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Winding number and bulk-boundary correspondence in a one-dimensional
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A topological phase transition and the related bulk-boundary correspondence in a class of one-dimensional
non-Hermitian photonic lattice with chiral symmetry are studied. We find that the corresponding topological
number should be defined by adding up winding numbers calculated under the chiral symmetry. The Wilson
loop method is used to calculate this topological number. We reveal the topological phase transition in one-
dimensional non-Hermitian systems with chiral symmetry and provide a convenient and general pathway to
characterize the related topology.
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I. INTRODUCTION

Finding a set of global constants which characterize dif-
ferent topological phases is one of the core contents of
topological band theory [1–4]. In some Hermitian systems,
different topological phases have been defined. These differ-
ent phases can be characterized by some topological numbers.
In one-dimensional (1D) systems, the Berry phase is used
to define the winding number, whose name originates from
its geometrical understanding [5–7]. In two-dimensional sys-
tems, the Chern number is used to classify the topological
phases [4,8,9]. Apart from the topological numbers, sym-
metries also play an important role in this process. The
symmetries of a topological system protect its topological
phases, and systems with the same symmetry have significant
similarities in the topological phases [10–13].

Recently, there has been more interest in the non-Hermitian
system. The question naturally arises how to generalize the
theory of the Hermitian systems to that of non-Hermitian
systems. For example, what is the bulk-boundary correspon-
dence in non-Hermitian systems? How should we define the
topological phases and topological numbers? The difficulties
arise from many aspects. For instance, the spectrum of a non-
Hermitian Hamiltonian is generally complex. Meanwhile, the
eigenstates of a Hamiltonian and of its Hermitian conjugate
are not the same. To redefine the topological numbers on
the complex spectrum, much effort has been put forth from
different perspectives. For instance, biorthogonal quantum
mechanics has been used [14] to extend the winding num-
ber and the Chern number in non-Hermitian systems and
successfully classify the topological phases in some systems
[11,12,15,16]. Also, new symmetries based on Hermitian the-
ories have been introduced and a topological classification
of non-Hermitian systems has been built. Furthermore, in
non-Hermitian systems, there are exceptional points (EPs)

[17–19] at which the eigensystems of the Hamiltonian coa-
lesce. Exceptional points can be viewed as the branch points
on the spectrum and have singularities, which introduce dif-
ficulties in calculating the topological numbers. In Hermitian
system, though the eigenspace at the degeneracy point is mul-
tidimensional, one can always use the linear combination to
reconstruct the eigenstates. Thus, the eigenvalues and eigen-
states can always be single valued along an arbitrary path.
Then the topological number on the paths can be easily cal-
culated. In non-Hermitian systems, however, the singularity
of EPs introduces difficulties in defining topological numbers.
If a path goes through an EP, the eigensystems along the
path will be multivalued, making the definition of topological
numbers ambiguous. In some previous works, the researchers
dropped the points nearby the EPs, calculating the topological
numbers on the remaining spectrum [13,20]. We find that
the singularity of the EPs can be overcome with the help
of symmetries and in that way we can have a more precise
topological description.

In this work we overcome the difficulties introduced by
EPs by building a relation between the symmetries and the
spectrum. We use a numerical algorithm based on the Wilson
loop method to calculate the topological number. In this way
we describe a topological phase transition and the related
bulk-boundary correspondence in a class of 1D non-Hermitian
photonic lattices. The paper is organized as follows. In Sec. II
we define our model and illustrate its topological phase tran-
sition. In Sec. III we address the symmetries, especially the
chiral symmetry (CS) in the non-Hermitian system, and dis-
cuss how the symmetry confines the chosen eigensystems
when calculating topological numbers. In Sec. IV we show
that systems with CS can have a more precise topological
description, which requires an arrangement of the spectrum
to follow the CS. We summarize in Sec. V.
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FIG. 1. Open chain described by Eq. (1). The dashed box denotes
the unit cell.

II. MODEL AND TOPOLOGICAL EDGE STATES

We begin with a non-Hermitian lattice model, which is
based on the Su-Schrieffer-Heeger model [21] with balanced
on-site gain and loss. In the open-boundary condition, the
Hamiltonian reads

HO =
M∑

m=1

(c†
m,Bcm,A + c†

m,Ccm,D + H.c.)

+ w

M−1∑
m=1

(c†
m,Ccm,B + c†

m+1,Acm,D + H.c.)

+ iγ
M∑

m=1

(c†
m,Acm,A + c†

m,Bcm,B

− c†
m,Ccm,C − c†

m,Dcm,D) (w > 0, γ > 0), (1)

where A, B, C, and D are sublattices in a unit cell and M is
the number of unit cells, as shown in Fig. 1. In addition, cm,X

(c†
m,X ) is the annihilation (creation) operator on sublattice X

of the mth unit cell. The hopping amplitudes between the sites
are w and 1. The on-site gain and loss are determined by γ . In
the periodic boundary condition, the bulk Hamiltonian reads

H (k) =

⎛
⎜⎜⎝

iγ 1 0 we−ik

1 iγ w 0
0 w −iγ 1

weik 0 1 −iγ

⎞
⎟⎟⎠, (2)

where k in [−π, π ) is the Bloch wave vector. This Hamilto-
nian, together with the one in the open-boundary condition,
is non-Hermitian because of the diagonal terms ±iγ , namely,
H† �= H . This means that the system interacts with the envi-
ronment. The eigenvalues of the bulk Hamiltonian are

E (k) = ±
√

−A ±
√

A2 − 4B(k)

2
, (3)

where A = 2(γ 2 − w2 − 1) and B = γ 4 + 1 + w4 + 2γ 2 −
2γ 2w2 − 2w2 cos k.

There is a real gap in the spectrum of the bulk Hamiltonian.
Generally, Re[E (k)] �= 0, except when γ 2 = w2 − 1. When
the energy gap closes at γ 2 = w2 − 1, the system will ex-
perience a topological phase transition. For a system in the
open-boundary condition with large M and γ smaller (larger)
than

√
w2 − 1, there will be two (no) eigenstates with eigen-

values E = ±iA, A > 0. Several examples of the spectrum are
shown in Fig. 2.

FIG. 2. Spectrum of the open-boundary condition, with M = 50.
There are two eigenstates with energy E = ±iA, labeled by the
diamonds, in the topological phase, and no such edge state in the
trivial phase.

III. SYMMETRIES AND TOPOLOGICAL
NUMBER OF THE SYSTEM

There are three important symmetries in our model, which
are the time-reversal symmetry (TRS†),1 the particle-hole
symmetry (PHS†), and the CS [11]. The TRS† is simply given
by the fact that

HT(k) = H (−k). (4)

The 1D non-Hermitian systems with TRS† are insensitive to
the boundary condition [22,23], namely, the bulk states under
either the periodic boundary condition or the open-boundary
condition are similar. The PHS† is described by

ηH∗(k)η−1 = −H (−k). (5)

Here η = I2 ⊗ σz. These two symmetries directly lead to the
CS:

ηH†(k)η−1 = −H (k). (6)

The CS connects the left and right eigenstates of the Hamilto-
nian. Generally, we can write the eigenequations of H (k),

H (k)|Rn(k)〉 = En(k)|Rn(k)〉,
H†(k)|Ln(k)〉 = E∗

n (k)|Ln(k)〉, (7)

where n = 1, 2, 3, 4 refers to four eigenstates. Accord-
ing to biorthogonal quantum mechanics [14], we can set
〈Ln(k)|Rn(k)〉 = 1. Due to the CS, which is Eq. (6),

ηH†(k)η|Ln(k)〉 = ηE∗
n |Ln〉 = −H (k)η|Ln(k)〉

→ H (k)η|Ln(k)〉 = −E∗
n (k)η|Ln(k)〉. (8)

1The dagger relates to the definition of the symmetry. In non-
Hermitian physics, most symmetries have two ramifications because
the Hamiltonian and its Hermitian conjugate are different. A dagger
is used to specify one of them.
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So, for the index n′ such that En′ (k) = −E∗
n (k), η|Ln(k)〉 =

CR(k)|Rn′ (k)〉, where CR(k) is a complex number. Similarly,
η|Rn(k)〉 = CL(k)|Ln′ (k)〉, where CL(k) is another complex
number.

Lattices in the open-boundary conditions also have these
three symmetries, by replacing H (k) with HO and changing
η = I2 ⊗ σz into η = I2M ⊗ σz in Eqs. (4)–(6). It turns out that
the PHS† and the CS become one symmetry because H∗ = H†

in the open-boundary condition. When the system is in the
topological phase, there are two edge states which we denote
by |φ±〉 and the two corresponding left eigenstates denoted by
|χ±〉, namely,

HO|φ±〉 = ±iA|φ±〉,
H†

O|χ±〉 = ∓iA|χ±〉. (9)

Due to the CS and the fact that −(iA)∗ = iA, we conclude that
η|φ±〉 = D|χ±〉, where D is a complex number. That means
the two edge states are protected by the CS.

IV. DEFINITION OF THE TOPOLOGICAL NUMBER

In some previous works, the generalized Berry phase was
used to define the winding number [11–13,24]

Qm = 1

2π i

∫ π

−π

〈Lm(k)| ∂

∂k
|Rm(k)〉dk (mod 1), (10)

which is the integral of the general Berry connection
〈Lm(k)| ∂

∂k |Rm(k)〉 along the path. Equation (10) can be cal-
culated approximately using the Wilson loop:

Qm ≈ 1

2π
arg[〈Lm(k0)|Rm(k1)〉〈Lm(k1)|Rm(k2)〉

× · · · 〈Lm(kN−1)|Rm(k0)〉]. (11)

The eigensystem whose eigenvalues are En(k) is labeled by n.
The interval of the integral (10) is [−π, π ), which is a path
in the first Brillouin zone. In our system, there are generally
four eigenvalues for a given k. Thus, we expect four different
Qm naturally. The question is how to determine the eigenstates
on the interval. To calculate the integral in Eq. (10), we need
|Rn(k)〉 and |Ln(k)〉 to be continuous; however, due to the
existence of EPs, there are multiple choices of |Rm(k)〉 and
|Lm(k)〉. For example, turning the eigenstates into those of
E∗

m(k) is also a choice that makes the eigenstates continu-
ous. In some previous works [13,25], researchers dropped the
small intervals near the EPs to avoid singularity. Here we
introduce a method to deal with this problem. For a fixed n,
we label the eigensystem whose eigenvalue is −E∗

n (k) as n′.
The eigensystems n and n′ are related by the CS. Furthermore,
for the same n, an eigensystem is labeled by nc if there is a kc

where Enc (kc) = En(kc); kc is one of the EPs. An example of
this convention is shown in Fig. 3.

After introducing n′ and nc, we use Eq. (10) or (11) to
calculate the winding number on paths labeled by n, n′, and
nc, whose values are denoted by Qn, Qn′ , and Qnc . To calculate
the topological number, we solve the eigenproblem (7) nu-
merically on several discrete k,−π = k0 < k1 < k2 < · · · <

kN = π , where N is a large integer. Generally, the calculated
eigenstates have random phases. According to the biorthog-
onal quantum mechanics [14], we must make the eigenstates

FIG. 3. Spectra of the bulk Hamiltonian with different parame-
ters. Circles, pluses, diamonds, and crosses denote n = 1, 2, 3, and
4, respectively, and n′ = 4, 3, 2, 1 and nc = 2, 1, 4, 3.

satisfy

〈Ln(kp)|Rm(kp)〉 = δmn. (12)

Here δmn = 1 for m = n and δmn = 0 for m �= n. After that,
we can calculate the Wilson loop (11), without being affected
by the random phase of |Rn(k)〉. To calculate the integral (10)
using a difference, however, we must have a smooth gauge
along the path. To acquire a smooth gauge, we follow the
discussion in [26]. In the beginning, we make

Im[〈Ln(kp)|Rn(kp+1)〉] = 0 (13)

by adjusting the phase of the eigenstates. It offers a smooth
gauge (the eigenstates along the path vary continuously
with k). However, the eigenstates at k0 = −π and kN = π

will generally have a different phase. We define this fact
as |Rm(−π )〉 = exp(iφm)|Rm(π )〉, −π < φm � π . To get a
smooth gauge, we need to multiply a continuous phase func-
tion exp[iφ(k)], making the eigenstates at k = −π and π have
the same phase. Then we can calculate the winding number
and the result yields Qm = φm

2π
, because the Wilson loop (11)

is independent of the gauge and from Eq. (13) Qm = φm

2π
. The

geometric meaning of the Berry connection is the infinitesimal
phase change at the Bloch vector k. So

Qm ≈
N−1∑
p=1

〈Lm(kp)|
( |Rm(kp+1)〉

|〈Lm(kp)|Rm(kp+1)〉| − |Rm(kp)〉
)

. (14)

In some previous works, the authors used
∑4

m=1 Qm to give
the topological number, without the mod 1 [13,25]; however,
we have found that there is a more precise description. For
any band En(k), Qnc + Qn′ will be 0.5 mod 1 in the topological
phase and 0 mod 1 in trivial phase. In our system, there will
be two 0.5 mod 1 in the topological phase, since there are
four energy bands. Each of them refers to an edge state. The
topological numbers with different γ are presented in Fig. 4.

The acquirement of the more precise topological descrip-
tion is based on the fact that the arrangement of the energy
band is consistent with the chiral symmetry. Because the edge
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FIG. 4. Topological numbers of systems with w = 2 while γ

varies from 0 to 4. The change in topological numbers indicates the
topological phase transition. There is a slight shift in the blue lines for
avoiding overlap. The phase transition point is analytically γ = √

3.

states are protected by the chiral symmetry and in the periodic
boundary condition, chiral symmetry relates different eigen-
systems at fixed k.

V. CONCLUSION

In summary, we have exhibited a non-Hermitian photonic
lattice system that has topological phase transition and calcu-
lated its topological numbers. We used the CS to overcome
the singularity of the EPs, making the paths for calculating
topological numbers single valued and well defined. Using
the gauge smoothing process, we calculated the topological
numbers, which do not rely on the analytical solution of
eigenequations. Our result showed how CS affects the defi-
nition of the topological numbers and Re[E ] < 0 cannot fully
describe the topological phase in non-Hermitian systems.
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APPENDIX: EXPONENTIAL BEHAVIOR
OF THE EDGE STATES

From our observation of the numerical results, we can
use the exponential behavior of the edge states to construct
them and find the system’s topological phase by seeking the
solutions with the form

φ = (a1, ib1, a2, ib2, . . . , anM , bnM )T, (A1)

which satisfies Hφ = iAφ. In Eq. (A1), a j and b j

are real numbers, n is the number of sites in the
unit cell, and M is the number of unit cells. We
assume that (amn+1, ibmn+1, . . . , a(m+1)n, ib(m+1)n) =
λ(a(m−1)n+1, ib(m−1)n+1, . . . , amn, ibmn), where m =
1, 2, . . . , M − 1 and λ is a constant. This means that the
amplitude grows (decays) exponentially along the chain. For
simplicity, we set n = 2. The eigenequations (H − iA)φ = 0

FIG. 5. Numerical solution and theoretical approximate solution
for w = 2 and γ = 1. After normalization, the approximate solution
is a1 = 0.7557, b1 = −0.3528, a2 = −0.4602, and λ = 0.3045.

can be reduced to six independent equations

a1(γ − A) + b1 = 0,

a1 + b1(A − γ ) + a2w = 0,

b1w − a2(γ + A) + b2 = 0,

a2 + b2(γ + A) + a1λw = 0,

b2w + λ[a1(γ − A) + b1] = 0,

λM−1[a2 + b2(γ + A) + a1λw] − a1λ
Mw = 0. (A2)

Other equations are the linear combination of the six
equations. There is no exact nontrivial solution. However, an
approximate nontrivial solution can be calculated for large
M and there are two pathways. The first one is to abort the
last equation λM−1[a2v + b2(γ + A) + a1λw] − a1λ

Mw = 0.
Setting a1 = 1 without losing generality, we find that b2 = 0
and there are four remaining unknown variables in the first
four equations. After calculation, the aborted equation be-
comes −a1wλM = 0. If λ < 1, this approximation solution
converges for large M, indicating that the solution of φ is a
good approximation of the edge state we observed before (the
edge state exists; see Fig. 5). So λ < 1 implies that the sys-
tem is in the topological phase. If λ > 1, this approximation
diverges and thus the edge states do not exist. Hence, λ > 1
implies that the system is in the trivial phase. The boundary
λ = 1 is regarded as the phase transition point.

The other pathway is to abort the first equation and start
from the last question. First, multiple λ−M for every equa-
tion to make φ’s norm converge. In that case, one will get
that a1 = 0, A changes its sign compared to the first pathway,
−b2wλ−M ≈ 0, λ > 1 refers to the topological phase, and λ <

1 refers to the topological phase. Since the two approximate
solutions’ eigenvalues are opposite, we denoted these two by
φ±, Hφ± = ±iAφ±.

Analogously to the Bloch theorem [27], when M →
+∞, one can conclude that (a1, ib1, a2, ib2)T is the eigen-
state of H (−i ln λ), whose eigenvalue is ±iA. When λ = 1,
H (−i ln 1) = H (0) can be viewed as a Bloch Hamiltonian,
whose Bloch vector is k = 0. Based on the previous discus-
sion, λ = 1 will be the phase transition point. We will show
that A = 0 and the energy gap will close. To prove these,
we address the fact that, at this time, the states represented
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by a1 = 0 and b2n = 0 degenerate because λ = λ′ = 1. Thus,
these two states degenerate, implying that A = A′ and the real
gap must be closed. For the bulk Hamiltonian, the real gap

closes at k = 0. In conclusion, we have shown that the edge
states have exponential behavior and proved that the phase
transition happens when the real gap is closed.
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