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Building on the strategy presented in Opt. Lett. 47, 3992 (2022), we demonstrate an efficient alternative
approach for the in situ characterization of ultrashort low-frequency laser pulses. In this context, we employ first-
principles quantum-mechanical calculations to model the strong-field ionization of rare-gas atoms and produce
autocorrelation patterns for a set of few-femtosecond near-infrared laser pulses. We explore the nonperturbative
and nonlinear dependence of the autocorrelation patterns on the pulse characteristics and postulate an analytical
function describing these patterns. For every laser pulse considered, we employ the parameters appearing in this
analytical function, together with the underlying pulse parameters for supervised machine learning. Specifically,
we use the random-forest technique for retrieving key laser pulse parameters from autocorrelation patterns
produced via strong-field ionization. The current approach offers advantages for application to experimental
data.
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I. INTRODUCTION

The key mechanisms that provide ways to observe and
control the complex dynamics inside atoms and molecules
are electron excitations and ionizations, induced by ultrashort
laser pulses [1]. The rapid technological progress in building
lasers with novel pulse properties [2–6] has opened up the
possibility to explore fundamental mechanisms in chemical
and physical processes in a time-resolved manner [7] and to
study fundamental questions related to the quantum dynamics
of electrons on their natural timescale. Thus, a comprehensive
characterization of such laser pulses is of great importance.
Autocorrelation-based techniques provide a way to determine
the spectrum and duration of reproducible laser pulses. The
autocorrelation of ultrashort low-frequency fields can be mea-
sured through the strong-field photoionization of a rare-gas
target injected into the interaction region [8]. In Ref. [9], a
technique was presented that allows a precise characterization
of the femtosecond laser field in the interaction region using
machine-learning algorithm called vector space Newton inter-
polation cage (VSNIC). Training data were generated using
first-principles calculations. The key assumption in Ref. [9] is
that the experimental autocorrelation pattern and all training
data for VSNIC are sampled at precisely the same time points.
This would not be a serious problem if the generation of
training data could be performed very quickly for a large
number of time points. However, when using first-principles
calculations, sampling autocorrelation patterns on a dense grid
of time points is impractical.

To overcome this problem, in this paper we explore
the shape of the autocorrelation patterns and postulate an
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analytical function that allows us to fit the autocorrelation
patterns with good accuracy. In this way, the information
content of each autocorrelation pattern is reduced to a few
fit parameters. Also we present a modified machine-learning-
based strategy. Using the random-forest technique, we retrieve
information about the pulse parameters directly from the
parameters of the aforementioned analytical function. This
allows us to reduce the machine-learning problem from a
relatively high-dimensional feature space (determined by the
number of time points in an autocorrelation pattern) to a much
lower-dimensional feature space (determined by the number
of fit parameters).

II. AUTOCORRELATION PATTERNS

The process of ionization by a strong field is nonper-
turbative and nonlinear. Thus, it is difficult to analytically
derive a universally valid expression for the structure of
strong-field-generated autocorrelation patterns. In order to
investigate the structure of the autocorrelation function
and its dependence on the field characteristics, reliable
first-principles calculations are required. We performed sim-
ulations of strong-field-induced autocorrelation patterns of
atomic argon (Ar) using the configuration-interaction dynam-
ics (XCID) code [10,11]. XCID is based on the time-dependent
configuration-interaction-singles (TDCIS) approach for solv-
ing the many-electron time-dependent Schrödinger equa-
tion from first principles, and has already proven its qualitative
and quantitative accuracy in strong-field multiphoton ioniza-
tion calculations in a number of works [12–15].

The sensitivity of the experiment increases with the size
of the sample atom: the lower the ionization potential, the
more sensitive is strong-field ionization to the wings of the
pulse to be characterized. On the other hand, the speed and
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accuracy of TDCIS numerical calculations increase for lighter
atoms. Since in this paper we focus on the characterization
of few-fs near-infrared pulses, which are commonly used in
ultrafast spectroscopy [16] and for strong-field ionization of
atoms and molecules [17,18], the choice of Ar represents
a reasonable compromise between experimental sensitivity
and computational accuracy. However, as will be discussed
below, the proposed technique can also be applied to other
wavelength or pulse-intensity ranges using other targets.

The ground electronic configuration for Ar is [Ne]3s23p6.
In our calculations, we only allow the 3p and 3s orbitals to be
active, whereas, all other orbitals are frozen (not affected by
the laser field). A characterization of a laser pulse in terms
of just a few key parameters requires a simple analytical
description of a laser pulse. To this end, we use for the pulse
electric field in the frequency domain the expression,

E (ω) = E0 exp

[
−

(
4 ln(2)

χ2
ω

− ik

2

)
(ω − ω0)2 + iϕ

]
, (1)

where E0 is the field amplitude, ω0 is the central frequency of
the field, χω is the full width at half maximum (FWHM) of
|E (ω)|, k identifies the group delay dispersion (GDD), and
ϕ is the carrier-envelope phase. The chirp associated with
the GDD dramatically affects the pulse duration. Following
Eq. (1), the actual FWHM of laser pulse duration is given by

X =
√

χ4
t + 82 ln(2)2k2

χ2
t

, (2)

where χt = 4 ln(2)/χω is the duration the pulse has if it is
transform-limited (k = 0).

III. PATTERN ANALYSIS

Using the TDCIS approach we obtain the autocorrela-
tion patterns via calculating the ionization probability of Ar
exposed to a pair of identical laser pulses with a central
frequency ω = 0.061 a.u. (1.66 eV), delayed relative to each
other. We allow pulses to differ from each other only through
their relative phase difference �φ = φ1 − φ2. The calcula-
tions are performed using a large set of pulse parameters:
The pulse duration is considered in the range of 4.84 � χt �
13.31 fs, and the GDD in the range of 0 � k � 20 fs2, and the
phase difference �φ varies from 0 to π .

Over a range of intensities, the dependence of the ioniza-
tion probability on the intensity of the pulse can be described
by a power law,

P(I ) = CIn, (3)

where C and n are parameters. This is illustrated in Fig. 1.
For intensities below 8 TW/cm2 the same parameter n can
be used for different time delays, i.e., the delay dependence
is fully contained in the parameter C. In other words, in the
range of intensities considered in the present paper, the shape
of autocorrelation patterns is determined exclusively by the
parameter C. Thus, these shapes are insensitive to volume-
integration (spatial-averaging) effects.

The binding energy for the outer-valence shell of Ar is
Eb ≈ 15.7–15.9 eV. Thus, at a photon energy of 1.66 eV,
ionization requires the absorption of, at least, 9 to 10 photons.

FIG. 1. Dependence of the ion yield P(I ) on the field intensity
I for two time delays: τ = 0 (solid line), τ = 2.42 fs (dashed line).
The data satisfy the power-law P(I ) = CIn, where n ≈ 7 for the pulse
duration χt = 4.84 fs and n ≈ 8 for χt = 9.68 fs.

However, as the short pulses provide a broad photon energy
spectrum, the ionization may on occasion require a smaller
number of photons, leading to n � 9 in the power law in
Eq. (3). Since the chirp does not change the spectrum of the
pulse, n ≈ 7 for the pulse duration χt = 4.84 fs for both k = 0
and k = 15. The broader the spectrum, the smaller is the num-
ber of photons required for ionization. For intensities higher
than 8 TW/cm2 the shape of the autocorrelation patterns gets
deformed due to saturation effects, and the central peaks are
significantly lower than predicted by the power law [Eq. (3)].

IV. APPROXIMATION FORMULA

Although the amplitude of the autocorrelation pattern is
determined by the intensity of the field, its actual shape is
determined by the duration and interference properties of the
sum of the electric fields of the two pulse copies,

Esum(t, τ ) = E1(t ) + E2(t + τ ), (4)

at each given τ . This complicated dependence can be captured
(for pulses in aforementioned ranges) by the relatively simple
approximation function,

P′(τ ) = A(τ, t0)n′G(τ−t0 )m
, (5)

where

G(τ − t0) = exp[−4 ln(2)(τ − t0)2/σ 2] (6)

is a Gaussian envelope with a full width at half maximum σ

and

A(τ, t0) =
[

G(τ − t0) cos

(
ω′

2
(τ − t0) + φ′

2

)]2

. (7)

We have introduced the parameter t0 for experimental situa-
tions in which it cannot be guaranteed that perfect temporal
overlap between the two pulse copies corresponds to zero
time delay. The oscillation frequency ω′ and phase φ′ are
approximately the same as the central photon energy ω0 and
the phase difference �φ. These parameters can be set fixed
when fitting, or treated as free parameters if unknown. In the
second case it is useful to provide, at least, a guess for the
central frequency ω0 with a certain accuracy, for example,
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FIG. 2. Approximation of the calculated ion yield P(τ ) contami-
nated by 20% noise (light dots) with the fitting function P′(τ ) (black
line) for χt = 4.84 fs with k = 0 (left panels) and k = 20 fs2 (right
panels) and different phase-shifts �φ. Dark dots represent the actual
ion yield P(τ ) without the noise.

10%. This makes the fitting algorithm more stable and allows
one to predict the actual value of ω0 with an accuracy of 0.5%.
The parameters σ , n′, and m are free parameters that have to
be adjusted for the best fit of P′(τ ) with the computed or ex-
perimentally measured points of P(τ ). To find the best-fitting
parameters, we use the nonlinear least-squares minimization
(LMFIT) package in PYTHON [19].

In a real experiment, the measured autocorrelation pattern
is inevitably contaminated by noise. In Fig. 2, we illustrate
that for well-sampled autocorrelation data with a time-delay
step of �τ < 0.0484 fs, our approach is able to recover the
ion yield P(τ ) with good accuracy even at a noise level of
20%.

For the machine learning algorithm it is better to switch
from the standard pulse description through duration χt and
chirp k to the actual pulse duration X and spectral FWHM χω.
As illustrated in Table I, this approach allows us to create a
mapping between the laser pulse parameters (input) and the
parameters characterizing the corresponding autocorrelation
pattern (output). The task of machine learning is to compute
an inverse mapping, such that from a given autocorrelation
pattern the laser pulse parameters can be reconstructed.

TABLE I. Training set for the machine learning algorithm: laser
parameters X , χω, and �φ and the fit parameters of the correspond-
ing autocorrelation pattern.

X (fs) χω (eV) �φ σ (fs) φ′ n′ m

9.45 0.59 0.23 7.16 0.21 4.99 0.276
6.84 0.53 0 5.23 0 7.45 −0.008
13.3 0.53 0 9.79 0 7.12 0.116

...
...

...
...

...
...

...

19.5 0.19 0.53 12.9 0.49 9.96 0.129
20.0 0.19 0.53 13.2 0.51 9.95 0.139

FIG. 3. Comparison of the actual duration X , and spectrum width
χω with the predicted values for 100 randomly generated pulses.

V. PULSE CHARACTERIZATION

In general, we do not know a priori which parameters of
the approximation function (AF) in Eq. (5) are significant for
retrieving relevant pulse parameters, and how they depend on
each other. Thus, we chose to apply the random-forest (RF)
technique [20–22]. A RF is a decision-tree-based ensemble
with each decision tree depending on a collection of random
variables (random set of AF parameters). For a p-dimensional
vector X = (X1, . . . , Xp) representing the real-valued input
and an output variable Y representing the real-valued response
(a pulse parameter of interest) the goal is to find a prediction
function f (X) for predicting Y . The algorithm finds corre-
lations [23] between the features X and the target Y in the
training data. Each prediction function (decision tree) is deter-
mined by a loss function and defined to minimize the expected
value of the loss. The algorithm is combined with a series
of tree regressors, each tree casting a unit vote for the most
popular regressor. Then the results from all trees are combined
and averaged to give the final result. This scheme makes it
possible to improve the accuracy and avoid overfitting. We
fed our database of computed AF parameters together with
the corresponding laser field parameters (Table I) to the scikit-
learn [24] implementation of the RF. In order to demonstrate
the validity of our approach in terms of final predictions, we
compare in Fig. 3 our results (AF + RF) with the actual
parameters for a family of test cases not contained in the
training data.

Using the 100 test cases underlying Fig. 3, we present in
Table II the average prediction error for the pulse duration
X , spectrum width χω, phase difference �φ, and the MSE
for the resulting shape of the electric-field E (t ) for test data
with and without noise. We compare them with the VSNIC
results from Ref. [9], obtained for the same data set of auto-
correlation patterns, but avoiding usage of the approximation
function.Although the AF + RF procedure leads to somewhat
higher errors compared to VSNIC [9], the accuracy of pulse
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TABLE II. Average prediction error and mean squared error
(MSE) of the reconstructed pulse. Comparison between the present
method (AF + RF) and the method employed in Ref. [9] (VSNIC
applied directly to discretely sampled autocorrelation patterns).

Method X (fs) χω (eV) �φ MSEE (t )

VSNIC 0.05 (0.4%) 0.02 (6%) 0.4◦ 0.8%
AF + RF 0.50 (4%) 0.04 (11%) 0.7◦ 1.2%
AF + RF 0.59 (4.8%) 0.05 (15%) 1.3◦ 1.6%(20% noise)

characterization via AF + RF is still satisfactory. The fit func-
tion gives the considerable advantage that the autocorrelation
vectors in the database and the unlabeled (experimental) data
vectors do not need to refer to the same time points. The
algorithm does not require well-defined zero time delay nor
the same temporal spacings as used in the experimental data.
Moreover, AF + RF performs well even in the presence of
20% noise. One can see from Table II that the accuracy of
the reconstructed pulse properties does not decrease signifi-
cantly when dealing with noisy data. In Fig. 4 we present a
comparison of the actual pulse intensity I (t ) = E2(t ) used in
our TDCIS simulations with the pulse shape reconstructed by
our AF + RF method using autocorrelation patterns with and
without noise. As an example we chose two test pulses with
a prediction error above the average in order to demonstrate
that the accuracy is good even for unfavorable cases.

However, the approximation function P′(τ ) [Eq. (5)] is
rather simple and does not capture all features of P(τ ), par-
ticularly, for pulses with significant chirp. As shown in Fig. 5
for a pulse with χt = 2.42 fs and k ≈ 23 fs2, the wings of
the autocorrelation pattern (|τ | � 6 fs) cannot be described
by a single-frequency function. Thus, a better fit func-
tion may be required when considering broadband chirped
pulses. Exploiting an RF technique makes our method suit-
able for more sophisticated approximation functions, which
could have more fitting parameters or/and which may have

FIG. 4. Comparison, for two selected test cases not included in
the training data of the actual intensity I (t ) of each pulse used in
our simulations of P(τ ) with the pulse shape found by our AF +
RF method, applied to the test data with and without noise. MSEE (t )

stands for the mean-squared error of the electric-field E (t ).

FIG. 5. Autocorrelation pattern P(τ ) of Ar calculated with XCID
for a pulse with χt = 2.42 fs and k ≈ 23 fs2, and the corresponding
Fourier spectrum of Esum(t, τ ) [Eq. (4)] for different time delays.

parameters that display a strongly nonlinear dependence on
the actual pulse parameters.

VI. CONCLUSION

The technique presented is an alternative to the strategy
developed in Ref. [9] for characterizing few-femtosecond
near-infrared pulses directly in the pulse-sample interaction
region. Focusing on the same class of pulses as were con-
sidered in Ref. [9], we have demonstrated that the combined
use of a particular fit function and the random-forest machine-
learning approach provides an accuracy in the reconstruction
of laser pulse parameters that is competitive with the approach
employed in Ref. [9]. The main advantage of the proposed
method is that it facilitates decoupling the choice made for the
time-delay points used in the training data from the particular
time-delay sampling strategy employed in a given experiment.
There is no longer any need to have a precise match between
the time-delay points used in the first-principles calculation
of training data and the time-delay points used in experiment
since both types of data are fitted by the same approximation
function and are converted to feature vectors with just a few
parameters that do not depend on the precise way how the
time delay was sampled. Moreover, using the postulated ap-
proximation function reduces the size of the required training
data set since data for �φ = 0 are, in principle, sufficient. All
autocorrelation patterns for other values of �φ can then be
generated using the approximation function.

We expect the range of wavelengths and peak laser pulse
intensities that can be characterized with the proposed method
to be wider than what has been demonstrated in the current
paper. There are two key requirements: The ionization proba-
bility per atom, combined with the experimental ion detection
efficiency, must be high enough to permit a statistically signif-
icant experimental ion yield. At the same time, the ionization
probability should remain significantly below unity in order
to suppress ionization saturation effects. These requirements
can be addressed for a given range of wavelengths and peak
intensities, through a judicious choice of the atomic target
(and, possibly, through advances in experimental ion detection
efficiency). Provided that the autocorrelation patterns for the
corresponding training database can be computed with suf-
ficient accuracy, pulse-parameter retrieval from experimental
data should remain feasible.
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