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Generation of photon pairs by spontaneous four-wave mixing in linearly uncoupled resonators
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We present a detailed study of the generation of photon pairs by spontaneous four-wave mixing in a structure
composed of two linearly uncoupled resonators, where energy can be transferred from one resonator to another
only through a nonlinear interaction. Specifically, we consider the case of two racetrack-shaped resonators con-
nected by a coupler designed to guarantee that the resonance comb of each resonator can be tuned independently
and to allow the nonlinear interaction between modes that belong to different combs. We show that such a
coupler can be realized in at least two ways: A directional coupler or a Mach-Zehnder interferometer. For these
two scenarios, we derive analytic expressions for the pair-generation rate via single-pump spontaneous four-wave
mixing and compare these results with that achievable in a single-ring resonator.
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I. INTRODUCTION

Many sources of nonclassical light are based on paramet-
ric fluorescence processes, such as spontaneous parametric
down-conversion (SPDC) and spontaneous four-wave mix-
ing (SFWM). Initially, SPDC and SFWM were studied in
bulk systems, such as crystals [1,2] and optical fibers [3,4],
with the use of intense pump fields. Yet their efficiency can
be increased by several orders of magnitude with the use
of nanostructures, which leverage the electromagnetic-field
enhancement associated with the spatial and temporal light
confinement in resonant structures [5,6]. Indeed, in the last
15 years the generation of photon pairs by SPDC or SFWM
has been demonstrated in photonic devices employing several
materials, including silicon [7], silicon nitride [8], Hydex
[9], and III-V semiconductors [10]. All these platforms are
currently being investigated, with the aim of developing fully
integrated photonic systems for applications in several areas
of quantum technologies, such as computation, simulation,
and communication.

While the first efforts were mainly focused on improv-
ing the pair-generation rate, subsequent studies have also
investigated the use of design strategies to engineer the prop-
erties of the generated pairs by optimizing the structure of
the integrated photonic device. These studies range from
the application of waveguide dispersion engineering to
achieve phase matching in a desired frequency range [11,12]
to the use of more complex systems composed of two or
more coupled resonators to form photonic molecules [13,14]
and to the use of lattices [15,16] that can exhibit topolog-
ical properties [17,18]. The overall strategy is to engineer
the electromagnetic-field enhancement to favor the generation
of photons in particular modes and to inhibit it in others.
Finally, structure design can be useful in suppressing un-
wanted parasitic nonlinear processes that can be sources of
noise [19].

A few years ago, Menotti et al. showed that parametric
nonlinear interactions can occur in systems composed of two
or more integrated resonators that are linearly uncoupled [20].
In this kind of structure, each normal mode can be associated
with one resonator, and energy passes from one mode to the
other only thanks to the presence of a nonlinear interaction.
This can occur because two or more normal modes that are
nonlinearly coupled overlap in part of the structure. On the
one hand, the strength of the nonlinear interaction is reduced
compared to what it would be were the modes sharing the full
structure, e.g., for SFWM involving the modes of a single-ring
resonator. On the other hand, having the resonators linearly
uncoupled makes it easier to engineer their spectral properties
and resonant field enhancement. This is particularly useful for
nonlinear optical processes, which typically require several
conditions to be met, from those necessary to guarantee the
process efficiency (e.g., phase-matching) to those needed to
suppress unwanted parasitic processes. To date, the experi-
mental realization of this approach has made use of racetrack
resonators placed side by side, forming a directional cou-
pler (DC), with stimulated and spontaneous four-wave mixing
demonstrated in silicon nitride [21] and silicon [22,23] res-
onators, respectively.

In this work we study two systems. In one the coupling
between the two racetrack resonators is provided by a DC,
as mentioned above; in the other it is provided by a Mach-
Zehnder interferometer (MZI). Each is designed to ensure the
linear uncoupling of the two resonators and yet to maximize
their nonlinear interaction for single-pump SFWM. In Sec. II
we present the structures and analyze their linear properties.
In Sec. III we evaluate the pair-generation rates, taking into
account scattering losses in the structures. In Sec. IV we com-
pare the SFWM efficiencies of the different structures with
that of a single-ring resonator. Finally, in Sec V we draw our
conclusions. Calculational details are presented in four Ap-
pendixes, in the first of which we also give the expression for

2469-9926/2023/107(1)/013514(11) 013514-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1280-9400
https://orcid.org/0000-0002-1927-084X
https://orcid.org/0000-0003-4001-9569
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.013514&domain=pdf&date_stamp=2023-01-19
https://doi.org/10.1103/PhysRevA.107.013514


ZATTI, SIPE, AND LISCIDINI PHYSICAL REVIEW A 107, 013514 (2023)

FIG. 1. A sketch of the double-racetrack resonator structure.

the biphoton wave function of the pairs that survive scattering
losses and exit the structures.

II. STRUCTURE AND LINEAR PROPERTIES

We begin by considering structures of the general form
sketched in Fig. 1, where there are two racetrack resonators
and a coupling region, the “coupler,” between them. Each
resonator is also point coupled to a bus waveguide, where
σ1,m(2,m) is the waveguide self-coupling coefficient between
the bus waveguide and Resonator 1 (2) at frequencies in
the neighborhood of its mth resonance, with 0 � σi,m � 1
[24,25]. We assume the bus waveguides and the waveg-
uides of the resonators are the same and single mode at
the frequencies of interest. We characterize them by a com-
plex propagation constant k̃(ω) = k(ω) + iξ/2, where ξ is a
frequency-independent phenomenological constant that takes
into account the scattering losses associated with light propa-
gation [26] and

k(ω) = k0 + 1

vg
(ω − ω0) + 1

2
β2(ω − ω0)2 + · · · (1)

is the real part of the propagation constant expanded in Taylor
series around a reference frequency ω0. Here k0 = neff ω0/c,
with neff being the effective index at ω0, vg = [dω/dk]ω0

being the group velocity, and β2 = [d2k/dω2]ω0 being the
group-velocity dispersion (GVD). In the following we will
consider the expansion up to first order, neglecting the GVD
and the higher terms over the full range of frequencies con-
sidered. We are interested in couplers that can be designed so
that in the linear regime there is no coupling. That is, in this
regime, light entering the coupler from one resonator exits into
the same resonator. The nonlinear interaction between these
modes is discussed in Sec. III.

Very generally, in the linear regime a coupler linking the
two resonators can be described by a unitary matrix X that
links the input fields f (1)

−,ω and f (2)
−,ω at the beginning of the

coupler (z = 0) to the output fields f (1)
+,ω and f (2)

+,ω at the end of
it (z = Lcp) as(

f (1)
+,ω

f (2)
+,ω

)
= X

(
f (1)
−,ω

f (2)
−,ω

)
=

(
X11 X12

X21 X22

)(
f (1)
−,ω

f (2)
−,ω

)
, (2)

where f (i)
±,ω is the field circulating in the ith resonator at an-

gular frequency ω. This matrix satisfies the relation XX † =
X †X = I , with det(X ) = 1. If we want the two resonators

FIG. 2. (a) Transmission spectra for In to Through (I), Add to
Drop (II), In to Drop (III), and Add to Through (IV). (b) Cor-
responding intensity enhancement. The dips in lines I and II in
(a), which occur at the resonance frequencies, correspond to the
intensity enhancement peaks of lines I and II shown in (b). We
assumed L1 = 641 µm, L2 = 432 µm, σ1 = 0.933, σ2 = 0.993, ξ =
0.23 cm−1 (corresponding to 1 dB/cm), and a value of the coupling
coefficient X12 = X21 = −i0.00161, the last value chosen to ensure
that the resonators are nearly linearly uncoupled.

to be uncoupled, in a realistic situation the terms X12 and
X21 should be as close as possible to zero. Naturally, one
could achieve high linear isolation of the two racetracks by
designing a DC with very distant waveguides, but this would
also prevent any nonlinear interaction between them. Instead,
one can design the coupler region such that the modes of the
two resonators share a spatial region inside the coupler and
yet the two resonators are uncoupled in the linear regime.

In such a situation, each resonator has a well-defined set of
resonances that is associated with light confinement mainly in
it. Each resonance frequency ωi,m satisfies the usual condition
k(ωi,m)Li = 2mπ , where we indicated with Li the lengths of
the ith resonator and with ωi,m the mth resonant frequency
of the ith resonator. To characterize this structure in the linear
regime, in Fig. 2 we plot the transmission and the intensity en-
hancement, i.e., the field enhancement (FE) modulus squared,
as a function of frequency for various in-out port configura-
tions (see Fig. 1). We assume a realistic case in which the
two resonators are just nearly linearly uncoupled and consider
a frequency range |ω − ωi,m| � vg/Li. Then we can easily
identify modes associated primarily with one or the other of
the two resonators and find more than 30 dB on-resonance
isolation between the two resonators. In a practical realization
of such devices, a striking advantage of this configuration is
that one can control the relative position of the two resonance
combs by means of electric heaters [21] or any other mecha-
nism that induces an effective refractive index change in one
of the resonators in a region far from the coupler.
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FIG. 3. Sketch of the DC and schematic representation of the
field distribution inside the channels.

In the limit where the coupler in fact provides no coupling
between the resonators in the linear regime, if low-intensity
light is injected into the ith resonator through the correspond-
ing bus waveguide, then at frequencies close to that of the mth
resonance the intensity enhancement of the light injected from
the bus waveguide into the resonator [26] can be written as

|Fi,m(ω)|2 = |F(max)i,m|2
�2

i,m

4
�2

i,m

4 + (ω − ωi,m)2
, (3)

where

|F(max)i,m|2 = 1 − σ 2
i,m

(1 − σi,mai,m)2
(4)

is the maximum value of the intensity enhancement and

�i,m = vg

Li

2(1 − σi,mai,m)√
σi,mai,m

(5)

is the linewidth; here 1 − a2
i is the round-trip loss of the

ith resonator, where ai = e−ξLi . In this limit, at the critical
coupling condition (i.e., σi,m = ai,m), one has |F(max)i,m|2 �
Fi,m/π , while for overcoupling (i.e., ai,m � σi,m), one has
|F(max)i,m|2 � 2Fi,m/π , where Fi,m = 2π�FSRi/�i,m is the so-
called resonator finesse and �FSRi = vg/Li is the free spectral
range (FSR) of the ith resonator.

Note that the field distribution inside the coupler is not
relevant for the establishment of linear uncoupling, as long
as it is guaranteed that light entering from one resonator is
redirected into the same one. However, if one is interested in
achieving nonlinear coupling between the two resonators, the
field distribution inside the coupling region is crucial, as the
strength of the nonlinear interaction depends on the spatial
integral of the involved fields, which can be nonvanishing
only in the coupling region. The coupler can be realized in
several ways, such as the use of a multimode interference
coupler, and alternative schemes for implementing different
nonlinear optical processes in linearly uncoupled resonators
can be considered. In this work we study two possibilities for
the structure: A DC and a MZI. We consider the use of the
resulting devices for implementing SFWM, where pump light
is injected in the In port at a resonance frequency of Resonator
1, and signal and idler light is generated at resonance frequen-
cies of Resonator 2 and exits through the Drop port.

A. Directional coupler

We first consider the structure where the coupler is a DC
with length LDC (Fig. 3). The linear coupling between the
two waveguides forming the DC can be described in the

framework of standard coupled-mode theory [24], in which
the coupling constant κDC depends on the linear overlap inte-
gral of the transverse field profile of the waveguide modes,
which is a function of distance along the coupling region.
We restrict ourselves to a frequency range that is sufficiently
small that κDC can be considered frequency independent. Then
when LDC = nπ/κDC, with n being a positive integer, the DC
cross transmission is zero, yielding a high isolation of the two
resonators in the linear regime [20]; in the absence of coupling
to the bus waveguides, the energy of the resonant modes of
the structure would be mainly confined to one resonator or
the other.

We now take a closer look at the field distribution inside
the DC, as sketched in Fig. 3. One can write the displacement
field associated with each channel as

Dch,ω(r) = fch,ω(z)dch(x, y)
eik(ω)z

√
2π

d, (6)

where ch = up, lo, with “up” (“lo”) referring to the channel
belonging to Resonator 1 (2), as shown in Fig. 1, and dch(x, y)
is the displacement-field distribution in the plane transverse
to the propagation direction, properly normalized [27]. As
we take all the waveguides involved in the structure to be
the same, we can assume that dch(x, y) is the same for all
the channels under consideration; we also assume that it can
be approximated as being independent of ω. Finally, fch,ω(z)
is a slowly varying envelope function that takes into account
the field variation along z; this function does not depend on
the intensity of the light circulating in the structure but rather
on the geometry of the coupler. We have

f DC
up,ω(z) = fup,ω(0) cos(|κDC|z) − i flo,ω(0) sin(|κDC|z),

f DC
lo,ω(z) = −i fup,ω(0) sin(|κDC|z) + flo,ω(0) cos(|κDC|z),

(7)

with fup(lo),ω(0) determined by the appropriate boundary con-
ditions: fup(lo),ω(0) = f (1,2)

−,ω and fup(lo),ω(LDC) = f (1,2)
+,ω . Then

the coefficients of the unitary matrix (2) are found to be

X11 = cos(|κDC|LDC), (8)

X12 = −i sin(|κDC|LDC), (9)

X21 = −i sin(|κDC|LDC), (10)

X22 = cos(|κDC|LDC), (11)

where we note the overall phase eik(ω)LDC due to the field prop-
agation in the DC is included in the fast-varying component
of (6).

In Fig. 4 we show the field profile inside the DC for two
different coupling configurations. We first consider the field
distribution | fup(z)|2 in the upper channel for perfect linear un-
coupling [see Fig. 4(a)]. We consider a typical value of κDC =
0.064 μm−1, and we take LDC = 2π/κDC = 98.2 µm. Light
is injected into the In port (solid gray line) on resonance with
Resonator 1 at ωIn = 1215.20 × 2π THz (λIn = 1550.07 nm)
and into the Add port (dashed violet line) on resonance
with Resonator 2 at ωAdd = 1214.67 × 2π THz (λAdd =
1550.75 nm; see Fig. 2). As expected, in this situation,
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FIG. 4. Intensity distribution in the upper channel of the DC
for two different values of the coupling coefficient: (a) κDC =
0.064 μm−1 (perfect uncoupling) and (b) κDC = 0.068 μm−1 (resid-
ual coupling).

at the beginning (z = 0) and at the end (z = LDC) of the DC,
| f In

up (z)|2 is maximum, while | f Add
up (z)|2 is zero.

We now consider a small deviation from this ideal; we take
the same LDC = 98.2 µm but a larger coupling constant κDC =
0.068 μm−1. This would arise, for example, if the waveguides
were slightly closer to each other than in the ideal situation.
We plot the corresponding intensity distribution in Fig. 4(b).
Unlike in the ideal situation, here the intensity of the light
injected into the Add port is slightly different from zero at
the end of the waveguide, and that of the light injected into
the In port is not quite at the maximum there, indicating
a small linear coupling between the two resonators. More
surprisingly, while the field intensity for the light associated
with the mode of Resonator 1 is essentially unchanged, that
associated with the mode of Resonator 2 is half of that shown
in Fig. 4(a). Such a remarkable difference demonstrates that
the presence of some coupling between two resonators, which
occurs if the DC is not ideal, does not affect all the modes
in the same way. If we look at Fig. 2, we notice that the
resonance associated with Resonator 2 at 1214.67 × 2π THz
is close to a resonance of Resonator 1, and thus, even a small
variation of the DC cross-coupling coefficient, such as that
considered here, can lead to a strong reduction of the field in-
tensity in Resonator 2. In contrast, the resonance of Resonator
1 at 1215.20 × 2π THz is spectrally far from other reso-
nances, which minimizes the linear coupling to those other
modes.

These results show that a DC can be used to achieve
the spatial overlap of modes belonging to linearly uncoupled
[Fig. 4(a)] or nearly uncoupled [Fig. 4(b)] resonators. The
approach is conceptually very simple, and can be realized in
compact structures. However, one can identify two potential
problems with this implementation. The first is that the DC
properties critically depend on the value of κDC, which can
be considered frequency independent only in a limited band-
width, typically only a few tens of nanometers at telecom
wavelengths. The second is that the field distributions of the

FIG. 5. Sketch of the Mach-Zehnder interferometer and a
schematic representation of the overlap of the fields in the channels.

modes belonging to different resonators are in quadrature
along the DC, as shown in Fig. 4, and thus, any nonlinear
interaction between them is expected to be small. In the fol-
lowing we introduce a different structure to overcome these
limitations.

B. Mach-Zehnder interferometer

We now consider the Mach-Zehnder interferometer cou-
pler, sketched in Fig. 5, which is composed of two waveguides
that are connected by two point couplers (PCs). The PCs are
characterized by self-coupling coefficients σsx and σdx and
cross-coupling coefficients κsx and κdx, respectively [24,25].
We take the coefficients to be real and positive; then from en-
ergy conservation σ 2

sx(dx) + κ2
sx(dx) = 1, and the splitting ratios

of the PCs are defined as (100σ 2
sx(dx) ) : (100κ2

sx(dx) ). It follows
that this system can be described by the unitary matrix (2),
with

X11 = σsxσdx − κsxκdxei�φ, (12)

X12 = i[σsxκdx + κsxσdxei�φ], (13)

X21 = i[κsxσdx + σsxκdxei�φ], (14)

X22 = −κsxκdx + σsxσdxei�φ, (15)

where �φ is the optical phase difference between the two
arms of the interferometer. Thus, the interferometer indeed
acts as coupler, characterized by an effective straight-through
coefficient

σMZI = X11 = σsxσdx − κsxκdxei�φ, (16)

which identifies the fraction of field amplitude in Resonator 1
that is transferred back into it. In Fig. 6 we show the modulus
squared of σMZI, in the special case of σdx = σsx = σ , for
different values of �φ. Interestingly, when �φ = (2m + 1)π
(solid black line), the coefficient σMZI = 1 for any value of
σ . So one can exploit interference at the output of the inter-
ferometer to achieve linear uncoupling of the two resonators.
The curve shows that for a symmetric interferometer this is
very robust: Perfect linear uncoupling is obtained as long as
the PCs are identical.

We now turn to the field inside each arm of the interfer-
ometer, again described by Eq. (6). Here the slowly varying
envelope function f MZI

up(lo),ω(z) in the upper (lower) arm of the
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FIG. 6. Effective straight-through coefficient σMZI of the inter-
ferometer for different phases �φ as a function of the coupling
coefficients with the two PCs assumed to be identical.

interferometer is z independent and is given by

f MZI
up,ω = σdx f (1)

−,ω + iκdx f (2)
−,ω,

f MZI
lo,ω = [

iκdx f (1)
−,ω + σdx f (2)

−,ω

]
ei�φ, (17)

where f (i)
−,ω is the field enhancement of the ith resonator,

defined in Eq. (4), and the slowly varying envelope functions
at the end of the MZI in Resonator 1 and Resonator 2 are
given by

f In
+,ω = [

σsxσdx − κsxκdxei�φ
]

f In
−,ω

+ i
[
σsxκdx + κsxσdxei�φ

]
f Add
−,ω (18)

and

f Add
+,ω = [−κsxκdx + σsxσdxei�φ

]
f Add
−,ω

+ i
[
κsxσdx + σsxκdxei�φ

]
f In
−,ω, (19)

respectively. We note that, unlike for the DC structure, f (1,2)
+,ω �=

f MZI
up(lo),ω(LMZI) and f (1,2)

−,ω �= f MZI
up(lo),ω(0) because of the field dis-

continuity introduced at each point coupler.
Although the linear uncoupling provided by the MZI is

not sensitive to the splitting ratio of the PCs, as long as they
are identical, this parameter plays an important role when we
focus on maximizing the nonlinear interaction. Considering
the symmetry of the structure, if we assume we work in a
narrow enough frequency band that the coupling can be con-
sidered frequency independent, the best configuration would
be to work with PCs with a splitting ratio of 50:50. This would
lead to a splitting of both pump and generated fields in both
arms of the MZI, maximizing the overlap of the fields and
thus the nonlinear interaction. If, instead, the splitting ratio
were 100:0, the pump would be confined in the upper arm,
while the signal and idler would be in the lower arm of the
interferometer. Similarly, if the splitting ratio were 0:100, the
situation would be the reverse. Thus, in both cases the nonlin-
ear interaction would vanish. In a more complicated situation,
with the pump, signal, and idler at very different frequencies,
the frequency dependence of the PCs could not be ignored,
and one would have to design the structure accounting for
different coupling ratios for the different fields, with the goal
of directing them to the same arm of the interferometer.

FIG. 7. Resonances involved in the SFWM process. The green
arrow represents the coherent pump that generates the pair of signal
and idlers photons (red and blue dots, respectively). The resonances
of the upper resonator are plotted in gray, and those of the lower
one are in violet. The interaction region, highlighted with the yellow
dashed box in the structure’s sketch, coincides with the coupling
region.

One can identify two advantages of the MZI coupler over
the DC. The first is that the performance of the MZI coupler is
less affected than that of the DC by the frequency dependence
of the coupling coefficients, and thus of the splitting ratio,
since perfect linear uncoupling holds for the MZI coupler with
identical PCs. The fabrication of a device with sufficiently
identical couplers was discussed [28], where linear uncou-
pling over a bandwidth of the order of hundreds of nanometers
was achieved in the telecom band. The second advantage is a
higher photon conversion efficiency for the MZI coupler than
for the DC; in the MZI the field distribution in each arm of the
interferometer is the same as that of an isolated channel, and
thus, the slowly varying envelope function component is not
oscillating.

III. COMPARING SFWM GENERATION RATES

In this section we study the generation of photon pairs by
SFWM. The schematic idea of the process is shown in Fig. 7:
A strong coherent pump is injected in the upper resonator (on
resonance with one of its modes at ωP), and the signal-idler
pair is generated on two resonances of the lower resonator at
frequencies ωS and ωI and then is collected out of it. Since
we are considering SFWM involving modes belonging to two
different resonators, the only region of the structure that con-
tributes to the nonlinear interaction is the coupler, highlighted
with the dotted yellow box. In order to make the nonlinear
process possible, the energy position of the resonances of
pump (gray solid line) and signal and idler (violet dashed line)
must satisfy energy conservation. The necessary fine control
on the relative position of the two combs of resonances is
achieved thanks to the linear uncoupling strategy.
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The couplers that are the focus of this paper—the DC and
the MZI coupler—fall in the category of couplers composed
of two channels. Within this general framework we take z
to identify the propagation direction, with x and y being the
transverse coordinates. Crucial to the calculations is the de-
scription of the overlap of the fields in the coupling region,
identified by the overlap integral. This quantity, which de-
pends on the structure of the coupling region, plays a central
role in determining the efficiency of the nonlinear process. In
the following we assume to good approximation a factoriza-
tion of the overlap integral into a sort of effective area S⊥(ω)
and a spatial integral J (ω). This is discussed explicitly in
Appendix A, in which the expression of the biphoton wave
function describing the generated photon pairs is derived.

If we make the undepleted pump approximation and work
in a low-gain regime where there is a low probability of
photon pair generation (|β|2 � 1), we find the expression for
the number of generated pairs per pump pulse,

|β|2 = h̄2|α|4
8π2

γ 2
NL

ω2
P

∫
dω1dω2 ω1ω2

×
∣∣∣∣
∫

dω3φP(ω3)φP(ω4)
√

ω3ω4 J (ω1, ω2, ω3, ω4)

∣∣∣∣
2

(20)

(see Appendix A for a detailed calculation), where |α|2 is
the average number of pump photons per pulse, γNL is the
nonlinear power factor, φP(ω) is the pump profile, and

J (ω1, ω2, ω3, ω4) =
∑

ch

Jch(ω1, ω2, ω3, ω4) (21)

is the spatial integral of the z-dependent functions of the four
fields involved in the process, where

Jch(ω1, ω2, ω3, ω4)

=
∫ Lch

0
dz f ∗

ch,ω1
(z) f ∗

ch,ω2
(z) fch,ω3 (z) fch,ω4 (z)ei�kz (22)

is the integral in each channel, with �k = k(ω1) + k(ω2) −
k(ω3) − k(ω4). The shape of the field enhancement fch,ω(z)
depends on the coupler under consideration. In general,
Eq. (20) needs to be evaluated numerically, but in order to
calculate an explicit expression we work in the continuous
wave (cw) regime by taking a narrow pump pulse φP(ω) (see
[29] for details), obtaining the photon-pair-generation rate

Rpair = |β|2
�T

= 1

4π

(
γNLPP

ωP

)2 ∫
dω1ω1(2ωP − ω1)

× |J (ω1, 2ωP − ω1, ωP, ωP )|2, (23)

where PP = h̄ωP|α|2/�T is the injected pump power and �T
is the pump temporal duration, taken to go to infinity along
with the average number of pump photons in the pulse so that
PP is held constant. We can estimate the pair-production rate
for each structure once the expression of the overlap integral
is evaluated. Again, in general the integral in (23) needs to
be evaluated numerically, but with the approximation of the
Lorentzian shape of the intensity enhancement, described by
Eq. (3), we can write an analytic expression for the pair-
generation rate. In fact, with this approximation the integral

(22) for a single channel can be written as

|J (ω1, 2ωP − ω1, ωP, ωP )|2

= |Fmax|2L(ω1, 2ωP − ω1)|Jspatial|2, (24)

where

|Fmax|2 = |F(max)2,S|2|F(max)2,I |2|F(max)1,P|4 (25)

is the product of the maximum values of the intensity en-
hancement of each resonance involved in the process, given
by Eq. (4), and

L(ω1, 2ωP − ω1)

=
⎡
⎣ �2

2,S

4
�2

2,S

4 + (ω1 − ωS )2

�2
2,I

4
�2

2,I

4 + (ω1 − ωS )2

⎤
⎦

+
⎡
⎣ �2

2,S

4
�2

2,S

4 + (ω1 − ωI )2

�2
2,I

4
�2

2,I

4 + (ω1 − ωI )2

⎤
⎦ (26)

is the product of the Lorentzian shape of the signal and idler
resonances centered at ωS and ωI , respectively. Here �2,m=S,I

is given by Eq. (5), while the absolute value squared of the
pump shape is assumed to be proportional to a Dirac δ func-
tion, given the cw regime; Jspatial is the spatial part of the
integral, which depends only on the structure of the system.
We can perform the integral over the frequency-dependent
factor, common for all the possible geometries, which
results in ∫

dω1ω1(2ωP − ω1)L(ω1, 2ωP − ω1)

≈ π
�2,S�2,I

(�2,S + �2,I )
(ωSωI ) (27)

(see Appendix B). With this in hand, we can write (23) as

Rpair = 1

4π

(
γNLPP

ωP

)2

|Fmax|2π �2,S�2,I

(�2,S + �2,I )
(ωSωI )|Jspatial|2.

(28)

The expression for Jspatial needs to be evaluated for each struc-
ture. In the following we do this evaluation and then compare
our results for the DC and MZI coupling structures with that
of a standard ring resonator, assuming in all calculations that
we satisfy the phase-matching condition, �k = 0, to good
approximation.

A. Ring resonator

In the case of a simple ring resonator of length L = 2πR,
the spatial integral is

J ring
spatial =

∫ L

0
ei�kzdz = Lei �kL

2 sinc

(
�kL

2

)
≈ L, (29)

and hence, the generation rate (28) is

Rring
pair = |F(max),S|2|F(max),I |2|F(max),P|4

×
(

γNLPP

ωP

)2
�S�I

(�S + �I )
(ωSωI )

L2

4
, (30)
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with �m=S,I being the linewidth of the signal and idler res-
onances. This can be expressed as a function of the loaded
and coupling quality factors (Qm and QC,m, respectively) using
�m = ωm/Qm and

|F(max),m|2 = 1 − σ 2
m

(1 − σmam)2
= 4vg

Lωm

Q2
m

QC,m
, (31)

from [20], giving

Rring
pair =

(
γNLPP

ωP

)2(4vg

L

)4 Q4
PQ2

SQ2
I

Q2
C,PQC,SQC,I

× ωSωI

ω2
P

L2/4

ωSQI + ωI QS

= 43γ 2
NLP2

Pv4
gωSωI

L2ω4
P(ωSQI + ωI QS )

Q4
PQ2

SQ2
I

Q2
C,PQC,SQC,I

. (32)

We assume we are working over a small enough frequency
range that we can take ωP ≈ ωS ≈ ωI = ω and QP ≈ QS ≈
QI = Q, which allows us to reduce (30) to a simplified form.
For no losses (QC,m = Qm), we find

Rring
pair = (γNLPP )2

32v4
g

ω3

Q3

L2
, (33)

retrieving the SFWM generation rate expression found earlier
[30], while for critical coupling (QC,m = 2Qm) we find

Rring
pair = (γNLPP )2

2v4
g

ω3

Q3

L2
. (34)

B. Directional coupler

If we consider the DC structure and assume perfect uncou-
pling in the linear regime, the spatial integral is in the form of
(a detailed calculation is given in Appendix C)

Jspatial ≈ −LDC

4
[1 − sinc(4κDCLDC)], (35)

which leads to a generation rate of

RDC
pair =

(
γNLPP

ωP

)2

|F(max)2,S|2|F(max)2,I |2|F(max)1,P|4

× �2,S�2,I

�2,S + �2,I
(ωSωI )

L2
DC

64
[1 − sinc(4κDCLDC)]2.

(36)

Again, we can express this formula in terms of quality factors
and find

RDC
pair = 4γ 2

NLP2
Pv4

gωSωI

ω4
P(ωSQI + ωI QS )

Q4
PQ2

SQ2
I

Q2
C,PQC,SQC,I

×
(

LDC

L1L2

)2

[1 − sinc(4κDCLDC)]2. (37)

C. Mach-Zehnder interferometer

For the MZI coupler structure with perfect uncoupling in
the linear regime, taking σdx = σsx = 1/

√
2, i.e., 50:50 beam

splitters, the spatial integral results in

Jspatial ≈ −LMZI

2
(38)

(a detailed calculation is given in Appendix C), which leads
to a generation rate of

RMZI
pair =

(
γNLPP

ωP

)2

|F(max)2,S|2|F(max)2,I |2

× |F(max)1,P|4 �2,S�2,I

�2,S + �2,I
(ωSωI )

L2
MZI

16
, (39)

and in terms of quality factors

RMZI
pair = 16v4

gγ
2
NLP2

PωSωI

ω4
P(ωSQI + ωI QS )

Q4
PQ2

SQ2
I

Q2
C,PQC,SQC,I

(
LMZI

L1L2

)2

. (40)

D. Comparison

We can have better insight into the generation efficiency
of our two structures if we directly compare it with the ring
resonator. For the DC structure, the sinc function in (36)
makes a negligible contribution for our typical parameters of
interest, and we can write

RDC
pair ≈

(
LLDC

4L1L2

)2

Rring
pair, (41)

and assuming L1 = L2 = 2L, which means having two race-
tracks with the same bending radius of the ring, and taking the
optimal length of the DC, i.e., LDC = πR as shown in [20], the
expression becomes

RDC
pair ≈ 1

1024
Rring

pair . (42)

We can do the same calculations for the MZI structure,

RMZI
pair,ext ≈

(
LLMZ

2L1L2

)2

Rring
pair, (43)

and assuming L1 = L2 = 2L and LMZ = πR,

RMZI
pair ≈ 1

256
Rring

pair . (44)

An overview of our estimates is reported in Table I, along
with the main quantities of interest of each structure. Although
these two rates are substantially reduced from that of the
standard ring, the significant benefit obtained is that we can
implement independent control on each comb of resonances
and achieve several decibels of pump filtering from the gener-
ated pair.

IV. CONCLUSIONS

In this work we considered structures composed of two lin-
early uncoupled racetrack resonators, in which energy transfer
between them can occur only through a nonlinear interaction.
We considered two strategies to uncouple the racetracks: Via
the use of a directional coupler and via the use of a Mach-
Zehnder interferometer. The DC approach is simple and can
be realized in compact structures [23], but it has two main
drawbacks: First, its properties can be considered frequency
independent only over a limited bandwidth of typically a few
tens of nanometers at telecom wavelengths; second, the fields
inside the coupler oscillate, reducing the nonlinear interaction
efficiency. On the other hand, the MZI approach guarantees
linear uncoupling isolation over a much larger bandwidth
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TABLE I. Rate comparison between the ring resonator, the DC resonator, and the MZI resonator. The other quantities of interest are the
spatial integral and the resonators’ finesses.

Structure Spatial integral Overall finesse factor Pair-generation rate Eq.

J ring
spatial ≈ L F ∝ ( 1

L )4
Rring

pair = 43�2P2
Pv4

gωSωI

L2ω4
P (ωS QI +ωI QS )

× Q4
PQ2

S Q2
I

Q2
C,PQC,S QC,I

(32)

J DC
spatial ≈ LDC

4 F ∝ ( 1
L1L2

)2 RDC
pair ≈ 1

1024 Rring
pair (42)

J MZI
spatial ≈ LMZI

2 F ∝ ( 1
L1L2

)2 RMZI
pair ≈ 1

256 Rring
pair (44)

(hundreds of nanometers [28]), thanks to the much lower fre-
quency sensitivity of the interference mechanism, and offers
a higher conversion efficiency, given that the slowly varying
envelope functions of the fields do not oscillate. The situation
where the fields are at very distant frequencies, and thus the
coupling ratios cannot be considered frequency independent,
will be addressed in future work.

The particular nonlinear interaction we considered was
spontaneous four-wave mixing, which can be exploited for
the generation of photon pairs. We developed the theory to
describe such a quantum nonlinear process in the kind of
structures we studied; it is more complicated than the theory
for the single-ring resonator more commonly studied. Al-
though the generation rates are lower than that of a single
ring, we showed how the DC and MZI coupler structures
we studied can be used to control the generation of quan-
tum correlated photon pairs from two perspectives. First, we
can fine-tune the resonances of the resonators, and hence
the frequency of the photons generated, independently. Sec-
ond, the structures also provide the filtering of the pump
from the signal and idler photons, necessary when working
with SFWM process. Explicit expressions for the efficiency
of the pair-generation rate for the different structures, to-
gether with an expression for the biphoton wave function,
were given.
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APPENDIX A: NONLINEAR HAMILTONIAN
AND GENERATION RATE

In order to study the generation of photons pairs by
parametric fluorescence, we follow the backward Heisen-
berg approach introduced earlier [27] to describe spontaneous
parametric down-conversion; the same approach can be gen-
eralized to describe SFWM. In this method one starts from
the Hamiltonian describing the electromagnetic field in the
structure and uses it to define the evolution of the state. The
third-order nonlinear interaction is controlled by a nonlinear
Hamiltonian in the form of

HNL = − 1

4ε0

∫
dr�i jlm

3 (r)Di(r)D j (r)Dl (r)Dm(r), (A1)

where �
i jlm
3 (r) is the third-order susceptibility tensor; D(r)

are operators associated with the pump, signal, and idler
fields, which depend on the structure under consideration;
and i, j, l , and m are the Cartesian coordinates. We follow a
description (and quantization) of the electromagnetic field in
terms of asymptotic fields [31]. This approach is convenient,
for it allows one to treat almost any geometry. The expression
for the mode fields D(r) in the asymptotic-field framework,
recalling that we are neglecting GVD, is

D(r) =
∫ ∞

0
dω

√
h̄ω

2vg
a(ω)Dasy-in(out)

ω (r) + H.c., (A2)

where we consider only one transverse mode, a(ω) is the
destruction operator that destroys a photon at frequency ω,
and Dasy-in(out)

ω (r) is the displacement vector associated with
the asymptotic in (out) field, already described in Eq. (6). If
we use (A2) in (A1), considering only operators that destroy
two pump photons, aP(ω3) and aP(ω4), and creating the signal
and idler photons, a†

S (ω1) and a†
I (ω2), respectively (see [32]
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for details), we can rewrite the nonlinear Hamiltonian in a
form that describes only the four-wave mixing process,

HFWM
NL = −

∫
dω1dω2dω3dω4S⊥(ω1, ω2, ω3, ω4)

× J (ω1, ω2, ω3, ω4)a†
S (ω1)a†

I (ω2)aP(ω3)aP(ω4),
(A3)

where

S⊥(ω1, ω2, ω3, ω4)

= 3h̄2

(4π )2ε0

√
ω1ω2ω3ω4

v4
g

∫
dxdy �

i jlm
3 (x, y)

× [
di

ch(x, y)d j
ch(x, y)

]∗
dl

ch(x, y)dm
ch(x, y) (A4)

is a nonlinear coupling term, assumed to be equal for both
channels, which sums up the effective area including the in-
tegral over the transverse coordinates (x, y) and which can be
expressed in terms of the nonlinear power factor [29]

γNL = 3ωP

4ε3
0v

2
g

∫
dxdy

χ
i jkl
3 (x, y)

n8(x, y)

× [
di

ch(x, y)d j
ch(x, y)

]∗
dl

ch(x, y)dm
ch(x, y), (A5)

where we assumed �3 is z independent and expressed it in
terms of the more familiar χ3, resulting in

S⊥(ω1, ω2, ω3, ω4) = h̄2γNL

4π2

√
ω1ω2ω3ω4

ωP
, (A6)

where J (ω1, ω2, ω3, ω4) is the integral of the z-dependent
functions of the fields in Eq. (21). We have been able to
separate components x and y from z, thus factoring expres-
sion (A3) to involve the functions S⊥(ω1, ω2, ω3, ω4) and
J (ω1, ω2, ω3, ω4), only because we assume a polarization for
the field pointing off the chip. We make the undepleted pump
approximation since we assume the intensity of the generated
photons is much smaller than the intensity of the pump and
treat the pump classically by taking aP(ω) = αφ(ω), where
|α|2 is the average number of pump photons per pulse and
φP(ω) is the pump profile. With these assumptions, Eq. (A3)
leads to the expression for the biphoton wave function of the
signal and idler pair,

φ(ω1, ω2) = i
√

2h̄α2

4πβ

√
ω1ω2

ωP
γNL

×
∫

dω3φP(ω3)φP(ω4)
√

ω3ω4

× J (ω1, ω2, ω3, ω4), (A7)

where ω4 = ω1 + ω2 − ω3 is set by the energy conservation
and ω3 is the pump photon frequency over which the integral
is performed. From the normalization of the biphoton wave
function,

∫
dω1dω2|φ(ω1, ω2)|2 = 1, we obtain the number

of generated pairs per pulse of Eq. (20). Alternatively, those
rates can be identified directly by a calculation using Fermi’s
golden rule [26].

APPENDIX B: ANALYTIC CALCULATION OF THE
LORENTZIAN SHAPE OF THE RESONANCES

Equation (26) is calculated from the Lorentzian shape of
signal and idler resonances,

�(ω1) =
⎡
⎣ �2

2,S

4
�2

2,S

4 + (ω1 − ωS )2
+

�2
2,I

4
�2

2,I

4 + (ω1 − ωI )2

⎤
⎦ (B1)

and

�(2ωP − ω1) =
⎡
⎣ �2

2,S

4
�2

2,S

4 + (2ωP − ω1 − ωS )2

+
�2

2,I

4
�2

2,I

4 + (2ωP − ω1 − ωI )2

⎤
⎦

=
⎡
⎣ �2

2,S

4
�2

2,S

4 + (ω1 − ωI )2
+

�2
2,I

4
�2

2,I

4 + (ω1 − ωS )2

⎤
⎦,

(B2)

where we have considered signal and idler photons to be
indistinguishable and thus that they both can be generated in
the resonance around ωS and in that around ωI . These give the
expression

L(ω1, 2ωP − ω1) = �(ω1)�(2ωP − ω1)

≈
⎡
⎣ �2

2,S

4
�2

2,S

4 + (ω1 − ωS )2

�2
2,I

4
�2

2,I

4 + (ω1 − ωS )2

⎤
⎦

+
⎡
⎣ �2

2,S

4
�2

2,S

4 + (ω1 − ωI )2

�2
2,I

4
�2

2,I

4 + (ω1 − ωI )2

⎤
⎦

= C1(ω1) + C2(ω1), (B3)

where we have neglected the product of Lorentzians centered
at different frequencies, given that, generally, �FSRi � �i,m.
This leads to∫

dω1ω1(2ωP − ω1)L(ω1, 2ωP − ω1)

=
∫

dω1ω1(2ωP − ω1)[C1(ω1) + C2(ω1)], (B4)

where ∫
dω1ω1(2ωP − ω1)C1(ω1)

= π

�2,S

2
�2,I

2
�2

2,S

4 − �2
2,I

4

[
�2,S

2

(
2ωPωS + �2

2,I

4
− ω2

S

)

− �2,I

2

(
2ωPωS + �2

2,S

4
− ω2

S

)]

= π

2

�2,S�2,I
(
2ωPωS − ω2

S

)
(�2,S + �2,I )(�2,S − �2,I )

(�2,S − �2,I )
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= π

2

�2,S�2,I

(�2,S + �2,I )

(
2ωPωS − ω2

S

)

= π

2

�2,S�2,I

(�2,S + �2,I )
(ωSωI ), (B5)

in which we considered (2ωPωS + �2
2,m

4 − ω2
S ) ≈ (2ωPωS −

ω2
S ) since �2,m � ω2

m and∫
dω1ω1(2ωP − ω1)C2(ω1)

= π

2

�2,S�2,I

(�2,S + �2,I )

(
2ωPωI − ω2

I

)
= π

2

�2,S�2,I

(�2,S + �2,I )
(ωSωI ), (B6)

and hence to the final value,∫
dω1ω1(2ωP − ω1)L(ω1, 2ωP − ω1)

= π
�2,S�2,I

(�2,S + �2,I )
(ωSωI ), (B7)

of Eq. (27).

APPENDIX C: ANALYTIC CALCULATION OF J SPATIAL

In the case of perfect uncoupling via the DC we have
fup,ω1(2) (0) = flo,ω3(4) (0) = 0, and hence, the condition (7) for
each frequency simplifies to

f DC
up,ω1(2)

(z) = −i flo,ω1(2) (0) sin(|κDC|z),

f DC
up,ω3(4)

(z) = fup,ω3(4) (0) cos(|κDC|z),

f DC
up,ω1(2)

(z) = fup,ω1(2) (0) cos(|κDC|z), (C1)

f DC
up,ω3(4)

(z) = −i flo,ω3(4) (0) sin(|κDC|z),

giving, from (22),

Jup(ω1, ω2, ω3, ω4) = Jlo(ω1, ω2, ω3, ω4)

= flo,ω1 (0) flo,ω2 (0) fup,ω3 (0) fup,ω4 (0)

×
∫ LDC

0
i2 sin2(|κDC|z) cos2(|κDC|z)ei�kzdz (C2)

and hence

J (ω1, ω2, ω3, ω4)

= flo,ω1 (0) flo,ω2 (0) fup,ω3 (0) fup,ω4 (0)J DC
spatial, (C3)

with

J DC
spatial = 2

∫ LDC

0
− cos2(κDCz) sin2(κDCz)ei�kzdz

≈ −LDC

4
[1 − sinc(4κDCLDC)]. (C4)

Similarly, in the case of perfect uncoupling via a MZI
coupler, we have f (1)

−,ω1(2)
= f (2)

−,ω3(4)
= 0, and if we as-

sume balanced beam splitters, σdx = σsx = σ (and hence
κdx = κsx = κ ), condition (17) for the different frequencies
simplifies to

f MZI
up,ω1(2)

(z) = iκ f (2)
−,ω1(2)

, f MZI
up,ω3(4)

(z) = σ f (1)
−,ω3(4)

,

f MZI
lo,ω1(2)

(z) = σ f (2)
−,ω1(2)

, f MZI
lo,ω3(4)

(z) = iκ f (1)
−,ω3(4)

, (C5)

and from (22),

Jup(ω1, ω2, ω3, ω4) = Jlo(ω1, ω2, ω3, ω4)

= f (2)
−,ω1

f (2)
−,ω2

f (1)
−,ω3

f (1)
−,ω4

×
∫ LMZI

0
i2σ 2κ2ei�kzdz, (C6)

and hence,

J (ω1, ω2, ω3, ω4) = f (2)
−,ω1

f (2)
−,ω2

f (1)
−,ω3

f (1)
−,ω4

J MZI
spatial, (C7)

with

J MZI
spatial = 2

∫ LMZI

0
(−σ 2κ2ei�kz )dz ≈ −LMZI

2
(C8)

in the case of 50:50 point couplers (σ = κ = 1/
√

2).

APPENDIX D: GENERATION RATES IN TERMS
OF FINESSE

The expression for the generation rate can be written in
terms of the finesse F of the resonators, thanks to the relation
found in Sec. II. For example, at the critical coupling condi-
tion, we have

RMZI
pair =

(
γNLPP

ωP

)2(FS

π

)(FI

π

)(FP

π

)2

× �2,S�2,I

�2,S + �2,I
(ωSωI )

L2

4
, (D1)

RMZI
pair =

(
γNLPP

ωP

)2(FS

π

)(FI

π

)(FP

π

)2

× �2,S�2,I

�2,S + �2,I
(ωSωI )

L2
DC

64
, (D2)

and

RMZI
pair =

(
γNLPP

ωP

)2(FS

π

)(FI

π

)(FP

π

)2

× �2,S�2,I

�2,S + �2,I
(ωSωI )

L2
MZI

16
. (D3)
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Mode Dispersion Compensation and its Application to on-Chip
Resonant Four-Wave Mixing, Opt. Lett. 39, 5689 (2014).

[14] X. Zeng, C. M. Gentry, and M. A. Popović, Four-Wave Mix-
ing in Silicon Coupled-Cavity Resonators with Port-Selective,
Orthogonal Supermode Excitation, Opt. Lett. 40, 2120 (2015).

[15] M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S.
Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan,
Telecommunications-Band Heralded Single Photons from a Sil-
icon Nanophotonic Chip, Appl. Phys. Lett. 100, 261104 (2012).

[16] C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall,
M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and

B. J. Eggleton, Slow-Light Enhanced Correlated Photon Pair
Generation in a Silicon Photonic Crystal Waveguide, Opt. Lett.
36, 3413 (2011).

[17] S. Mittal, E. A. Goldschmidt, and M. Hafezi, A Topological
Source of Quantum Light, Nature (London) 561, 502 (2018).

[18] A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, and M.
Segev, Topological Protection of Biphoton States, Science 362,
568 (2018).

[19] Y. Zhang, M. Menotti, K. Tan, V. D. Vaidya, D. H. Mahler,
L. G. Helt, L. Zatti, M. Liscidini, B. Morrison, and Z. Vernon,
Squeezed Light from a Nanophotonic Molecule, Nat. Commun.
12, 2233 (2021).

[20] M. Menotti, B. Morrison, K. Tan, Z. Vernon, J. E. Sipe, and
M. Liscidini, Nonlinear Coupling of Linearly Uncoupled Res-
onators, Phys. Rev. Lett. 122, 013904 (2019).

[21] K. Tan, M. Menotti, Z. Vernon, J. E. Sipe, M. Liscidini, and B.
Morrison, Stimulated four-Wave Mixing in Linearly Uncoupled
Resonators, Opt. Lett. 45, 873 (2020).

[22] D. J. Starling, J. Poirier, M. Fanto, J. A. Steidle, C. C. Tison,
G. A. Howland, and S. F. Preble, Nonlinear Photon Pair Gen-
eration in a Highly Dispersive Medium, Phys. Rev. Appl. 13,
041005(R) (2020).

[23] F. A. Sabattoli, H. El Dirani, L. Youssef, F. Garrisi, D. Grassani,
L. Zatti, C. Petit-Etienne, E. Pargon, J. E. Sipe, M. Liscidini, C.
Sciancalepore, D. Bajoni, and M. Galli, Suppression of Parasitic
Nonlinear Processes in Spontaneous Four-Wave Mixing with
Linearly Uncoupled Resonators, Phys. Rev. Lett. 127, 033901
(2021).

[24] A. Yariv and P. Yeh, Photonics (Oxford University Press, 2007).
[25] J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators

(Springer, New York, NY, 2008).
[26] M. Banic, L. Zatti, M. Liscidini, and J. E. Sipe, Two Strategies

for Modeling Nonlinear Optics in Lossy Integrated Photonic
Structures, Phys. Rev. A 106, 043707 (2022).

[27] Z. Yang, M. Liscidini, and J. E. Sipe, Spontaneous Paramet-
ric Down-Conversion in Waveguides: A Backward Heisenberg
Picture Approach, Phys. Rev. A 77, 033808 (2008).

[28] F. Sabattoli, H. E. Dirani, L. Youssef, L. Gianini, L. Zatti, F.
Garrisi, D. Grassani, C. Petit-Etienne, E. Pargon, J. Sipe, M.
Liscidini, C. Sciancalepore, D. Bajoni, and M. Galli, Nonlinear
Coupling of Linearly Uncoupled Resonators Through a Mach-
Zehnder Interferometer, Appl. Phys. Lett. 121, 201101 (2022).

[29] T. Onodera, M. Liscidini, J. E. Sipe, and L. G. Helt, Parametric
Fluorescence in a Sequence of Resonators: An Analogy with
Dicke Superradiance, Phys. Rev. A 93, 043837 (2016).

[30] L. G. Helt, M. Liscidini, and J. E. Sipe, How Does it Scale?
Comparing Quantum and Classical Nonlinear Optical Processes
in Integrated Devices, J. Opt. Soc. Am. B 29, 2199 (2012).

[31] M. Liscidini, L. G. Helt, and J. E. Sipe, Asymptotic Fields for a
Hamiltonian Treatment of Nonlinear Electromagnetic Phenom-
ena, Phys. Rev. A 85, 013833 (2012).

[32] J. E. Sipe, N. A. R. Bhat, P. Chak, and S. Pereira, Effective
Field Theory for the Nonlinear Optical Properties of Photonic
Crystals, Phys. Rev. E 69, 016604 (2004).

013514-11

https://doi.org/10.1103/PhysRevA.70.031802
https://doi.org/10.1364/OPEX.12.003737
https://doi.org/10.1364/OE.17.016558
https://doi.org/10.1038/lsa.2017.100
https://doi.org/10.1364/OL.37.003807
https://doi.org/10.1364/OE.26.001825
https://doi.org/10.1038/nature22986
https://doi.org/10.1103/PhysRevLett.110.160502
https://doi.org/10.1364/OE.14.012388
https://doi.org/10.1063/1.2814040
https://doi.org/10.1364/OL.39.005689
https://doi.org/10.1364/OL.40.002120
https://doi.org/10.1063/1.4711253
https://doi.org/10.1364/OL.36.003413
https://doi.org/10.1038/s41586-018-0478-3
https://doi.org/10.1126/science.aau4296
https://doi.org/10.1038/s41467-021-22540-2
https://doi.org/10.1103/PhysRevLett.122.013904
https://doi.org/10.1364/OL.381563
https://doi.org/10.1103/PhysRevApplied.13.041005
https://doi.org/10.1103/PhysRevLett.127.033901
https://doi.org/10.1103/PhysRevA.106.043707
https://doi.org/10.1103/PhysRevA.77.033808
https://doi.org/10.1063/5.0109392
https://doi.org/10.1103/PhysRevA.93.043837
https://doi.org/10.1364/JOSAB.29.002199
https://doi.org/10.1103/PhysRevA.85.013833
https://doi.org/10.1103/PhysRevE.69.016604

