresponding orbital angular momenta per photon are thus
obtained as

l±
orb = (L±

orb/P±)h̄ω. (18)

The numerically obtained variations of l±
orb in the �θE

range [−0.3◦,+0.3◦] are shown in Fig. 13(c). Clearly, l−
orb

is practically insignificant as compared to l+
orb. The physical

significance of the l+
orb variation can be understood in refer-

ence to the variation of the �+ profile. As explained earlier
via Eqs. (7b) and (8), �+ attains the form �+ = π − 2φ for
�θE = 0◦ [Fig. 4(d)], because of which the field function E+
[Eq. (6a)] becomes a pure LG mode with index l = −2. So,
with physical consistency, the corresponding OAM per photon
attains the value l+

orb = −2h̄, as understood from the plot of
Fig. 13(c). With the variation of �θE , as the function E+
distorts away from a pure LG mode, complicated �+ profiles
such as those of Figs. 5(c) and 5(f) are obtained. The vortices
in these phase profiles are noncanonical [56,63], and hence,
even if a pair of vortices with topological charges t = −1 is
obtained, the total OAM per photon does not add up to −2h̄.
This characteristic is clearly observed in the plot of Fig. 13(c).

With the above understanding of the OAM properties, a
subtle interpretation and mathematical characterization of SOI
can be attained. We reexpress the field E [Eq. (6a)] as

E = E0+ei�+ σ̂+ + E0−ei�− σ̂−, E0± = (a2
± + b2

±)
1
2 , (19)

which is a nonseparable state representation, describing the
coupling between the spatial (associated to OAM) and polar-
ization (associated to spin) states. In terms of a semiclassical
single-photon interpretation, this state implies that, if a single
photon is identified to be in the spin state σ̂±, it is also auto-
matically identified to be in the spatial state E0±ei�± , which
is associated to an OAM l±

orb per photon as determined by
Eq. (18). This coupled state interpretation reveals an inherent
subtle nature of SOI in the considered system. The SOI truly
takes place due to the inhomogeneous reflection process of
the composite beam (i.e., due to the field transformations
discussed in the Appendix), because of which the SAM and
OAM get coupled. But due to the conservation of AM, the in-
formation of this SOI is retained in the subsequent collimated
beam. The above nonseparable state representation signifies
this inherent SOI information. One may qualitatively visualize
that, even if an observation is not made on the direct reflected
beam, the SOI signature is observed in the subsequent col-
limated beam in terms of the above nonseparable state. In
the classical field picture, this field state implies that the total
OAM of the beam field is consistently distributed among the
σ̂± spin-component fields—which is a fundamentally interest-
ing physical phenomenon in the presently considered system.

VII. FUTURE DIRECTIONS

Due to the special symmetries of the field terms EX
x , EX

y ,
EY

x , and EY
y in the normal reflection [Eqs. (3) and (4) and

Fig. 3], we have obtained the centroids of the intensity profiles
I and I± of the fields E and E± at the origin—implying
zero GH, IF, and spin shifts. But we have observed in the

simulation that, as we move away from the normal-incidence
condition, the symmetries of the field terms break down. The
appearance of a unique central plane of incidence breaks the
degeneracy of the normal-incidence case, and hence nonzero
beam shifts and spin shifts appear.

A detailed analysis of a near-normal-incidence case cannot
be performed by using a usual first-order approximation as
in Ref. [2], because in such a case the angle of incidence
is smaller than or comparable in size to the divergence an-
gle of the beam. Special analyses on near-normal-incidence
cases are present in the literature [74,75], but, to our knowl-
edge, without a complete mathematical characterization of the
OAM fluxes. Such an analysis is out of the scope of the present
paper under the mathematical construct of the reflection and
transmission coefficient matrices [3]. For a future analysis in
this direction, we anticipate the appearance of fundamentally
interesting phenomena regarding dynamics of singularities
and evolution of SOI characteristics as the system transits
from a normal-incidence to a near-normal-incidence config-
uration. Looking further forward, such an analysis would
be substantially significant for dielectric interfaces involving
anisotropic, gyrotropic, and topological materials, and also for
ellipsoidal, helical, and other nonplanar incident wavefronts.

Additionally, in the present paper we have experimentally
demonstrated the singularity dynamics, but not the OAM flux
determination. To our knowledge, an experimental method
utilizing Barnett’s formalism to determine OAM flux is not
present in the literature, and introducing a new method in this
regard is out of the scope of the present paper. We anticipate
that such a future method would be a general one, applicable
to a large class of beam fields. Our work in this direction, with
an appropriate methodology and its experimental demonstra-
tion, will be reported elsewhere.

VIII. CONCLUSION

In this paper we have analyzed the degenerate case of
normal incidence and reflection of a composite optical beam,
which is characterized by an azimuthally symmetric variation
of Fresnel coefficients with respect to wave-vector orienta-
tions, and an inhomogeneously polarized incident beam field.
We have used the reflection and transmission coefficient ma-
trix formalism to derive an exact expression of the reflected
beam field—thus completely characterizing its fundamental
polarization inhomogeneity. Then we have introduced appro-
priate conditions to generate a second-order phase singularity
in the σ̂+ spin-polarized component field, and an associ-
ated center polarization-singular pattern in the total field.
Subsequently, we have introduced controlled variations to
the system to deviate from the central singularity generation
condition, leading to a splitting of the higher-order central sin-
gularities (in both phase and polarization) to off-central pairs
of lower-order singularities. We have thus observed a complex
dynamics of the singularities, along with appropriately map-
ping the trajectories of the split lower-order singularities.

Subsequently, we have experimentally observed the sin-
gularity dynamics by using a standard focused beam setup
for normal incidence. In particular, we have demonstrated the
formation and splitting of a higher-order singularity, and the
trajectories of the split pair of lower-order singularities.
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The confirmation that the observed intensity minima are truly
the anticipated optical vortices has been achieved via single-
slit diffraction patterns.

Finally, we have mathematically characterized the SOI in-
formation in the system by determining the associated OAM
fluxes via Barnett’s formalism. Our simulation has shown
the restructuring of the OAM flux densities due to the dis-
placements of the split pair of phase singularities along the
determined trajectories. The σ̂± spin-polarized component
fields carry their individual OAM fluxes, implying a consistent
distribution of OAM between the spin-component fields. At
a single-photon level, this implies that a photon detected in
a spin state σ̂± has a specific OAM l±

orb [Eq. (18)]. This
interpretation reveals a subtle and interesting signature of SOI
in the considered system.

In this way, we have explored a significant optical singu-
larity dynamics and analyzed the SOI phenomena in the con-
sidered normal-reflected beam field. In addition to the prac-
tical importance of the normal-incidence analysis, the present
paper also demonstrates a significant application of Barnett’s
AM flux density formalism. The transfer of OAM from one
medium to another is naturally determined by the OAM flux,
and hence the involvement of Barnett’s formalism is physi-
cally relevant and significant. However, to our knowledge, the
true potential of this formalism has not been widely explored
in the literature. In this premise, our complete characterization
of OAM fluxes serves the purpose of demonstrating the true
potential of Barnett’s formalism. We anticipate that the exact
information on the OAM fluxes, in addition to the controlled
variation of the singularity structures, will find significant ap-
plications in interface characterization, particle trapping and
rotation, and various other nano-optical processes.
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APPENDIX : DERIVATION OF EQS. (2)–(4)

Here we summarize the calculation steps required for de-
riving the final output field expression [Eqs. (2)–(4)]. We
apply the formalism of Ref. [3] to the system of Fig. 2 for
this purpose. Since the considered initial and final beams are
collimated, it is sufficient to suppress all k · r − ωt phase
terms, and discuss the transformations of the field amplitude
vectors only.

From the system geometry it is obtained that, if the 2D
coordinates of the point PI (and hence of P0) are (x(I ), y(I ) ) =
(xI , yI ), then those of the point PR (and hence of P) are
(x, y) = (−αxI , αyI ), where α = F2/|F1|. The input field be-
fore L1 at (x(I ), y(I ) ) = (xI , yI ) thus gives the output field at
(x, y) = (−αxI , αyI ) at SR after appropriate transformations.

The field transformation at PI (from “just before L1” to
“just after L1,” in terms of the I coordinate system) is given

by the operator

R̃L1 = gI R̃II ′R̃I ′I ′′R̃I ′I , (A1)

R̃I ′I =
⎡
⎣ cos φI sin φI 0

− sin φI cos φI 0
0 0 1

⎤
⎦, R̃II ′ = R̃−1

I ′I , (A2a)

R̃I ′I ′′ =
⎡
⎣ cos θI 0 sin θI

0 1 0
− sin θI 0 cos θI

⎤
⎦, gI = 1√

cos θI
, (A2b)

where cos φI = x(I )/ρ (I ), sin φI = y(I )/ρ (I ), (A3a)

ρ (I ) = (x(I ) 2 + y(I ) 2)
1
2 , rI = (

ρ (I ) 2 + F2
1

) 1
2 ,

(A3b)

cos θI = |F1|/rI , sin θI = ρ (I )/rI . (A3c)

The field transformation along PI → PS → PR (from just
after L1 in the I coordinate system, to “just before L2” in the
R coordinate system) is given by the operator

R̃R = (1/α) R̃RS r̃(S)
S R̃SI , (A4)

where 1/α is an amplitude reducing factor; R̃SI and R̃RS are
rotation matrices (considering θi0 = 0◦)

R̃SI =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, R̃RS =

⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦; (A5)

and r̃(S)
S is the reflection coefficient matrix

r̃(S)
S = A0

⎡
⎣A11 Axy 0
Axy −A10 0
0 0 −A01

⎤
⎦, (A6a)

Apq = k(S) 2
ixS + (−1)p k(S) 2

iyS + (−1)q k(S)
tzS k(S)

izS , (A6b)

Axy = 2 k(S)
ixSk(S)

iyS , Az = k(S)
tzS − k(S)

izS

k(S)
tzS + k(S)

izS

, A0 = Az

A00
, (A6c)

where (k(S)
ixS , k(S)

iyS , k(S)
izS ) and (k(S)

ixS , k(S)
iyS , k(S)

tzS ) are the components
of the incident and transmitted local wave vectors ki and kt at
PS in terms of the S coordinate system; and p, q = 0, 1.

The field transformation at PR (from just before L2 to “just
after L2,” in terms of the R coordinate system) is an effective
inverse of the operation at PI , given by the operator

R̃L2 = (1/gR) R̃RR′R̃−1
R′R′′R̃R′R, (A7)
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R̃R′R =
⎡
⎣ cos φR sin φR 0

− sin φR cos φR 0
0 0 1

⎤
⎦, R̃RR′ = R̃−1

R′R, (A8a)

R̃R′R′′ =
⎡
⎣ cos θR 0 sin θR

0 1 0
− sin θR 0 cos θR

⎤
⎦, gR = 1√

cos θR
,

(A8b)

where cos φR = x/ρ, sin φR = y/ρ, (A9a)

ρ = (x2 + y2)
1
2 , rR = (

ρ2 + F2
2

) 1
2 , (A9b)

cos θR = F2/rR, sin θR = ρ/rR. (A9c)

In the initial and final path segments P0 → PI and PR →
P, the field amplitude vectors remain unchanged. Then, by

compiling the above results, the complete transformation from
the initial field E (I )

0 (at P0, in terms of the I coordinate system)
[Eqs. (1)] to the final field E (at P, in terms of the R coordinate
system) is obtained as

E = R̃L2R̃RR̃L1 E (I )
0 . (A10)

The system geometry gives the relations

θI = θR, cos φI = − cos φR, sin φI = sin φR, (A11)

which we use in the expansion and simplification of Eq. (A10)
to obtain the final expressions of Eqs. (2)–(4).

Since the choice of the point P0 in the above discussion is
arbitrary, the analysis is applicable to all initial points P0 in
the input beam field and the corresponding final points P at
the screen SR. Hence, Eqs. (2)–(4) give the complete field at
SR as a function of (x, y).
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