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Single-photon scattering on a qubit: Space-time structure of the scattered field
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We study the space-time structure of the scattered field induced by the scattering of a narrow single-photon
Gaussian pulse on a qubit embedded in a one-dimensional open waveguide. For weak excitation power we obtain
explicit analytical expressions for the space and time dependence of reflected and transmitted fields which are,
in general, different from plane traveling waves. The scattered field consists of two parts: a damping part which
represents spontaneous decay of the excited qubit and a coherent, lossless part. We show that for a large distance
x from the qubit and at times t long after the scattering event our theory provides the result which is well known
from stationary photon transport. However, the approach to the stationary limit is very slow. The scattered field
decreases as the inverse powers of x and t as both the distance from the qubit and the time after the interaction
increase.
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I. INTRODUCTION

Manipulating the propagation of photons in a one-
dimensional (1D) waveguide coupled to an array of two-level
atoms (qubits) may have important applications in quantum
devices and quantum information technologies [1–3].

A single photon scattered by a single atom embedded in a
1D open waveguide was first considered in [4,5], where the
authors employed the real 1D space description of the Dicke
Hamiltonian and the Bethe-ansatz approach [6] to derive the
stationary solution for photon transport. It was found that a
photon with a frequency equal to that of the two-level atom
can be completely reflected due to quantum interference. This
property has been experimentally confirmed in the scattering
of a microwave photon by a superconducting qubit [7–9].

Since then, theoretical calculations of stationary pho-
ton transport in a 1D open waveguide with the atoms
placed inside have been performed in a configuration space
[10–13] or by alternative methods such as those based on
Lippmann-Schwinger scattering theory [14–16], the input-
output formalism [17–19], the non-Hermitian Hamiltonian
[20], and matrix methods [21,22].

Even though the stationary theory of photon transport
provides a useful guide to what one would expect in real ex-
periments, it does not allow for a description of the dynamics
of qubit excitation and the evolution of a single-photon pulse.

Within the framework of stationary scattering theories
there are only incident and reflected plane waves in front of
the qubit and the transmitted plane wave behind the qubit. The
reflected and transmitted amplitudes should be understood as
the limits of time-dependent description when both the time
after the scattering event and the distance from the qubit
tend to infinity. Within this approach, all information about
the temporal and spatial evolution of the field scattered by
the qubit is completely lost. To obtain this information, it is
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necessary to consider a time-dependent problem, in which
the incident wave is a wave packet that depends on time and
coordinates.

In practice, the qubits are excited by photon pulses with
finite duration and finite bandwidth. Therefore, to study the
real-time evolution of the photon transport and atomic ex-
citation time-dependent dynamical theories were developed
[23–27]. In these works, the dynamics of the amplitudes of
the qubit and transmitted and reflected waves were considered
with an incident single-photon Gaussian packet being scat-
tered by the qubit. The most attention was paid to the reflected
and transmitted spectra as the time after the scattering event
tends to infinity. In this case, the field scattered by the qubit
becomes plane waves and asymptotically approaches the sta-
tionary results for photon transport.

Even though the time-dependent theory allows us, in prin-
ciple, to study the real-time evolution of the scattered field, a
systematic and exhaustive discussion of this issue is lacking,
except for several numerical plots [23,24,28]. The investi-
gation of the electric field induced by the propagation of a
single-photon wave packet through a single atom embedded
in a 1D waveguide was performed in [29]. However, in that
paper the frequency dependence of transmitted and reflected
fields was not studied. The most attention was paid to the
on-resonance dependence of transmittance and reflectance on
the pulse width.

In the real case, the measurements are performed shortly
after the qubit excitation. Under these conditions the reflected
and transmitted fields are not plane waves. Therefore, from
the point of view of device applications, it is very important
to study the real-time evolution and space structure of the
scattered field.

In the present paper we consider the scattering of a narrow
single-photon Gaussian pulse by a two-level artificial atom
(qubit) embedded in a 1D open waveguide. We assume that
the bandwidth of the pulse is much smaller than that of any
other components of the system. This allows us to obtain
explicit analytical expressions for the scattered waveguide
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FIG. 1. Schematic representation of a single-photon Gaussian
pulse interacting with a two-level atom with energy levels |g〉 and
|e〉. � is the separation between the energy levels. Long horizontal
lines denote the waveguide geometry.

fields. The scattered fields consist of two parts: a damping part
which represents a spontaneous decay of the excited qubit and
a coherent, lossless part. We show that for a large distance x
from the qubit and at times t long after the scattering event our
theory for the reflected and transmitted amplitudes provides
the result which is well known from stationary scattering
theories. However, in general, the structure of the scattered
field is different from the stationary limit.

This paper is organized as follows. In Sec. II we introduce
the basic parameters describing the transmitted and reflected
amplitudes and their asymptotic properties. A general descrip-
tion of our model is given in Sec. III. The interaction between
the qubit and electromagnetic field is described by Jaynes-
Cummings Hamiltonian. The trial wave function is taken
within a single-excitation subspace. From the time-dependent
Schrodinger equation we obtain the single-photon amplitudes
for forward and backward waves. The main result of this paper
is given in Sec. IV. There we construct the photon wave packet
for forward- and backward-propagating fields. We obtain ex-
plicit expressions for the functions FT (R)(ωS, x, t ), which are
given in Eqs. (3) and (4). We show that as both the distance
from the qubit and the time after scattering tend to infinity,
the stationary results (1) and (2) are recovered. The details of
the calculations are given in Appendixes A and B. The
influence of the probing power, decoherence rate, and the
nonradiative losses on the transmitted and reflected fields is
explained in Appendix C.

II. FORMULATION OF THE PROBLEM

We consider the interaction of a single-photon Gaussian
pulse with a two-level atom which is coupled to the waveguide
modes with strength g. The excitation frequency of a qubit
is � (see Fig. 1). A qubit is considered the pointlike emitter,
which is placed at the point x = 0 of the x axis. We assume the
interaction of the incident pulse with the qubit starts at t = 0.
It results in reflected and transmitted fields whose space and
time structure is the main subject of this paper.

Even though our treatment can be applied to a real two-
level atom, we consider here an artificial two-level atom,
a superconducting qubit operating at microwave frequen-
cies. For subsequent calculations we take a typical qubit’s
parameters: the excitation frequency �/2π = 5 GHz, which
corresponds to the wavelength λ = 6 cm, and the rate of spon-
taneous emission into waveguide modes �/2π = 10 MHz.
We assume the group velocity of electromagnetic waves is
equal to that of a free space, vg = 3 × 108 m/s.

The analytical expressions for the transmission T and re-
flection R amplitudes found in the framework of the stationary
scattering approach for a monochromatic signal scattered by a
two-level atom in a 1D open waveguide [4,5] are as follows:

T (ωS ) = ωs − �

ωs − � + i �
2

, (1)

R(ωS ) = −i �
2(

ωs − � + i �
2

) , (2)

where ωs is the photon frequency.
It follows from expression (1) that when the photon fre-

quency coincides with the qubit frequency, the value of T
vanishes. In this case, the incident photon is completely re-
flected from the qubit. The reason for this perfect reflection
is coherent interference between the incident wave and the
wave scattered by the qubit. It can be said that in this case,
the qubit plays the role of an ideal mirror. This behavior was
first observed experimentally in the scattering of a microwave
photon by a superconducting qubit [7].

Strictly speaking, Eqs. (1) and (2) are valid if we assume
a weak probing signal and neglect the qubit’s pure dephasing
�ϕ and nonradiative intrinsic losses �l [9]. In our treatment
below we assume the probe is weak. Under this assumption
the pure dephasing and nonradiative losses can simply be
incorporated in our treatment by adding the imaginary part to
the qubit’s frequency �, � → � − i(�ϕ + �l/2). We address
this issue in more detail in Appendix C. It is worth noting that
this transformation of qubit frequency gives correct results for
transmitted and reflected waves only in the case of single-
photon scattering. For few-photon scattering the dephasing
and intrinsic losses must be explicitly included in the frame-
work as the Hamiltonian of the external environment from the
very beginning [30,31].

From general considerations, it is obvious that the plane-
wave solutions (1) and (2) should be a limiting case of a time-
dependent picture when both the distance from a qubit and
the time after scattering tend to infinity. Near the qubit, the
scattered field is more complicated, the amplitude of which
depends on the space-time coordinates x and t of the scattered
field. In the general case, the transmission and reflection fields
should have the following form:

T (ωS, x, t ) = T (ωS )ei ωS
vg (x−vgt ) + FT (ωS, x, t ), (3)

R(ωS, x, t ) = R(ωS )e−i ωS
vg (x+vgt ) + FR(ωS, x, t ). (4)

The quantities FT (R)(ωS, x, t ) that characterize the space-time
structure of the scattered field must satisfy the following
property: FT (R)(ωS, x, t ) → 0 at |x| → ∞, t → ∞. Their
structure depends, of course, on the shape of the initial pulse.
For a Gaussian wave packet, the structure of FT (R)(ωS, x, t )
can be studied only by numerical methods [23,24].

In the present paper, we take the excitation pulse in the
form of a Gaussian wave packet which is given by

γ0(ω) =
(

2

π	2

)1/4

e− (ω−ωS )2

	2 , (5)

where ωS is the center frequency of the pulse and 	 is the
width of the pulse in the frequency domain. We note that the
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pulse (5) ensures that there is only a single photon in the wave
packet:

∫ ∞
−∞ |γ0(ω)|2dω = 1.

For a narrow pulse we obtain the explicit analytical ex-
pressions for the functions FT (R)(ωS, x, t ). These functions
decrease relatively slowly (as inverse powers of x and t) for
x and t that are both large; however, for t → ∞ and fixed
x, these functions do not tend to zero. This means that at
relatively small distances from the qubit, the field is not uni-
form, and the dependence of the transmission and reflection
amplitudes on the frequency is more complicated than what
follows from expressions (1) and (2).

III. THE MODEL

We consider a single qubit which is located at the point
x = 0 in an open linear waveguide. The Hilbert space of the
qubit consists of the excited state |e〉 and the ground state |g〉.
In the continuum limit the Hamiltonian which accounts for
the interaction between the qubit and electromagnetic field is
as follows [29,32] (we use units where h̄ = 1 throughout the
paper):

H = H0 +
∫ ∞

0
ωa+(ω)a(ω)dω +

∫ ∞

0
ωb+(ω)b(ω)dω

+
∫ ∞

0
dωg(ω)[σ+a(ω) + σ−a+(ω)]

+
∫ ∞

0
dωg(ω)[σ+b(ω) + σ−b+(ω)], (6)

where H0 is the Hamiltonian of the bare qubit,

H0 = 1
2 (1 + σz )�. (7)

The photon creation and annihilation operators a+(ω) and
a(ω) and b+(ω) and b(ω) describe forward- and backward-
scattering waves, respectively. They are independent of each
other and satisfy the usual continuous-mode commutation
relations [32]:

[a(ω), a+(ω′)] = δ(ω − ω′); [b(ω), b+(ω′)] = δ(ω − ω′).
(8)

σ+ and σ− are the raising and lowering spin operators, re-
spectively: σ+ = |e〉〈g| and σ− = |g〉〈e|. A spin operator σz =
|e〉〈e| − |g〉〈g|. The quantity g(ω) in (6) is the coupling be-
tween the qubit and the photon field in a waveguide [29]:

g(ω) =
√

ωd2

4πε0 h̄vgS
, (9)

where d is the off-diagonal matrix element of a dipole oper-
ator, S is the effective transverse cross section of the modes
in a one-dimensional waveguide, and vg is the group velocity
of electromagnetic waves. We assume that the coupling is the
same for forward and backward waves.

Note that the dimension of the coupling constant g(ω)
is not the frequency ω, but a square root of the frequency,√

ω, and following (8), the dimension of the creation and
destruction operators is 1/

√
ω.

Below we consider a single-excitation subspace with either
a single photon in the waveguide and the qubit in the ground
state or no photons in the waveguide and the qubit being

excited. Therefore, we limit the Hilbert space to the following
states:

|g, 0〉 = |g〉 ⊗ |0〉, a+(ω)|g, 0〉 = |g〉 ⊗ a+(ω)|0〉,
b+(ω)|g, 0〉 = |g〉 ⊗ b+(ω)|0〉. (10)

A trial wave function in the single-excitation subspace reads:

(t ) = β(t )e−i�t |e, 0〉 +
∫ ∞

0
dωγ (ω, t )e−iωt a+(ω)|g, 0〉

+
∫ ∞

0
dωδ(ω, t )e−iωt b+(ω)|g, 0〉, (11)

where β(t ) is the amplitude of the qubit and γ (ω, t ) and
δ(ω, t ) are the single-photon amplitudes for forward and back-
ward waves, respectively.

The equations for the quantities β(t ), γ (ω, t ), and δ(ω, t )
can be found with the time-dependent Schrodinger equa-
tion id|〉/dt = H |〉:

dβ

dt
= − i

∫ ∞

0
dωγ (ω, t )g(ω)e−i(ω−�)t

− i
∫ ∞

0
dωδ(ω, t )g(ω)e−i(ω−�)t , (12)

dγ (ω, t )

dt
= −iβ(t )g(ω)ei(ω−�)t , (13)

dδ(ω, t )

dt
= −iβ(t )g(ω)ei(ω−�)t . (14)

From Eqs. (13) and (14) we obtain

γ (ω, t ) = γ0(ω) − ig(ω)
∫ t

0
β(t ′)ei(ω−�)t ′

dt ′, (15)

δ(ω, t ) = −ig(ω)
∫ t

0
β(t ′)ei(ω−�)t ′

dt ′. (16)

In Eq. (15) γ0(ω) ≡ γ (ω, 0) is given in (5).
The substitution of (16) and (15) into Eq. (12) and appli-

cation of the Wigner-Weisskopf approximation provide the
following equation for the qubit amplitude β(t ) (the details
of the derivation are given in Appendix A):

dβ

dt
= −i

√
�

4π

∫ ∞

0
γ0(ω)e−i(ω−�)t dω − �

2
β. (17)

The integral on the right-hand side of Eq. (17) can be ex-
pressed in terms of the error function erf(x) [33]:∫ ∞

0
γ0(ω)e−i(ω−�)t dω = (2π )1/4

2

√
	e− 	2t2

4

×
[

1−erf

(
it

	

2
−ωS

	

)]
e−i(ωS−�)t .

(18)

From now on we consider a narrow pulse where 	 is a small
quantity, so that 	 
 ωS , 	t 
 1. In this case erf (it	/2 −
ωs/	) ≈ erf (−ωs/	) ∼= −1.

Therefore, in the leading order in 	 we obtain from (18)∫ ∞

0
γ0(ω)e−i(ω−�)t dω = (2π )1/4

√
	e−i(ωS−�)t . (19)

Regarding Eq. (19), it is worth noting that in our case a narrow
Gaussian pulse can be approximated by a δ pulse with the
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amplitude (2π )1/4
√

	:

γ0(ω) = (2π )1/4
√

	δ(ω − ωS ). (20)

Finally, Eq. (17) takes the form

dβ

dt
= −i(2π )−1/4

√
�	

2
e−i(ωS−�)t − �

2
β. (21)

For an initially unexcited qubit, β(0) = 0, we obtain from (17)
the following result for the qubit amplitude:

β(t ) = C0(e− �
2 t − e−i(ωs−�)t ), (22)

where

C0 = − (2π )−1/4

√
2

√
�	(

ωs − � + i �
2

) . (23)

Finally, for the forward-propagating wave γk (t ) with β(t )
from (22) we obtain

γ (ω, t ) = γ0(ω) + γ1(ω, t ), (24)

where

γ1(ω, t ) = −g(ω)C0[I1(ω, t ) − iI2(ω, t )], (25)

I1(ω, t ) = (ei(ω−�+i �
2 )t − 1)(

ω − � + i �
2

) , (26)

I2(ω, t ) =
∫ t

0
dt ′ei(ω−ωs )t ′ = ei(ω−ωs )t − 1

i(ω−ωs )
. (27)

From (15) and (16) we may conclude that the amplitude
of the forward-propagating (transmitted) wave is equal to
the amplitude of the backward-propagating (reflected) wave,
δ(ω, t ) = γ1(ω, t ).

As pointed out in Sec. II and proved in Appendix C, our
treatment is valid if we consider a single-photon Gaussian
pulse to be a weak excitation probe. For single-photon trans-
port weak excitation means that the pulse duration is much
longer than the spontaneous lifetime of the qubit, 	 
 �

[17]. In this case, the qubit is mostly in the ground state.
Therefore, we can define the average number of probe photons
per interaction time 2π/	 as N = 2πP/(h̄�	), where P is
the power of the incident pulse [8,9]. Taking 	/2π = 1 MHz
and �/2π = 5 GHz, we can estimate the power of the inci-
dent single-photon Gaussian probe in a weak-excitation limit,
P ≈ h̄�	/2π = 4 × 10−17 W. This value is within reach of
experimental techniques [8,9].

IV. SPACE-TIME STRUCTURE OF THE SCATTERED
FIELD

A. Forward-scattering field

The photon wave packet for a forward-propagating field
behind the qubit is given by

u(x, t ) =
∫ ∞

0
dωγ (ω, t )ei ω

vg
(x−vgt )

=
∫ ∞

0
dωγ0(ω)ei ω

vg
(x−vgt )+

∫ ∞

0
dωγ1(ω, t )ei ω

vg
(x−vgt )

,

(28)

where γ0(ω) is given in (5). In Eqs. (28) x > 0, and x − vgt <

0. The second condition ensures the causality of the propagat-
ing field, which does not appear at point x behind the qubit
until the signal travels the distance x after the scattering.

The first integral on the right-hand side of (28) reads

∫ ∞

0
dωγ0(ω)ei ω

vg
(x−vgt ) = (2π )1/4

√
	ei ωS

vg
(x−vgt )

, (29)

where we use a small 	 approximation (20). Therefore, we
may consider the prefactor in (29) to be the amplitude of the
incoming wave, A = (2π )1/4

√
	.

For the second integral on the right-hand side of (28) we
obtain∫ ∞

0
dωγ1(ω, t )ei ω

vg
(x−vgt ) = − g(�)C0[I1(x, t ) − iI2(x, t )]

= A
�

4π

1

ωS − � + i �
2

× [I1(x, t ) − iI2(x, t )], (30)

where

I1(x, t ) =
∫ ∞

0
I1(ω, t )ei ω

vg (x−vgt )dω, (31)

I2(x, t ) =
∫ ∞

0
I2(ω, t )ei ω

vg (x−vgt )dω. (32)

In Eq. (30) we use the on-resonance value of the photon-
qubit coupling g(�), g(�) = √

�/4π [see the derivation of
Eq. (A5) in Appendix A].

The calculations of the quantities I1(x, t ) and I2(x, t ) are
performed in Appendix B. They are given by

I1(x, t ) = e−i�̃ t ei x
vg

�̃E1

(
−i

x

vg
�̃

)
+ 2π iei �̃

vg
(x−vgt )

− e−i |x−vgt|
vg

�̃E1

(
−i

∣∣x − vgt
∣∣

vg
�̃

)
, (33)

I2(x, t ) = ei ωs
vg (x−vgt )

[
2π + i ci

(
ωs

x

vg

)
+ si

(
ωs

x

vg

)

−i ci

(
ωs

∣∣x − vgt
∣∣

vg

)
+ si

(
ωs

|x − vgt |
vg

)]
, (34)

where �̃ = � − i �
2 , E1(z) is the exponential integral [34].

and si(xy) and ci(xy) are the sine integral and cosine integral,
respectively [33]:

ci(xy) = −
∫ ∞

x

cos zy
z

dz, si(xy) = −
∫ ∞

x

sin zy
z

dz, (35)

where y is x/vg or |x − vgt |/vg. In Eqs. (33) and (34) x > 0,
and x − vgt < 0.
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Combining (29) and (30), we obtain the forward-propagating field behind the qubit in the following form:

T (ωS, x, t ) = T (ωS )ei ωs
vg (x−vgt ) + iR(ωS )

2π
ei �

vg
(x−vgt )e

�/2
vg

(x−vgt )

[
E1

(
i

x

vg
�̃

)
+ 2π i − E1

(
−i

∣∣x − vgt
∣∣

vg
�̃

)]

+ R(ωS )

2π
ei ωs

vg (x−vgt )
[

ici

(
ωs

x

vg

)
+ si

(
ωs

x

vg

)
− ici

(
ωs

∣∣x − vgt
∣∣

vg

)
+ si

(
ωs

∣∣x − vgt
∣∣

vg

)]
, (36)

where x > 0, x − vgt < 0, and T (ωS, x, t ) ≡ u(x, t )/A.
It should be noted that the amplitude of the transmitted field

T (ωS ) in the first term in (36) is the result of a summation of
the incident wave (29) with part of the scattered field [2π in
(34)]. The second term in (36) is the damping part of the scat-
tered field which represents spontaneous decay of the excited
qubit. The third term in (36) is the coherent, lossless part of
the scattered field. As both the distance from the qubit and the
time after the scattering tend to infinity, these scattering fields
die out, leaving only the plane-wave stationary solution.

Two-dimensional maps of the transmittance |T (ωS, x, t )|2
calculated from (36) for t = 1 ns and t = 5 ns are shown
in Fig. 2. In Fig. 2(b) we observe the off-resonance regions
around ωS/� ≈ 0.97 and 1.03, where the transmittance is
about 10% larger than 1. This effect persists over the wave-
length scale. It can be attributed to the interference between
the incident wave and the field generated by the qubit itself.
It does not contradict the conception of the probability. In
relation to our study the probability is inferred from the con-
servation of the energy flux: at any instant of time the input
energy flux is the sum of the transmitted and reflected energy
fluxes integrated over all space and over all frequencies. In our
paper we calculate not the energy flux, but the electric field
u(x, t ). Therefore, in this case the conception of the proba-
bility is not applicable. As a side comment it is worth noting
that a similar amplification of the field exists in Fabry-Pérot
interferometers with semitransparent mirrors [35].

B. Backward-scattering field

The photon wave packet for backward-propagating field
before the qubit is as follows:

u(x, t ) =
∫ ∞

0
dωδ(ω, t )e−i ω

vg
(x+vgt )

= − g(�)C0[J1(x, t ) − iJ2(x, t )], (37)

where

J1(x, t ) =
∫ ∞

0
I1(ω, t )e−i ω

vg (x+vgt )dω, (38)

J2(x, t ) =
∫ ∞

0
I2(ω, t )e−i ω

vg (x+vgt )dω. (39)

In Eqs. (37), (38), and (39) x < 0, and x + vgt > 0. The sec-
ond condition ensures the causality of the backscattering field,
which does not appear at point x in front of the qubit until the
signal travels the distance |x| after the scattering.

The quantities J1(x, t ) and J2(x, t ) can be calculated sim-
ilarly to the quantities I1(x, t ) and I2(x, t ). The result is as
follows:

J1(x, t ) = e−i�̃ t ei |x|
vg

�̃E1

(
i
|x|
vg

�̃

)
+ 2π ie−i �̃

vg
(x+vgt )

− e−i
x+vgt

vg
�̃E1

(
−i

x + vgt

vg
�̃

)
, (40)

FIG. 2. Two-dimensional map of the transmittance calculated
from (36) for (a) t = 1 ns and (b) t = 5 ns. The color bar shows the
value |T (ωS, x, t )|2. �/2π = 0.01 GHz, �/2π = 5 GHz, and λ =
6 cm.
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J2(x, t ) = e−i ωs
vg (x+vgt )

[
2π + i ci

(
ωs

|x|
vg

)
+ si

(
ωs

|x|
vg

)
× −i ci

(
ωs

x + vgt

vg

)
+ si

(
ωs

x + vgt

vg

)]
, (41)

where x < 0 and x + vgt > 0. Therefore, the backscattered
field can be written in the following form:

R(ωS, x, t )

= R(ωS )e−i ωs
vg (x+vgt ) + iR(ωS )

2π
e−i �

vg
(x+vgt )

× e− �/2
vg

(x+vgt )
[

E1

(
i
|x|
vg

�̃

)
+ 2π i − E1

(
−i

x + vgt

vg
�̃

)]

+ R(ωS )

2π
e−i ωs

vg (x+vgt )
[

i ci

(
ωs

|x|
vg

)
+ si

(
ωs

|x|
vg

)

− i ci

(
ωs

x + vgt

vg

)
+ si

(
ωs

x + vgt

vg

)]
, (42)

where x < 0, x + vgt > 0, and R(ωS, x, t ) ≡ u(x, t )/A. Here,
as in the case of the forward scattering, there are three terms in
(42), the stationary solution and damping and coherent parts
of the scattered field.

Two-dimensional maps of the reflectance |R(ωS, x, t )|2 cal-
culated from (42) for t = 1 ns and t = 5 ns are shown in
Fig. 3.

The first terms in (36) and (42) are just the transmission and
reflection amplitudes from the stationary theory. The second
lines describe the field generated by spontaneous emission
of an excited qubit. This field dies out as the time tends
to infinity. The third lines are the transmitted and reflected
traveling waves which originate from the interaction of a qubit
with the incident photon.

It is worth noting that the scattered fields (36) and (42)
display oscillatory behavior in time, as shown in Fig. 4. These
oscillations at the frequency ωS − � originate from the in-
terference between the first and second (spontaneous decay)
terms in expressions (36) and (42). To avoid the infinity of
ci(xωS/vg) at x = 0 we start the calculations in Fig. 4 at
|x0| = 1 mm distance from the qubit and at the time t0 = 10
ps, which ensures the required condition |x0| − vgt0 < 0.

A deep analogy exists between the time oscillations of
our scattered fields and those of the decay probability in
the dynamics of an unstable quantum system [36]. In both
cases the time oscillations originate from the effective (after
averaging out the photon degrees of freedom) non-Hermitian
Hamiltonian.

C. The scattered field at large time

There are three timescales in our problem: 1/	, 1/�, and
1/�, where 1/	  1/�  1/�. As shown in (19), a weak
excitation probe sets the upper bound on the time at which
our theory is valid, t 
 1/	. Therefore, we may safely satisfy
the conditions �t  1, �t  1, which are necessary to study
the asymptotes of the transmitted field (36) and reflected field
(42) for a sufficiently large time.

If the time is sufficiently large and x is fixed, we may
disregard the time-dependent corrections in (36) and (42). In

FIG. 3. Two-dimensional map of the reflectance calculated from
(42) for (a) t = 1 ns and (b) t = 5 ns. The color bar shows the value
|R(ωS, x, t )|2. �/2π = 0.01 GHz, �/2π = 5 GHz, and λ = 6 cm.

this case, we obtain from (36) the field behind the qubit:

T (ωS, x, t ) = T (ωS )ei ωs
vg (x−vgt ) − i

R(ωS )

2π
ei ωs

vg (x−vgt )

×
[

i ci

(
ωs

x

vg

)
+ si

(
ωs

x

vg

)]
, (43)

where T (ωS ) and R(ωS ) are transmission and reflection am-
plitudes (1) and (2), respectively; x > 0, and x − vgt < 0.

From (43) we see that for ωS = � the field at finite distance
behind the qubit is nonzero. However, as x tends to infinity
(x  λ), the last term in (43) disappears, and we are left with
the stationary transmission amplitude.

Similar calculations from (42) provide the field ahead of
the qubit:

R(ωS, x, t ) = R(ωS )e−i ωs
vg (x+vgt ) + R(ωS )

2π
e−i ωs

vg (x+vgt )

×
[

i ci

(
ωs

|x|
vg

)
+ si

(
ωs

|x|
vg

)]
, (44)

where R(ωS ) is the reflection amplitude (2); x < 0, and x +
vgt > 0. For sufficiently large time the field at a finite distance
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FIG. 4. Dependence of (a) transmittance |T (ωS, x0, t � t0)|2,
Eq. (36), and (b) reflectance |R(ωS, x0, t � t0)|2, Eq. (42) (|x0| =
1 mm, t0 = 10 ps), for different frequencies: (1) ωS = �, (2)
ωS = � + 0.5�, (3) ωS = � + �, and (4) ωS = � + 1.5�; �/2π =
0.01 GHz, �/2π = 5 GHz, and T� = 2π/�.

ahead of the qubit remains finite. However, as |x| tends to
infinity (|x|  λ), the last term in (44) disappears, and we are
left with the stationary reflection amplitude.

We investigate now how the scattered field [second terms
in (43) and (44)] influences the amplitude-frequency curves
(AFCs) of transmitted and reflected signals. The dependence
of AFCs on the distance from the qubit is shown in Fig. 5.

,|),
,

(
|

t
x

T
S

2
|),

,
(

|
t
x

R
S

2

(a)

(b)

(c)

FIG. 5. The dependence of the transmittance (43) (solid black
line) and reflectance (44) (dashed red line) on the photon frequency
for different distances of the field point from the qubit: (a) x = 1 mm,
(b) x = 5 mm, and (c) x = 10 mm. �/2π = 0.01 GHz, �/2π =
5 GHz, and λ = 6 cm.

|),
,

(
|

t
x

R
S

2

FIG. 6. The influence of the interference on the reflectance (44)
at 1-mm distance from the qubit. Dashed red line, labeled 1, the
reflectance |R(ωS, x, t )|2; solid black line, labeled 2, the reflectance
|R(ωS )|2 in the absence of interference; dashed blue line, labeled
3, the term |z|2; solid green line, labeled 4, the interference term
2|R(ωS )|2Re(z). �/2π = 0.01 GHz, and �/2π = 5 GHz.

We see that a clear asymmetry is observed at x = 1 mm
(x 
 λ) for the transmitted AFC [Fig. 5(a)]. However, for
larger x the asymmetry persists as well. We see in Figs. 5(b)
and 5(c) that the transmitted signal at resonance (ωS = �) is
practically zero, while the amplitude of the reflected signal
at resonance is appreciably smaller than unity. It can be at-
tributed to the interference between two terms in (44). In fact,
from (44) we can write the squared modulus of the reflected
field as |R(ωS, x, t )|2 = |R(ωS )2|(1 + z)|2, where z is the term
in the brackets in (44). The influence of z on the reflected field
at 1-mm distance from the qubit is shown in Fig. 6.

As is seen from Fig. 6, the contribution of the interference
term 2|R(ωS )|2Re(z) is negative (curve 4) and is significant. If
the interference term in (44) is neglected, we obtain |R(ωS )|2
for the transmitted signal (curve 2 in Fig. 6).

For off-resonant conditions, the interference effects persist
for both reflected and transmitted fields. The influence of these
effects on the spatial dependence of the scattered fields is
shown in Fig. 7 for ωS = �,� + 0.5�,� + �,� + 1.5�.

From Fig. 7(a) we see that the reflectance at x = λ/2 is
larger than 1 [see our discussion of Fig. 2(b)]. This amplifica-
tion can be explained by a constructive interference between
incident and reflected waves, as shown in Fig. 8. In this case
the interference term 2|R(ωS )|2Re(z) (line 4 in Fig. 8) is
positive (compare it with line 4 in Fig. 6), which gives rise
to a small amplification of the reflected field in the resonance
region.

In principle, the interference effects can persist over a rela-
tively long distance. As an example we calculate from (43)
and (44) the transmittance and reflectance for off-resonant
frequency ω1 = � + 0.5�:

|T (ω1, x, t )|2 = 1

2

∣∣∣∣1 − 1

2π
[ici(α) + si(α)]

∣∣∣∣2

, (45)

where α = ω1x/vg, x > 0, and x − vgt < 0.

|R(ω1, x, t )|2 = 1

2

∣∣∣∣1 + 1

2π
[ici(α) + si(α)]

∣∣∣∣2

, (46)

where α = ω1|x|/vg, x < 0, and x + vgt > 0.
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FIG. 7. Spatial dependence of (a) reflectance (44) and (b) trans-
mittance (43) for off-resonant conditions. Solid black line (labeled
1), ωS = �; dashed red line (labeled 2), ωS = � + 0.5�; dotted
blue line (labeled 3), ωS = � + �; solid green line (labeled 4),
ωS = � + 1.5�. �/2π = 0.01 GHz, �/2π = 5 GHz, and λ = 6 cm.

The behavior of these quantities at a distance comparable
to the photon wavelength follows from the asymptotes of the
sine and cosine integrals for large arguments (47). The asymp-
totic behavior of the interference effects calculated from (45)
and (46) is shown in Fig. 9. The envelopes (lines 3 and 4 in
Fig. 9) scale as cos(2πx/λ)/(2πx/λ).

D. Asymptote of the scattered field

The behavior of scattered fields at large x and t follows
from the asymptote of the exponential integral function, sine

|),
,

(
|

t
x

R
S

2

FIG. 8. The influence of the interference on the reflectance (44)
at x = λ/2 distance from the qubit. Dashed red line (labeled 1), the
reflectance |R(ωS, x, t )|2; solid black line (labeled 2), the reflectance
|R(ωS )|2 in the absence of the interference; dashed blue line (labeled
3), the term |z|2; solid green line (labeled 4), the interference term
2|R(ωS )|2Re(z). �/2π = 0.01 GHz, �/2π = 5 GHz, and λ = 6 cm.

|),
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(
|

t
x

R
S

2

FIG. 9. Spatial dependence of transmittance (solid black line,
labeled 1) and reflectance (dashed red line, labeled 2) for the off-
resonant condition ωS = � + 0.5�, calculated from (45) and (46),
respectively. The solid magenta line (labeled 5) and solid cyan line
(labeled 6) show the asymptotic behavior of transmittance and re-
flectance, respectively. The dashed blue line (labeled 3) and green
line (labeled 4) are the corresponding envelopes. �/2π = 0.01 GHz,
�/2π = 5 GHz, and λ = 6 cm.

integral, and cosine integral [33,37]:

si(x) ≈ −cos(x)

x
− sin(x)

x2
, ci(x) ≈ sin(x)

x
− cos(x)

x2
,

(47)
where x  1.

E1(z) ≈ e−z

z

(
1 − 1

z

)
, (48)

where |z|  1.
With the aid of these approximations we obtain from (36)

the asymptotic expression for forward-scattering field:

T (ωS, x, t )

= T (ωS )ei ωs
vg (x−vgt ) + R(ωS )

2π

(
vg

x�̃
e−i(�−i�/2) t

− 2πei (�−i�/2)
vg

(x−vgt ) + vg∣∣x − vgt
∣∣�̃

)

−R(ωS )

2π
ei ωs

vg (x−vgt )
(

vg

ωsx
e−i ωS x

vg + vg

ωs

∣∣x − vgt
∣∣ei

ωS |x−vgt|
vg

)
,

(49)

where x > 0, x − vgt < 0, vg/ωSx 
 1, vg/|x − vgt |ωS 
 1,
vg/�̃x 
 1, and vg/|x − vgt |�̃ 
 1. The asymptotic expres-
sion for backward-scattering field reads

R(ωS, x, t )

= R(ωS )e−i ωs
vg

(x+vgt ) + R(ωS )

2π

(
vg

|x|�̃e−i(�−i�/2) t

−2πe−i(�−i�/2)
(x+vgt )

vg + vg

(x + vgt )�̃

)
− R(ωS )

2π

× e−i ωs
vg (x+vgt )

(
e−iωs

|x|
vg

vg

ωS|x| + eiωs
x+vgt

vg
vg

ωS (x + vgt )

)
,

(50)
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where x < 0, x + vgt > 0, vg/ωS|x| 
 1, vg/(x + vgt )ωS 

1, vg/�̃|x| 
 1, vg/|x + vgt |�̃ 
 1.

We see from (49) and (50) that the approach to the sta-
tionary limit is very slow. The scattered field decreases as x−1

and t−1 as the distance from the qubit and the time after the
interaction increase.

V. SUMMARY

In summary, we have developed a time-dependent theory
of the scattering of a narrow single-photon Gaussian pulse
on a qubit embedded in a 1D open waveguide. For a weak
power of the incident pulse we have obtained explicit an-
alytical expressions for the transmitted and reflected fields
and their spatial and time dependence. We showed that the
scattered field consists of two parts: a damping part which
represents spontaneous decay of the excited qubit and a co-
herent, lossless part. The plane-wave solution for transmission
and reflection amplitudes which are well known from the
stationary photon transport follows from our theory as the
limiting case when both the distance from the qubit and the
time after the scattering tend to infinity.

Even though our treatment can be applied to a real two-
level atom, we consider in our paper an artificial two-level
atom, a superconducting qubit operating at microwave fre-
quencies at gigahertz range. For our calculations we take qubit
frequency �/2π = 5 GHz, which corresponds to wavelength
λ = 6 cm. Our calculations showed that spatial effects can
persist on the scale of several λ (see Fig. 9). For on-chip real-
ization this length is not small compared with the dimensions
of a superconducting qubit (typically several microns). The
power of the microwave signal is so low that the use of linear
amplifiers for the detection of the qubit signal is a common
practice. The current opportunity for on-chip realization of a
superconducting qubit with associated circuitry allows for the
placement of the amplifier within the order of the wavelength
from the qubit. Therefore, in the microwave range the near-
field effects can, in principle, be detected.

We believe that the results obtained in this paper may
have some practical applications in quantum information tech-
nologies, including single-photon detection in a microwave
domain as well as the optimization of the readout of a qubit’s
quantum state.
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APPENDIX A: DERIVATION OF EQUATION (17)

The substitution of Eqs. (16) and (15) in (12) yields

dβ

dt
= − i

∫ ∞

0
γ0(ω)g(ω)e−i(ω−�)t dω − 2

∫ ∞

0
dωg2(ω)

×
∫ t

0
β(t ′)e−i(ω−�)(t−t ′ )dt ′. (A1)

The factor of 2 in the last term of (A1) arises from the equal
contributions of the forward- and backward-scattering waves
to the qubit amplitude β.

In accordance with the Wigner-Weisskopf approximation
the quantity β(t ) under the integrals in (A1) is assumed to be
a slow function of time compared to that of the exponents.
Therefore, for times τ = t − t ′ 
 t the integrand oscillates
very rapidly, and there is no significant contribution to the
value of the integral. The most dominant contribution orig-
inates from times τ ≈ t . We therefore evaluate β(t ) at the
actual time t and move it out of the integrand. In this limit,
the decay becomes a memoryless process (Markov process):

dβ

dt
= − i

∫ ∞

0
dωγ0(ω)g(ω)e−i(ω−�)t − 2β(t )

×
∫ ∞

0
dωg2(ω)I (ω,�, t ), (A2)

where

I (ω,�, t ) =
∫ t

0
e−i(ω−�)(t−t ′ )dt ′ =

∫ t

0
e−i(ω−�)τ dτ. (A3)

To evaluate this integral we extend the upper integration
limit to infinity since there is no significant contribution for
τ  t . Therefore, we obtain

I (ω,�, t ) ≈
∫ ∞

0
e−i(ω−�)τ dτ=πδ(ω − �) − iP

(
1

ω − �

)
,

(A4)
where P represents the Cauchy principal value, which leads
to a frequency shift. In what follows, we do not explicitly
write this shift, which is assumed to be included in the qubit
frequency.

Therefore, Eq. (A2) can be rewritten as follows:

dβ

dt
= −i

∫ ∞

0
dωγ0(ω)g(ω)e−i(ω−�)t − �

2
β(t ), (A5)

where � = 4πg2(�) is the rate of spontaneous emission into
waveguide modes, which also follows from Fermi’s golden
rule.

The coupling constant g(ω) in the first term on the right-
hand side of (A5) is a slowly varying function of ω around
the qubit frequency �; therefore, it can be taken out of the
integral. Therefore, for Eq. (A5) we finally obtain Eq. (17)
from the main text:

dβ

dt
= −i

√
�

4π

∫ ∞

0
γ0(ω)e−i(ω−�)t dω − �

2
β(t ). (A6)

APPENDIX B: DERIVATION OF EQUATIONS (33) AND (34)

1. Calculation of I1(x, t )

The quantity I1(x, t ) in (31) consists of two terms:
I1(x, t ) = A(x, t ) + B(x, t ), where

A(x, t ) =
∫ ∞

0

ei(ω−�̃) t ei ω
vg (x−vgt )

(ω − �̃)
dω

= e−i�̃ t
∫ ∞

0

ei ω
vg

x

(ω − �̃)
dω, (B1)
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FIG. 10. Plane of the complex ω.

B(x, t ) = −
∫ ∞

0

ei ω
vg (x−vgt )

(ω − �̃)
dω. (B2)

In the plane of complex ω the only pole lies in the lower part of
the plane, as shown in Fig. 10. To calculate the last integral in
(B1) for x > 0 we take a closed contour C1 = 0AB, as shown
in Fig. 10. As there are no poles inside this contour, we obtain∮

C1

ei ω
vg

x

(ω − �̃)
dω = 0 =

∫ ∞

0

ei ω
vg

x

(ω − �̃)
dω

+
∫ 0

i∞

ei ω
vg

x

(ω − �̃)
dω, (B3)∫ ∞

0

ei ω
vg

x

(ω − �̃)
dω = −

∫ 0

i∞

ei ω
vg

x

(ω − �̃)
dω =

∫ i∞

0

ei ω
vg

x

(ω − �̃)
dω.

(B4)

The last integral in (B4) can be expressed in terms of the
exponential integral function E1(z) [34]:∫ i∞

0

ei ω
vg

x

(ω − �̃)
dω =

∫ ∞

0

e−αt

(t + β )
dt = eαβE1(αβ ), (B5)

where α = x/vg, β = i� + �. Therefore, for A(x, t ) we ob-
tain

A(x, t ) = e−i�̃ t ei x
vg

�̃E1

(
i

x

vg
�̃

)
, x > 0. (B6)

For the calculation of B(x, t ) for x − vgt < 0 we must take
the contour C2 = 0AD in the lower part of the complex ω

plane, as shown in Fig. 10:∮
C2

ei ω
vg

(x−vgt )

(ω − �̃)
dω = − 2π iei (�̃)

vg
(x−vgt )

=
∫ ∞

0

ei ω
vg

(x−vgt )

(ω − �̃)
dω +

∫ 0

−i∞

ei ω
vg

(x−vgt )

(ω − �̃)
dω.

(B7)

From (B7) we obtain∫ ∞

0

ei ω
vg

(x−vgt )

(ω − �̃)
dω = −2π iei �̃

vg
(x−vgt ) −

∫ 0

−i∞

ei ω
vg

(x−vgt )

(ω − �̃)
dω.

(B8)
The last integral in (B8) can be calculated similarly to (B5):∫ 0

−i∞

ei ω
vg

(x−vgt )

(ω − �̃)
dω = −

∫ ∞

0

e− |x−vgt|
vg

s

s − i�̃
ds

= −e−i |x−vgt|
vg

�̃E1

(
−i

∣∣x − vgt
∣∣

vg
�̃

)
.

(B9)

Therefore, for B(x, t ) we obtain

B(x, t ) = 2π iei �̃
vg

(x−vgt ) − e−i |x−vgt|
vg

�̃E1

(
−i

∣∣x − vgt
∣∣

vg
�̃

)
.

(B10)
Combining (B6) and (B10), we finally obtain

I1(x, t ) = e−i�̃ t ei x
vg

�̃E1

(
i

x

vg
�̃

)
+ 2π iei �̃

vg
(x−vgt )

− e−i |x−vgt|
vg

�̃E1

(
−i

∣∣x − vgt
∣∣

vg
�̃

)
. (B11)

2. Calculation of I2(x, t )

We rewrite (32) as follows:

I2(x, t ) = ei ωs
vg (x−vgt ) 1

i

∫ ∞

0

ei(ω−ωs )t − 1
(ω−ωs )

ei (ω−ωs )
vg (x−vgt )dω.

(B12)
In the integrand of (B12) we introduce the new variables ω −
ωs = z and (x − vgt )/vg = T . We then obtain∫ ∞

0

ei(ω−ωs )t − 1
(ω−ωs )

ei (ω−ωs )
vg (x−vgt )dω =

∫ ∞

−ωs

eizτ

z
dz

−
∫ ∞

−ωs

eizT

z
dz, (B13)

where τ = x/vg.
For the first integral in (B13) we obtain∫ ∞

−ωs

eizτ

z
dz =

∫ ∞

−ωs

cos zτ
z

dz + i
∫ ∞

−ωs

sin zτ
z

dz

=
∫ ωS

−ωS

cos zτ
z

dz +
∫ ∞

ωS

cos zτ
z

dz

+ i
∫ ∞

−ωs

sin zτ
z

dz

=
∫ ∞

ωs

cos zτ
z

dz + i
∫ ∞

−ωs

sin zτ
z

dz

= −ci(ωsτ ) − i si(−ωsτ ), (B14)

where we introduced the sine and cosine integrals:

ci(ωsτ ) = −
∫ ∞

ωs

cos zτ
z

dz, si(−ωsτ ) = −
∫ ∞

−ωs

sin zτ
z

dz.

(B15)
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Similar calculations for the second integral in (B13) yield

∫ ∞

−ωs

eizT

z
dz = −ci(ωsT ) − i si(−ωsT ), (B16)

where

ci(ωsT ) = −
∫ ∞

ωs

cos zT
z

dz, si(−ωsT ) = −
∫ ∞

−ωs

sin zT
z

dz.

(B17)
Finally, we obtain

I2(x, t ) = ei ωs
vg (x−vgt )[i ci(ωsτ ) − si(−ωsτ ) − i ci(ωsT )

+ si(−ωsT )]. (B18)

Next, we use the known property of the sine integral [33],

si(y) + si(−y) = −π, (B19)

and two relations which follow from (B17) for T < 0:

si(−ωST ) = −si(−ωS|T |), ci(ωST ) = ci(ωS|T |). (B20)

Therefore, for I2(x, t ) (B18), where τ > 0 and T < 0, we
finally obtain

I2(x, t ) = ei ωs
vg

(x−vgt )[2π + i ci(ωsτ ) + si(ωsτ )−i ci(ωs|T |)
+ si(ωs|T |)], (B21)

which is Eq. (34) from the main text.

APPENDIX C: THE INFLUENCE OF THE PROBING
POWER, DECOHERENCE RATE, AND NONRADIATIVE

LOSSES ON THE TRANSMITTED AND REFLECTED
FIELDS

By accounting for probing power and all losses, the reflec-
tion coefficient can be expressed as [7,9]

R(ωS ) = − �

2γ

1 + iδωS/γ

1 + (δωS/γ )2 + �2
R/(� + �l )γ

, (C1)

where δωS = ωS − �; �R is the Rabi oscillation frequency,
the square of which is proportional to the power P of the
incident wave; and γ = �

2 + �ϕ + �l
2 is the total decoherence

rate, where �ϕ is pure dephasing and �l is the nonradiative
intrinsic losses. The transmission coefficient can be found
from the relation T = 1 + R, which holds for a single emitter
[7,9]:

T (ωS ) =
1 + (δωS/γ )2 − �

2γ
[1 + iδωS/γ ] + �2

R
(�+�l )γ

1 + (δωS/γ )2 + �2
R

(�+�l )γ

. (C2)

For a probe power in the single-photon regime, �R 
 �,
we obtain from (C1) and (C2)

R(ωS ) = −i �
2

ω − � + i
(

�
2 + �ϕ + �l

2

) , (C3)

T (ωS ) = ω − � + i
(
�ϕ + �l

2

)
ω − � + i

(
�
2 + �ϕ + �l

2

) . (C4)

Equations (C3) and (C4) coincide with (1) and (2) if we
neglect pure dephasing and nonradiative losses. Therefore, as
following (C3) and (C4), the pure dephasing and nonradiative
losses can be included in the framework of our treatment
simply by the redefinition of the qubit’s frequency �, � →
� − i(�ϕ + �l/2).

The coupling of the qubit to a waveguide can be described
by the relevant quantity β = �/2γ . If we disregard �ϕ and
�l , we obtain the critical coupling β = 1, which means that at
resonant frequency ωS = � a full extinction of the transmitted
signal |T (�)|2 = 0 and a complete reflection |R(�)|2 = 1.
However, if we account for dephasing and nonradiative losses,
the full extinction of the transmitted field and complete reflec-
tion never happen.
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