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Graded-azimuthal-index fiber as a control element for radial-index and orbital-angular-momentum
modes of Laguerre-Gaussian beams
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We propose an azimuthally varying graded-index fiber that can efficiently create and control a definite set
of radial-index and orbital-angular-momentum (OAM) modes of Laguerre-Gaussian beams and their super-
positions. A rigorous coupled-wave analysis formalism is developed, which provides a ready analysis for the
azimuthal-refractive-index variation in the Laguerre-Gaussian basis. In particular, we present effective control in
the generation and coupling of the various OAM modes, including radial-index modes of the Laguerre-Gaussian
beam within the fiber, wherein the propagation length of the fiber and the wavelength act as the control parame-
ters. We further present the possibility of switching every alternate channel in a wavelength division multiplexing
protocol to a higher-order spatial mode within the optical fiber to substantially reduce interchannel crosstalk.
The graded azimuthal index fiber can be utilized in high-speed fiber-optic communications as a versatile control
element for OAM modes and the radial-index mode of the Laguerre-Gaussian beam transformation.
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I. INTRODUCTION

In recent times, the orbital-angular-momentum (OAM)
content of the light field has been sought as a key ele-
ment in a plethora of applications ranging from microscopy
and material processing to quantum information processing
[1–5]. Efficient generation, manipulation, and detection of the
OAM content are central to this degree of freedom being
adapted in myriad applications. As of now, the development
of OAM-centric tools (both theoretical and experimental) is
far from optimal. In this paper we propose an efficient regime
of generation and effective manipulation of the OAM and
its superposition states, including the radial-index mode of
the Laguerre-Gaussian (LG) beam. One critical limitation
is that most of the azimuthal phase-varying tools avoid ac-
counting for the radial-index modes of the LG beam. The
spatial light modulator (SLM) considers only the generation
of OAM modes without offering any further control over
the propagation-related coupling between the modes. There-
fore, we present the analysis, incorporating all the degrees of
freedom (DOF), namely, the azimuthal (l) index and radial
(p) index of the LG beam, and their interaction along the
propagation direction.

Furthermore, having an equivalent fiber-based optical
element that can be integrated with the conventional fiber-
optic communication channel and support optical processing
without bulk optical elements is an extremely attractive
proposition. The fiber-equivalent optical elements offer a
compact, potentially reliable, and efficient optical control el-
ement [5–7]. Fiber-based optical systems such as fiber lasers,
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multiresonant fiber-grating-based sensors [8], and fiber-based
systems with tunable spatial light generation [7], long periodic
fiber gratings that generate OAM beams, are all critical optical
control systems in this domain [9,10]. All these fibers involve
refractive-index perturbations along the propagation direction
z. Besides that, radially refractive-index-varying fiber de-
signs have been investigated, such as the typical graded-index
(GRIN) fibers, which support propagation of OAM modes
over long distances [11], and GRIN elements in a cascading
manner are used to generate vector vortex beams [12]. At the
same time, specialty fiber designs for OAM mode propagation
are being pursued, such as the ring-core vortex fiber, which
supports the propagation-invariant LG OAM mode and offers
less crosstalk among the supported OAM modes by increasing
effective refractive-index separation [13]. All the above fiber
designs are studied as propagation channels and offer little
control over modal manipulation.

Along this line of thought, our proposed graded azimuthal
index (GRAIN), in conjunction with the radial parabolic vari-
ation, offers a paradigm of spatial mode control. There have
been a few fiber designs that contain azimuthal-refractive-
index variation, for instance, multicore fibers [14,15], where
cores are arranged in an azimuthal direction, and twisted
photonic crystal fibers [16], where photonic band gaps are
realized in the transverse dimension to guide the light along
the fiber for a specific range of wavelengths. Furthermore, az-
imuthal coupling is proposed in a radial step change at the core
and cladding boundary wherein the discontinuity increases
or decreases along the azimuthal axis without any radial
variation of the refractive index, which supports propagation
of the specifically handed OAM modes [17,18]. Again, all
the above-mentioned azimuthal coupling designs have been
investigated as propagation channels and the guiding princi-
ple has been to preserve the supermode structure along the
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FIG. 1. (a) Typical GRIN fiber relative permittivity contour lines
in the x-y plane. The proposed GRAIN fiber contour lines are for
(b) ε(φ) = h cos(φ) and (c) ε(φ) = hφ including the radial parabolic
refractive index. (d) Notation involving the GRAIN fiber element

propagation direction. Thus, the significant difference in our
work is that we exploit the azimuthal coupling as a control
knob for manipulating spatial OAM modes, including the
radial-index modes of the LG beam, which have been ne-
glected so far [19].

We also construct the relevant theoretical framework,
whereas all previously mentioned fiber designs are based on
coupled-mode theory with modal couplings [10,14,20,21],
for example, the tilted fiber Bragg grating considers the
coupling of cladding modes [22]. However, ours is a gen-
eralized azimuthal coupling of spatial modes and a rigorous
coupled-wave framework in the LG basis, which brings out
the control aspects of spatial LG modes. In addition, the LG
basis allows a seamless description of modes from fiber to
free space. Like the spectral resonance within a wavelength
range in fiber Bragg gratings [22], we provide the spatial
mode resonance and switching for wavelength channels. Since
our theoretical tool accounts for general azimuthal-refractive-
index variation in the GRIN, we provide the results for the
azimuthally increasing function of the refractive index [as
shown in Fig. 1(c)], which is sensitive to the handedness of
the OAM mode in both phase and intensity. The azimuthal
cosinusoidal variation of the refractive index [as shown in
Fig. 1(b)] is insensitive to the handedness of the OAM mode of
its intensity, but the phase shift acquired by each handedness
of the OAM mode differs. Any other arbitrary azimuthal de-
pendence can easily be incorporated within this mathematical
treatment. As a result, our work provides a comprehensive and
rigorous model for azimuthal-refractive-index-coupled fibers,
as well as mode selection based on propagation length. Most
importantly, wavelength switching in the azimuthal DOF (l
index) and radial DOF (p index) of the LG beam would
help in high-speed mode-division-multiplexing-based optical
communications.

In the theoretical framework, we provide correction terms
to the conventional fiber dispersion arising due to the

azimuthal coupling. However, we ensure that the azimuthal
refractive index is weaker than the radial-refractive-index
variation such that it does not affect the radial cutoff criteria
for the GRIN fiber modes. Because of the azimuthal coupling,
the LG modes are coupled across the radial index (p index)
and azimuthal DOF (l index). We solve the coupled differen-
tial equations rigorously in the eigenvalue problem framework
along the lines of rigorous coupled-wave analysis (RCWA) in
the literature [23]. Note that our RCWA treatment is in the LG
beam basis, unlike the conventional plane-wave basis.

Furthermore, we address the crosstalk problem in the con-
ventional wavelength division multiplexing (WDM) protocol.
Traditionally, all the channels operate at the fundamen-
tal mode of the single-mode fiber. Therefore, a significant
field overlap across adjacent channels limits the information
transfer rate due to crosstalk [24]. One efficient way of ad-
dressing this lacuna would be to shift the adjacent modes to a
higher-order spatial mode, thus drastically bringing down the
crosstalk. We demonstrate the switching of alternate wave-
length channels into a higher-order fiber mode using the
GRAIN fiber element, thus minimizing the adjacent channel
crosstalk and simultaneously scaling up high-speed optical
communications. Moreover, spatial mode generation has re-
cently been realized at the source as in a laser using SLM,
q plates, and J plates [25]; however, fiber-based spatial light
lasers have yet to be demonstrated. Therefore, our work of-
fers such a possibility by including azimuthal-refractive-index
variation in a typical fiber laser to generate spatially structured
light at the source.

The organization of the paper is as follows. In Sec. I we
review the importance of fiber elements and various specialty
fiber structures related to the graded refractive index. In Sec. II
we develop the theory of azimuthal-refractive-index coupling
in the GRIN fiber element in the LG basis. In Sec. III we dis-
cuss the results for two particular cases of the GRAIN, such as
cosinusoidal and linear azimuthal-refractive-index variation
(as shown in Fig. 1). The wavelength-switching ability of such
azimuthal-refractive-index variation is studied and discussed
explicitly. Section IV concludes with the highlights of the
paper.

II. THEORY OF GRADED-AZIMUTHAL-INDEX FIBER

We present a detailed theoretical model for the azimuthal
variation of the refractive index in the GRIN fiber that allows
us to work in the LG basis, wherein the OAM content and
radial-index modes of the LG beam are indexed through the
integers l and p, respectively. We consider a GRAIN fiber
whose refractive-index variation is along both the radial ρ and
azimuthal φ directions, and the relative permittivity of such a
medium can be written in the direct product form as

εr (ρ, φ) = ε(ρ)ε(φ), (1)

where

ε(ρ) = ε2

[
1 − 2�

(ρ

a

)2
]

(2)

and

ε(φ) = 1 + ε(φ) = 1 +
∑
q �=0

εqeiqm0φ, (3)
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where ε2 = n2
core is the average relative permittivity of the core

medium, � is defined as (ncore − nclad )/ncore, a is radius of the
core, m0 is the angular period of the medium [m0 = 2π/φ0,
m0 ∈ Z+ (positive integer)], and q ∈ Z (integer) and εq are
the spatial Fourier amplitudes.

Inside the dielectric GRAIN medium,

�∇ · �D = 0, (4)

where �D = ε0εr (ρ, φ) �E and the corresponding wave equa-
tion within the medium is

�∇( �∇ · �E ) − ∇2 �E = k2
0εr (ρ, φ) �E , (5)

where k2
0 = ω2/c2. It is well known that the field associated

with the beamlike solution within the GRAIN medium does
not satisfy the condition �∇ · �E = 0. There exist correction
terms to the beamlike solutions. In a weakly modulating
GRAIN medium, the higher-order corrections associated with
the divergence term in Eq. (5) become negligible compared
to the leading zeroth-order term, akin to the free-space situa-
tion. In effect, we solve the wave equation perturbatively by
considering the electromagnetic wave to be linearly polarized
along x̂; the spatial dependence of the electric field is given by

Ex(ρ, φ, z) =
∑

n

gnE (n)
x (ρ, φ, z) (6)

by substituting Eq. (6) in Eq. (5), and retaining the lowest
order (g0) term, we obtain

∇2E (0)
x + k2

0εr (ρ, φ)E (0)
x = 0. (7)

The solution of the wave equation (7) is expressed in the LG
basis as

E2 = E (0)
x (ρ, φ, z) =

∑
l,p

Sl,p(z)LGp
l (ρ)eilφeik2(z−z1 ), (8)

where Sl,p(z) are the amplitude weight factors, with

LGp
l (ρ) = Cl,p√

2ρ0

(
ρ

ρ0

)|l|
e−ρ2/2ρ2

0 L|l|
p

(
ρ2

ρ2
0

)
,

where l is the OAM mode index with l ∈ Z (integer), p is
the radial-index mode of the LG beam, which signifies p + 1
and p minima along the radial direction for l > 0 and l = 0,
respectively, Ll

p is the associated Laguerre polynomial,

Cl,p =
√

2p!/π (p + |l|)!
is the normalization constant, where ρ0 is defined as a/

√
V ,

V is the normalized frequency (or V parameter), given as
V = k0a

√
(n2

core − n2
clad ) with k2

2 = k2
0ε2, and z1 is the start-

ing position of the GRAIN fiber medium [namely, the input
interface, as shown in Fig. 1(d)].

We obtain the following coupled differential equation (15)
for Sl,p(z) by substituting Eqs. (1)–(3) and (8) in (7). We also
identify the governing differential equation for the LG beam
in the GRIN medium,(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+

{
k2

2

[
1−2�

(ρ

a

)2
]
− l2

ρ2

})
LGp

l =β2
l,pLGp

l ,

(9)
by considering Eq. (9) as the differential operator form
Ĥ0LGp

l = β2
l,pLGp

l , where β2
l,p is given as

β2
l,p = k2

2

(
1 − (|l| + 2p + 1)

4�

V

)
. (10)

However, due to the product term 2�(ρ/a)2ε(φ) in the
expansion of Eq. (7), instead of Eq. (9) we obtain

(Ĥ0 + hÛ)F (ρ, φ) = β2F (ρ, φ), (11)

where Û = 2k2
2�(ρ/a)2 f (φ), ε(φ) = h f (φ), and h � 1 is

an azimuthal-refractive-index perturbation strength parame-
ter. The extra perturbed potential Û introduces correction
terms in the β2

l,p. The normalized first-order correction term
is written as (for nondegenerate modes)

[
β

(1)
l,p

]2 = �

V

∫ ∞

0
LGp

l (ρ ′)ρ ′LGp
l (ρ ′)dρ ′

∫ 2π

0
f (φ)dφ. (12)

A detailed study on corrections is provided in Appendix A
[26–47]. The normalized second-order correction term is
given as

[
β

(2)
l,p

]2 = �

4V

∑
(l ′,p′ )/∈D(l,p)

(
| ∫ ∞

0 LGp′
l ′ (ρ ′)ρ ′LGp

l (ρ ′)dρ ′ ∫ 2π

0 e−il ′φ f (φ)eilφdφ|2
|l ′| − |l| + 2(p′ − p)

)
, (13)

where D(l, p) denotes a degenerate subspace of modes that
have the same βl,p. If we define the normalized effective
refractive index as b = (n − nclad )/(ncore − nclad ), then

b ≈ 1 − 2(|l| + 2p + 1)

V
+ h

2�

[
β

(1)
l,p

]2 + h2

2�

[
β

(2)
l,p

]2
. (14)

Note the inclusion of β2 instead of β2
l,p in Eq. (9) and we

introduce ξ = 1 − 2�(ρ/a)2 to obtain

∑
l,p

[
LGp

l

(
d2Sl,p

dz2
+ 2ik2

dSl,p

dz

)
+ k2

2

[ · · · + ε−1ξ (ρ)LGp
l+m0

Sl+m0,p + (
β2 − k2

2

)
LGp

l Sl,p + ε1ξ (ρ)LGp
l−m0

Sl−m0,p + · · · ])eilφ = 0.

(15)
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By using the orthogonality of LGp
l (ρ)eilφ functions, i.e.,∫ ∞

0

∫ 2π

0

(
LGp′

l ′
)∗

e−il ′φLGp
l eilφρ dφ dρ = δl,l ′δp,p′ ,

in Eq. (15) we obtain the equation

d2Sl ′,p′

dz2
+ 2ik2

dSl ′,p′

dz
+ (

β2 − k2
2

)
Sl ′,p′ + 2πk2

2

∑
l,p

[ · · · + ε−1 f p′,p
l ′,l+m0

Sl+m0,p + ε1 f p′,p
l ′,l−m0

Sl−m0,p + · · · ] = 0, (16)

where

f p′,p
l ′,l =

∫ ∞

0

(
LGp′

l ′
)∗

ξ (ρ)LGp
l ρ dρ

are overlap coefficients between the modes (l ′, p′) and (l, p),
through the coupling potential ξ (ρ).

It is clear from Eq. (16) that the coefficients Sl ′,p′ for vari-
ous (l ′, p′) are coupled and the coupling is governed by both
the mode overlap coefficients f p′,p

l ′,l and the azimuthal Fourier
components εq. For N coupled modes which are allowed
by the modal dispersion equation of basis modes, given by
Eq. (14), we solve for Sl ′,p′ (z) by expressing Eq. (16) in a
matrix form, given as[

S′
l ′,p′

S′′
l ′,p′

]
2N×1

= A
[

Sl ′,p′

S′
l ′,p′

]
2N×1

,

where S′
l ′,p′ = dSl ′,p′/dz, S′′

l ′,p′ = d2Sl ′,p′/dz2, and the matrix

A consists of elements εq and the overlap coefficients f p′,p
l ′,l .

Thus, the coupled equation (16) can be written as

dS̄

dz
= AS̄, (17)

where S̄ = [Sl′ ,p′
S′

l′ ,p′

]
2N×1

.

We solve Eq. (17) as a matrix eigenvalue problem such that
the solution for Sl ′,p′ (z) is given as

Sl ′,p′ (z) =
∑

m

CmSl ′,p′,meik0λm (z−z1 ), (18)

where Sl ′,p′,m is the (l ′, p′)th row of the eigenvector matrix
of A and λm are the eigenvalues of A, which consist of
both forward and backward propagating waves. The unknown
constants Cm are calculated by applying boundary conditions
at positions z1 and z2, the input and output interfaces of the
finite-size GRAIN medium, respectively. The field in medium
1 is

E1(ρ, φ, z) = Ei +
∑
l,p

Rl,pLGp
l (ρ)eilφe−ik1(z−z1 ), (19)

where an LG beam of mode (l0, p0) is incident:

Ei(ρ, φ, z) = LGp0

l0
(ρ)eil0φeik1z.

The field in medium 3 is

E3(ρ, φ, z) =
∑
l,p

Tl,pLGp
l (ρ)eilφeik3(z−z2 ), (20)

where Rl,p and Tl,p are the N + N normalized complex am-
plitudes of the reflected and transmitted modes with respect

to the incident beam amplitude, respectively. Imposing the
boundary conditions, i.e., E along x̂ and H along ŷ being
continuous at z = z1 and z = z2, where

Hy = −i

ωμ0

∂Ex

∂z
,

the following equations are obtained:

eik1z1δl,l0δp,p0 + Rl,p = Sl,p(z1), (21)

ik1eik1z1δl,l0δp,p0 − ik1Rl,p = ik2Sl,p(z1) + dSl,p

dz

∣∣∣∣
z=z1

, (22)

Tl,p = Sl,p(z2)eik2(z2−z1 ), (23)

ik3Tl,p =
(

ik2Sl,p(z2) + dSl,p

dz

∣∣∣∣
z=z2

)
eik2(z2−z1 ). (24)

Equations (21)–(24) provide 4N constraint equations with
Rl,p, Tl,p, and Cm as the N + N + 2N unknowns, and these
are solved algebraically as a system of linear equations. The
total reflected intensity R and total transmitted intensity T are
defined as

R =
∑
l,p

|Rl,p|2, T =
∑
l,p

|Tl,p|2

and the total intensity R + T = 1, for a nonabsorbing GRAIN
medium.

III. RESULTS AND DISCUSSION

The azimuthal variation of the refractive index provides
orbital angular momentum to the input light field. However,
due to the intimate relation between the radial-index and
azimuthal-index modes, the azimuthal coupling along the
propagation direction also leads to the coupling of the radial-
index modes of the LG beam. This is a distinct feature arising
due to the propagation dynamics in such devices. We use the
detailed analysis presented earlier, which models the light
propagation through the GRAIN fiber element, for further
control of LG basis modes. We have undertaken all calcu-
lations using MATLAB. The algorithm is the following. First,
we compute the Fourier content of the azimuthal-refractive-
index dependence using Eq. (3). These Fourier components
and other overlapping coefficients in Eq. (16) are computed
numerically and are expressed in matrix A. Matrix A is solved
for eigenvalues and eigenvectors, which determine the LG
mode strength within the medium equation (18). Further, us-
ing the boundary conditions given in Eqs. (23) and (24), we
obtain the transmission coefficients for each LG mode as these
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FIG. 2. Dependence of the normalized effective refractive index
of the LG basis modes on the V parameter. We are working with the
V parameter such that a few lower-order modes are controlled within
the GRAIN fiber element.

vary along the finite propagation length of the fiber and are
shown in Figs. 3, and 4, 6. Their wavelength dependence is
shown in Figs. 5 and 7. Additionally, coherent superposition
state generation in the GRAIN fiber is demonstrated. Here the
specific nature of the superposition state is validated using the
following protocol. As the specific superposed state is pro-
vided as input, it results in a complete periodic revival of the
initial input superposition state. Thus, a specific superposition
state generation is mapped to the specific input superposition
state; further details are provided in Appendix B.

Here the underlying GRIN structure leads to cutoff cri-
teria, and the finite set of basis modes are identified, in
accordance with the dispersion relation provided in Eq. (14),
which is plotted in Fig. 2. We observe that the impact of
the azimuthal coupling on the normalized effective refractive
index is negligible when h = �/11. Therefore, we present
these calculations at this h value. However, we have discussed
larger azimuthal couplings and the resulting changes in the
dispersion relation in Appendix A. We present some generic
results for two cases of the V parameter, i.e., V = 5 and 7,
such that three modes (LG0,0, LG1,0, and LG−1,0) and six
modes (LG0,0, LG1,0, LG−1,0, LG0,1, LG2,0, and LG−2,0) are
allowed, respectively. Our mathematical treatment can accom-
modate any azimuthal-refractive-index dependence. However,
we consider the cosinusoidal azimuthal-refractive-index func-
tion ε(φ) = h cos(m0φ) for all the switching results, which is
insensitive to OAM handedness. Further, we provide calcula-
tions of a linearly varying azimuthal refractive index ε(φ) =
hφ for accessing the handedness of the OAM modes.

A. Cosinusoidal variation in the GRAIN fiber element

The allowed OAM modes that propagate in the first case
of the parameter V = 5 are shown in Fig. 3. We solve numer-
ically for m0 = 1 and � = 0.01 with the incident Gaussian
mode (l, p) = (0, 0). Because of the periodicity of the az-
imuthal refractive index, the OAM modes couple to each other
and generate equal magnitude OAM (l = ±1, p = 0) modes
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FIG. 3. (a) Input Gaussian mode: (l, p) = (0, 0) switches to (l =
±1, p = 0) at a propagation length of 900 μm and λ = 1.5 μm.
The energy exchange happens periodically between the modes. The
transverse intensity profiles of the modes (b) l = 0 and (c) l = ±1
are shown below, with a core radius a = 5.627 μm (shown as a white
circle) and a beam waist ρ0 = 2.516 μm.

(due to the rotational invariance of clockwise and counter-
clockwise OAM modes). We plot in Fig. 3(a) the sum of each
OAM mode intensity (I = Il + I−l ), and the mode is shown in
Fig. 3(c). Similarly, we have computed the mode evolution for
the parameters V = 7 and m0 = 2. The corresponding results
are plotted in Fig. 4, where periodic switching is observed and
a complete conversion to the radial-index mode (l = 0, p =
1) of the LG beam is seen.

Thus, the periodic exchange of energy between the OAM
content and the radial-index modes of the LG beam for m0 =
1 and m0 = 2, respectively, can be used to address the issue
of crosstalk in the context of WDM with LG modes. A typical
WDM protocol involves a series of channels centered at dif-
ferent wavelengths with a specific bandwidth. The isolation
of adjacent channels depends on the frequency bandwidth
of the channels as well as the field mode overlap between
the adjacent channels. We show in Fig. 5 that one can lift
the fundamental mode of every alternate even channel to the
higher-order mode LG±1,0, whereas the odd channels continue
to remain in the fundamental mode LG0,0 for m0 = 1. Simi-
larly, we switch the Gaussian mode LG0,0 to the radial-index
mode LG0,1 of the LG beam for m0 = 2. Hence, such an
implementation will lead to the spatial modes of the adjacent
channels having significant refractive-index contrast in a typ-
ical multimode fiber with a V number of approximately 5 and
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LG0,1LG  2,0

LG  1,0

V=7, m0 = 2
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(a)

FIG. 4. (a) Input Gaussian mode: (l, p) = (0, 0) switches to the
radial-index mode (l = 0, p = 1) of the LG beam at a propagation
length of 1600 μm and λ = 1.5 μm for V = 7 and m0 = 2. Also
shown are the transverse intensity profiles: (b) an equal magnitude
superposition state of four modes (LG2,0, LG−2,0, LG0,0, and LG0,1)
at the propagation length of 750 μm and (c) radial-index mode LG0,1

with a core radius a = 7.878 μm (shown as a white circle) and a
beam waist ρ0 = 2.977 μm.

7 [14]. This would drastically minimize the crosstalk between
adjacent channels and effectively double the bandwidth for the
even (odd) channels in the higher-order (fundamental) mode
scenario within the fiber. The result is depicted in Fig. 5,
which uses the GRAIN fiber of propagation length 50 mm,
allowing access to ten OAM mode switching channels and
six radial-index mode (p index of the LG beam) switching
wavelength channels for m0 = 1 and 2, respectively, in the
1.3–1.55 μm wavelength range of optical communication.
The number of channels that can be accessed depends on
the propagation length of the GRAIN fiber element and the
strength of the azimuthal coupling.

We observe the access of 20 WDM channels for OAM
mode switching and 12 WDM channels for radial-index mode
(p index of the LG beam) switching for a propagation length
of 100 mm and h = �/11 = 0.0009, in addition to the result
of accessing 51 WDM channels for OAM mode switching
and 30 WDM channels for radial-index mode (p index of
the LG beam) switching for the propagation length of 50 mm
and h = �/2 = 0.005. It should be noted that more WDM
channels are accessed for spatial mode switching as the prop-
agation length of the fiber element or modulation strength
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FIG. 5. Total of ten WDM channels of OAM mode switching and
six WDM channels of radial-index mode switching accessible for the
GRAIN fiber of propagation length 50 mm for (a) m0 = 1 and V = 5
and (b) m0 = 2 and V = 7. The adjacent wavelength channels are
converted from (a) (l = 0, p = 0) to (l = ±1, p = 0) and (b) (l =
0, p = 0) to (l = 0, p = 1), which helps in reducing the crosstalk
between adjacent wavelength channels.

increases; however, a decrease in the switching efficiency of
the radial-index mode of the LG beam is observed.

Hence, the periodic energy exchange along the propaga-
tion length of the GRAIN fiber element between the LG0,0

and LG±1,0 modes for m0 = 1 and also between the LG0,0

and LG0,1 modes for m0 = 2 is exploited to arrange adjacent
WDM channels to acquire additional OAM or the radial-index
mode of the LG beam. Therefore, such an optical element
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FIG. 6. Linearly varying GRAIN fiber element: (a) input Gaus-
sian mode (l, p) = (0, 0) switches to (l = 1, p = 0) and (l =
−1, p = 0) at propagation lengths of 500 and 1200 μm, respec-
tively, at λ = 1.5 μm for V = 5 (corresponds to a core radius of
5.627 μm and a beam waist ρ0 = 2.516μm), and (b) input Gaussian
mode (l, p) = (0, 0) switches to (l = 1, p = 0) and (l = 2, p = 0),
(l = −2, p = 0), and (l = −1, p = 0) at the propagation lengths
of 400, 800, 1500, and 1900 μm, respectively, at λ = 1.5 μm for
V = 7 (corresponds to a core radius of 7.878 μm and a beam waist
ρ0 = 2.977 μm)

could be integrated within multimode fiber-based WDM opti-
cal communication applications for improved performance.

For a cosinusoidal GRAIN fiber of m0 = 1 and V = 7,
we have six modes such as LG2,0, LG1,0, LG0,0, LG0,1,
LG−1,0, and LG−2,0. At around 1300 μm, (LG2,0 − LG0,1 +
LG−2,0)/

√
3, an equal magnitude superposition state, is gen-

erated. In a typical multimode or GRIN fiber, the modes in
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FIG. 7. Wavelength switching in the linear GRAIN fiber.
(a) Each handedness of the OAM mode is accessed at different
wavelengths with an efficiency of about 90% for V = 5. (b) Inclusion
of the higher spatial modes with the efficiency of access about 50%
for V = 7.

the above superposition state degenerate and propagate with
the same β. One can thus switch from the LG0,0 Gaussian
mode to the superposition state and vice versa, as shown in
Appendix B. Using m0 = 1 and V = 9, a few radial-index
modes such as LG±1,1 with efficiency about 65% and LG0,1

with about 80% can be accessed at propagation lengths around
2800 and 3800 μm, respectively. Furthermore, it is observed
that the generated OAM modes are integer multiples of the
periodicity of GRAIN fiber. Once the particular OAM mode
(l index) with p = 0 is generated, it couples to the radial-
index modes (p > 0) of the associated l index. Otherwise,
the corresponding radial-index modes of the LG beam are
also not generated. Therefore, the azimuthal-refractive-index
periodicity dictates the generation of OAM with p = 0 and the
corresponding radial-index modes of the LG beam.
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B. Linear variation in the GRAIN fiber element

We observe that the cosinusoidal azimuthal refractive index
always results in an equal magnitude of the ±l OAM modes. It
restricts the possibility of accessing a particular handed OAM
mode. In this regard, a linearly varying GRAIN fiber element
provides a solution. The field evolution is computed for the
V parameter V = 5 and 7. We notice that V = 5 leads to the
coupling of just three modes, which allows the accessing of
LG1,0 and LG−1,0 at two different propagation lengths with
an efficiency of nearly 90%, as shown in Fig. 6(a). The same
is manifested in the wavelength switching of the two OAM
modes with different handedness, in addition to the LG0,0

Gaussian mode; as a result, we can access these three different
spatial modes in the WDM protocol, as shown in Fig. 7(a).
Similarly, we identify that in Fig. 6(b), five spatial modes can
be accessed in the WDM protocol. However, the efficiency of
LG1,0 and LG−1,0 is around 60% and that of LG2,0 and LG−2,0

is around 70%, which is certainly better in comparison to other
implementations of multimode excitation of OAM modes in a
fiber [1].

In Fig. 7(a) we show that 17 spatial mode channels can be
accessed, with each spatial mode occurring alternately with
two-wavelength-channel separation in the wavelength range
of 1.3–1.55 μm. These channels can propagate in a vortex
fiber, which supports the individual handedness of the OAM
modes and exhibits less modal crosstalk. Similarly, Fig. 7(b)
illustrates the access of five OAM mode wavelength channels
for V = 7, but the conversion efficiency is only about 50%.

We anticipate that the proposed GRAIN fiber element can
be fused with conventional fiber channels and excites these
modes, which include the handedness of the OAM modes
and the radial-index mode of the LG beam, as well as their
superpositions with wavelength selectivity. This would result
in a significant enhancement in multimode optical fiber com-
munications. Furthermore, the recent review of Yang et al.
[48] emphasizes that both the theory and experiments of
fiber-based spatial mode generation are still at an early stage
and therefore offer very little control and switching capa-
bility. Therefore, our proposed wavelength-tunable GRAIN
fiber element could play a significant role in applications
such as fiber-based laser sources and sensors and improve
WDM-based protocols.

IV. CONCLUSION

We have systematically captured in a theoretical analysis a
rather general treatment that can be adapted to any arbitrary
azimuthal variation of the refractive index and the result-
ing effects on the OAM and radial-index mode of the LG
beam. In particular, the proposed GRAIN fiber element can
be used to substantially minimize the crosstalk in the adjacent
WDM channels in multimode fiber-optic communications.
We have presented a simulation involving ten channels of
alternate OAM mode switching and six channels of alternate
radial-index mode switching in the optical communication
wavelength range of 1.3–1.55 μm. We envisage immense
potential for effective manipulation of the higher-order spa-
tial mode content in the proposed GRAIN element as a
powerful fiber-based OAM manipulating element in various

TABLE I. Perturbative correction term values for ε(φ) = hφ.

Mode
[
β

(1)
l,p

]2
in (�/2V )

[
β

(2)
l,p

]2
in (�/16V )

LG0,0 12.5244 150.45
LG1,0 25.1326 323.3946
LG2,0 37.6992 485.9426

applications across multiple areas. The GRAIN fiber can be an
important tool for manipulating single-photon superposition
states. With advantages such as efficient superposition state
generation, a small spatial footprint, and ready integrability
with conventional fiber optic communication channels, the
GRAIN fiber element can become a versatile tool for OAM
manipulation.

APPENDIX A: NONDEGENERATE PERTURBATIVE
CORRECTIONS OF β2

Linear GRAIN fiber

In GRIN fiber, nondegenerate modes are identified by the
parameter g = |l| + 2p + 1, which has the same propagation
constant β. We provide the first- and second-order corrections
to β2 in terms of �/V in Table I.

The overall β2 is given as

β2 ≈ k2
2

(
1 − 4g�

V
+ h

[
β

(1)
l,p

]2 + h2
[
β

(2)
l,p

]2
)

. (A1)

For example, g = 1 for LG0,0, the β2 is given as β2 =
k2

2[1 − 1
V (4� − 12.5244

2 h� − 150.45
16 h2�)]. For the cosinu-

soidal GRAIN fiber, the first-order correction is negligible,
arising from the symmetry arguments. Thus, the dispersion
curves and cutoff criteria exhibit little change even for large
h, quite unlike the linear case (see Fig. 8).

APPENDIX B: SUPERPOSITION STATE AS INPUT TO THE
GRAIN FIBER

We have studied the GRAIN fiber with a superposition
state as an input. The specific superposition state (LG2,0 −
LG0,1 + LG−2,0)/

√
3 is employed as input. We have observed

that the input superposition state generates the Gaussian
mode. If the right composition of the superposition state is
not considered, it does not produce the Gaussian mode with
100% efficiency. For example, the state (LG2,0 − LG0,1 +
LG−2,0)/

√
3 in Fig. 9 produces the complete Gaussian mode,

whereas flipping the sign of the radial-index mode of the
LG beam phase with respect to the other, i.e., (LG2,0 +
LG0,1 + LG−2,0)/

√
3, can only generate the Gaussian mode

with 10% efficiency. Since the correct superposition state
is only mapped to the input state, it signifies the coherent
evolution of each mode in the composition, which indicates
that the superposition states that are generated by the GRAIN
are not incoherent intensity mixtures; they are the coherent
amplitude superposition states. This can be used to switch the
superposition state into a Gaussian mode at each wavelength
channel of WDM.

It is demonstrated that the GRAIN fiber element can gen-
erate the superposition of a specific set of radial-azimuthal
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FIG. 8. Dispersion curves of the linear GRAIN fiber. The above
curves are for nondegenerate modes only. One can anticipate splitting
the curves among the degenerate modes due to the azimuthal cou-
pling. Solid dispersion curves indicate a slight change in the cutoff
criteria of spatial modes compared with the unperturbed case. The
number of spatial modes supported for a given V parameter remains
the same as the h = � = 0.01 case. When h = 5� = 0.05 (dashed
dispersion curves), the number of spatial modes supported by the
GRAIN fiber changes for a given V parameter.

modes of the LG beam. However, a few sets of spatial modes
are permitted by choosing the radial boundary condition of
the optical fiber, which sets the V parameter, allowing precise
control of the creation of superposition states. The generation
of superposition states is also necessary for high-dimensional
state transfer and manipulation, quantum teleportation, quan-
tum cryptography, and all-optical computation [49–52].
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FIG. 9. Superposition state propagation in the GRAIN fiber,
showing periodic revival of the input state (LG2,0 − LG0,1 +
LG−2,0)/

√
3 between the Gaussian modes.

APPENDIX C: SPIN-ORBIT-INTERACTION IN THE GRAIN
FIBER

The full wave equation is given as

∇2E + k2
0εr (ρ, φ)E = �∇( �∇ · E). (C1)

The divergence term on the right-hand side contributes to the
spin-orbit interaction. This can be expressed for a nonconduct-
ing medium as

�∇ · D = 0. (C2)

By using D = εr (ρ, φ)E in (C2), it can be rewritten as

�∇ · E = −E · �∇ ln[εr (ρ, φ)]. (C3)

In this equation, one can see the interaction of polarization,
called the spin angular momentum (SAM) of light, with the
refractive-index gradient. This is the starting point for spin-
orbit interactions. To further clarify, consider that the electric
field has transverse components, that is, E = (Eρ, Eφ ) and
εr (ρ, φ) = ερ (ρ)εφ (φ), and Eq. (C3) results in

−�∇ · E = Eρ

ερ

∂ερ

∂ρ
+ Eφ

ρεφ

∂εφ

∂φ
. (C4)

The difference in this equation in comparison to the specialty
fibers arises from the consideration of only one term of the
radial derivative. In our case, as a result of the radial GRIN
function, we also expect the spin-orbit interaction (SOI) to
exist in the GRAIN fiber. The SOI is observed due to the
graded radial refractive index of the fiber. To get to the SOI
term, which is listed in [53,54], we write �∇( �∇ · E) as

�∇( �∇ · E) =
(

∂ ln(ερ )

ρ∂ρ
L̂Ŝ + ∂ ln(ερ )

∂ρ

∂

∂ρ
+ ∂2 ln(ερ )

∂ρ2

)
Eρρ̂

+
[(

∂ ln(εφ )

ρ∂φ

∂

∂ρ
− ∂ ln(εφ )

ρ2∂φ

)
Ŝ

+ ∂ ln(εφ )

ρ2∂φ
L̂ + ∂2 ln(εφ )

ρ2∂φ2

]
Eφφ̂. (C5)

We identify the OAM operator as L̂ = −i ∂
∂φ

and the SAM
operator as

Ŝρ̂ = iφ̂, Ŝφ̂ = −iρ̂. (C6)

We can see that the first three terms on the right-hand side
of Eq. (C5) contain the usual terms, but due to azimuthal
coupling, other possibilities arise. The spin-orbit-interaction
term is given as

ĤSO = ∂ ln(ερ )

ρ∂ρ
L̂Ŝ. (C7)

Furthermore, the change in the phase of the propagation con-
stant is given by

δ(β2) = 〈�|ĤSO|�〉 =
∫

�∗ ∂ ln(ερ )

ρ∂ρ
L̂Ŝ �ρdρdφ. (C8)

By approximating δ(β2) ≈ 2βδβ and considering ερ =
ε2[1 − 2�(ρ/a)2] and � = LGp

l (ρ)eilφeiβz|s〉, the operators
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lead to L̂� = l�, where l is the OAM, and Ŝ� = s�, where
s is the SAM, which takes the value 1 or −1 for right circu-
lar or left circular polarizations, respectively. Equation (C8)
becomes

δβ = −λ�ls

πa2
. (C9)

One can now compute that the superposition of the OAM
mode and the SAM mode results in different phase evolution
along the propagation length. It results in two types of SOI:
parallel SOI when the OAM and SAM signs are aligned and
antiparallel SOI when the signs are not aligned. To compare

the strength of SOI in our GRAIN fiber, we use a � of 0.05,
a wavelength of 0.8 μm, and a core radius of 3 μm for
V = 7 to support an OAM equal to 2. Then δβ = 28.3 cm−1,
which is of the same order of magnitude (i.e., 22.1 cm−1)
as mentioned in [53] for the dispersion-tailored few-mode
fiber. The SOI term is contributed only by the radial re-
fractive index (GRIN fiber) medium; however, the azimuthal
refractive index does not contribute to the SOI. The strict
condition, however, is that �/a2 be as small as possible (i.e.,
δβ � β). The GRAIN fiber offers other possibilities, such as
spin-radial coupling, which is beyond the scope of the present
paper.
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