
PHYSICAL REVIEW A 107, 013513 (2023)
Editors’ Suggestion

Exact solutions for the electromagnetic fields of a flying focus
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The intensity peak of a “flying” focus travels at a programmable velocity over many Rayleigh ranges while
maintaining a near-constant profile. Assessing the extent to which these features can enhance laser-based
applications requires an accurate description of the electromagnetic fields. Here we present exact analytical
solutions to Maxwells equations for the electromagnetic fields of a constant-velocity flying focus, generalized
for arbitrary polarization and orbital angular momentum. The approach combines the complex source-point
method, which transforms multipole solutions into beamlike solutions, with the Lorentz invariance of Maxwell’s
equations. Propagating the fields backward in space reveals the space-time profile that an optical assembly must
produce to realize these fields in the laboratory. Comparisons with simpler paraxial solutions provide conditions
for their reliable use when modeling a flying focus.
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I. INTRODUCTION

All focused laser fields exhibit a moving focus in some
frame of reference. In the laboratory frame, an ideal lens
focuses every frequency, temporal slice, and annulus of a laser
pulse to the same location. The pulse moves through the focus
at its group velocity and diffracts over a Rayleigh range. In
any other Lorentz frame, the focus moves. “Flying focus”
techniques recreate these moving foci in the laboratory frame
by modifying the focal time and location of each frequency,
temporal slice, or annulus of a pulse [1–6]. The intensity
peak formed by the moving focus can travel at any arbitrary
velocity while maintaining a near-constant profile over many
Rayleigh ranges.

The first experimental demonstration of a flying focus used
chromatic focusing of a chirped laser pulse to control the
focal time and location of each frequency [2]. This technique,
referred to as the “chromatic” flying focus, limits the band-
width available at each focal location, which places a lower
bound on the duration of the intensity peak. To address the
need for ultrashort intensity peaks, two alternative techniques
have been proposed. The “flying focus X” uses cross-phase
modulation in a Kerr lens to imprint a different focusing phase
onto each temporal slice of a pulse [4]. The time-dependent
refractive index experienced by the pulse in the Kerr lens
provides the bandwidth necessary to support the duration of
the intensity peak. The “achromatic” flying focus combines
an axiparabola [7] with a radial echelon to control the focal
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location and relative timing of each annulus, respectively [5].
As the annuli come in and out of focus, they interfere to form
an intensity peak with a duration equal to that of the initial
pulse.

The programmable velocity vI and the extended focal
range L of a flying focus offer new approaches to realizing
or optimizing laser-based applications. The intensity peak of
a flying focus pulse can travel slower than the group veloc-
ity; faster than the group velocity, i.e., superluminally; or
backward with respect to the phase fronts of the pulse. Su-
perluminal intensity peaks have been proposed to overcome
dephasing and wave breaking in laser wakefield acceleration
[5,8–10] and to increase the rate of frequency upshifting
in photon acceleration [11]. Backward intensity peaks can
facilitate the formation of long plasma channels by miti-
gating ionization refraction [12,13] and may improve the
performance of Raman amplifiers by ensuring quasistationary
plasma conditions [14]. The motion of a backward intensity
peak against its phase fronts also allows for longer interaction
lengths in fundamental studies of nonlinear Compton scat-
tering and radiation reaction, which can amplify observable
signatures of these processes [15,16]. Further, a backward
intensity peak can ponderomotively accelerate electrons to
relativistic momenta in the backward direction, providing un-
precedented control over the electron trajectory and greatly
enhancing the radiation properties in nonlinear Thomson scat-
tering [17,18].

Assessing the extent to which a flying focus can enable
or enhance these applications requires an accurate descrip-
tion of the electromagnetic fields. With the exception of the
special case vI = −c [15,16], all of the aforementioned ap-
plications were modeled using approximate solutions for the
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electromagnetic fields of flying focus pulses. In the case of
conventional pulses with stationary foci, improving the ac-
curacy of approximate solutions has been found to impact
models of phenomena ranging from direct laser acceleration
to optical trapping [19–25]. Methods for obtaining accurate
solutions to Maxwell’s equations for conventional laser pulses
come in three forms: a “Lax”-like series expansion in which
corrections to paraxial fields can be calculated recursively
[26–29]; series expansions of exact spectral integrals for each
field component [21,24,30]; and the complex source-point
method (CSPM), which exploits the invariance of Maxwell’s
equations under a translation in the complex plane to trans-
form multipole solutions into beamlike solutions [31–38]. Of
these three, the CSPM is unique in its ability to provide
closed-form solutions that exactly satisfy Maxwell’s equa-
tions. As a result, the solutions can be Lorentz transformed
without introducing additional error.

In this article, we derive exact solutions to Maxwell’s
equations for the electromagnetic fields of a constant-velocity
flying focus pulse. The approach combines the CSPM with
a Lorentz transformation from a frame in which the focus
is stationary to a frame in which the focus is moving. The
vector solutions are inherently nonparaxial, can have arbitrary
polarization, and are generalized to higher-order radial and
orbital angular momentum modes. Subluminal (|vI | < c) and
superluminal (|vI | > c) solutions are constructed from mul-
tipole spherical and hyperbolic wave solutions, respectively.
Propagating the fields backward in space reveals that each
solution corresponds to a pulse that was focused by a lens
with a time-dependent focal length. Thus, these solutions can
be experimentally realized using the flying focus X. For a
wide range of parameters, the differences between the exact
solutions and simpler paraxial solutions are small, justifying
the use of paraxial solutions for theoretical or computational
studies of flying focus applications in many regimes. The
solutions presented here compliment the larger body of work
on localized, autofocusing, and “nondiffracting” waves with
arbitrary group velocity (see, e.g., Refs. [39–46]).

The remainder of this article is organized as follows. In
Sec. II, multipole solutions to Maxwell’s equations are de-
rived and then transformed into beamlike solutions using
the CSPM. Guided by the insights of Refs. [47,48], the
exact fields of subluminal and superluminal foci are found
by Lorentz transforming the beamlike solutions. Section III
presents explicit modal solutions for the four-potential of
moving foci, including an example with orbital angular mo-
mentum. Section IV describes the procedure for constructing
pulsed solutions from a superposition of modal solutions
and determines the optical assembly required to produce the
pulsed fields in an experiment. Section V compares the exact
solutions to paraxial solutions and provides conditions for
the reliable use of paraxial solutions when modeling a flying
focus. Section VI summarizes the results.

II. LORENTZ TRANSFORMATIONS OF COMPLEX
SOURCE-POINT FIELDS

In vacuum, the electromagnetic fields, the four-potential in
the Lorenz gauge, and the Hertz vectors all satisfy the homo-
geneous wave equation. Consider a scalar solution u(x, t ) to

the wave equation,(
∇2

⊥ + ∂2

∂z2
− ∂2

∂t2

)
u(x, t ) = 0, (1)

where the speed of light c = 1. The solution can be
written as a superposition of modal solutions with ex-
plicit harmonic dependence in either time or space:
u(x, t ) = ∫

uκ (x, t ) dκ , where uκ (x, t ) = 1
2 S(x⊥, z)e−iκt +

c.c. or uκ (x, t ) = 1
2 H (x⊥, t )eiκz + c.c. Substituting these into

the wave equation yields(
∇2

⊥ + ∂2

∂z2
+ κ2

)
S(x⊥, z) = 0, (2a)

(
∇2

⊥ − ∂2

∂t2
− κ2

)
H (x⊥, t ) = 0. (2b)

Equations (2a) and (2b) are the Helmholtz equation and its
hyperbolic analog, respectively. The solutions are multipole
spherical (S) and hyperbolic (H) waves:

S(x⊥, z) =
∑

n

n∑
�=−n

αn�(κ ) jn(κR)P�
n (cos φ)ei�θ , (3a)

H (x⊥, t ) =
∑

n

n∑
�=−n

αn�(κ )kn(κR)P�
n (cos ϕ)ei�θ , (3b)

where αn�(κ ) is a weighting factor, jn is the nth spherical
Bessel function of the first kind, kn is the nth modi-
fied spherical Bessel function of the second kind, P�

n is
the associated Legendre polynomial, � is the azimuthal
mode number, R = (ρ2 + z2)1/2, R = (ρ2 − t2)1/2, ρ = |x⊥|,
cos(φ) = z/R, cos(ϕ) = it/R, and θ = arctan(y/x). Spheri-
cal Bessel functions of the second kind have been omitted in
Eq. (3a) because they result in real-valued branch points when
using the CSPM [35,37]. Modified spherical Bessel functions
of the first kind have been omitted in Eq. (3b) because they
diverge as R → ∞.

Hertz vectors provide a convenient mathematical repre-
sentation for calculating the four-potential or electromagnetic
fields. With a closed-form expression for a single vector
component of the Hertz vectors, one can generate the entire
four-potential and all six components of the electromagnetic
field by taking derivatives. In particular, a multipole spherical
or hyperbolic wave that propagates outward from the origin
[Fig. 1(a)] can be formed by using equal and crossed electric
and magnetic Hertz vectors:

�e(x, t ) = uκ (x, t )ê,

�m(x, t ) = uκ (x, t )m̂,
(4)

where ê · m̂ = 0 and ê × m̂ = ẑ [36]. With this configuration,
ẑ and ê determine the predominate directions of propagation
and electric-field polarization, respectively.

A spherical or hyperbolic solution uκ (x, t ) remains a so-
lution to the homogeneous wave equation under a coordinate
translation along the real or imaginary axis. Displacing a coor-
dinate into its complex plane transforms a multipole spherical
or hyperbolic wave into a beamlike wave, in which the phase
fronts pass through the origin instead of originating from it
[Fig. 1(b)] [31–38]. This is the CSPM. For the spherical solu-
tions, a beamlike wave is generated by transforming the axial

013513-2



EXACT SOLUTIONS FOR THE ELECTROMAGNETIC … PHYSICAL REVIEW A 107, 013513 (2023)

FIG. 1. A schematic of the theoretical approach. (a) The approach starts with a multipole spherical (top) or hyperbolic (bottom) solution.
(b) A displacement of the coordinate z (top) or t (bottom) into its complex plane transforms the multipole solution into a beamlike solution
with a stationary focus in space (top) or time (bottom). (c) A Lorentz transformation of either beamlike solution from a frame of reference in
which the foci appear stationary to the laboratory frame produces the exact electromagnetic fields of a flying focus.

coordinate as z → z − iZR, such that S(x⊥, z) → S(x⊥, z −
iZR). For hyperbolic solutions, a beamlike wave is generated
by transforming time as t → t − iZR, such that H (x⊥, t ) →
H (x⊥, t − iZR). In the paraxial limit, i.e., when |z − iZR| or
|t − iZR| � ρ, the minimum spot size of the beamlike wave is
given by w0 = (2ZR/κ )1/2, and thus ZR = 1

2κw2
0 corresponds

to the Rayleigh range. When working with beamlike waves,
it is convenient to introduce the complex beam parameter q.
In the context of spherical and hyperbolic solutions, q(z) =
z − 1

2 iκw2
0 and q(t ) = t − 1

2 iκw2
0, respectively.

The exact spherical and hyperbolic solutions provided by
the CSPM, i.e.,

�e(x, t ) = 1
2 S(x⊥, q(z))e−iκt ê + c.c.

and

�e(x, t ) = 1
2 H (x⊥, q(t ))eiκz ê + c.c.,

(5)

respectively, with �m = ẑ × �e, describe continuous-wave
laser fields with stationary foci [Fig. 1(b)]. Electromagnetic
fields that satisfy Maxwell’s equations in one frame of refer-
ence satisfy Maxwell’s equations in all other inertial reference
frames. Therefore, there exists a frame of reference in which
the focus appears to be moving at a velocity vI = cβI . In the
context of a flying focus, this frame with a moving focus is
the laboratory frame.

When performing a Lorentz transformation from the sta-
tionary frame to the laboratory frame, it is convenient to work
with the four-potential Aμ = (�, A). The four-potential in the
stationary frame can be calculated from the Hertz vectors in
Eq. (5) as follows [49]:

�(x, t ) = −∇ · �e(x, t ),

A(x, t ) = ∂

∂t
�e(x, t ) + ∇ × �m(x, t ).

(6)

Because the Hertz vectors are formulated in the Lorenz
gauge [50], the condition ∇ · A + ∂t� = 0 is automatically
satisfied. Further, the relationship �m = ẑ × �e implies that
Az = −�, resulting in the Lorentz-invariant four-vector dot

product AμAμ = −�2 + A2
⊥ + A2

z = A2
⊥. The four-potential

in the laboratory frame (denoted by a prime ′) is given by

�′(x′, t ′) = γ (1 − β )�(x, t ), (7)

A′
⊥ = A⊥, and A′

z = −�′, where γ = (1 − β2)−1/2 is the
Lorentz factor. Note that in the laboratory frame, the sta-
tionary frame appears to be moving at a velocity −β. The
definition of this velocity and the mapping between (x, t ) and
(x′, t ′) depend on whether the focal velocity is subluminal
|βI | < 1 or superluminal |βI | > 1.

Upon Lorentz transforming to the laboratory frame, the
spherical solutions describe foci that move at subluminal ve-
locities |βI | < 1. In this case, β = βI and the coordinates
transform as

t = γ<(t ′ − βI z
′),

q(z) = γ<(z′ − βI t
′) − iκ ′w2

0

2γ<(1 + βI )
,

(8)

where γ< = (1 − β2
I )−1/2 and κ ′ = γ<(1 + βI )κ is the labo-

ratory frame value of κ . The hyperbolic solutions describe
foci that move at superluminal velocities |βI | > 1. Clearly
a Lorentz transformation using |β| > 1 would be unphysi-
cal. Nevertheless, a superluminal focus can be achieved by
Lorentz transforming the hyperbolic solutions using β = β−1

I ,
such that

q(t ) = γ>(t ′ − z′/βI ) − iβIκ
′w2

0

2γ>(1 + βI )
,

z = γ>(z′ − t ′/βI ),

(9)

where, in this case, γ> = (1 − β−2
I )−1/2 and κ ′ = γ>(1 +

β−1
I )κ .

For both spherical and hyperbolic waves, the focal plane,
defined by Re(q) = 0, travels along the trajectory z′ = βI t ′
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[Fig. 1(c)]. The time that it takes the confocal region to move
past a fixed point in space, i.e., the duration of the moving
focus τ , is obtained from the timescale evident in the expres-
sions for q. Specifically setting |q| = z′ = 0 and solving for t ′,
one finds

τ =
∣∣∣∣1 − βI

βI

∣∣∣∣Z ′
R, (10)

where Z ′
R = 1

2κ ′w2
0 is the Rayleigh range in the laboratory

frame and βI can take any value other than 1. The duration is
identical to that of an intensity peak produced by a lens with
a focal length that depends linearly on time, as in the flying
focus X [4].

Once the potentials have been calculated using Eqs. (5)–
(9), the electromagnetic fields can be found in the usual way:
E′ = −∇′�′ − ∂t ′A′ and B′ = ∇′ × A′. As will be shown be-
low, all six components of the resulting fields have nonzero
values. Further, the transverse components of the electric and
magnetic field that are perpendicular to ê and m̂, respectively,
are equal—a symmetry which is frequently sought-after in
solutions to Maxwell’s equations [24,28,37,51]. The relative
amplitudes of the field components scale as |ê · E′| ∼ |m̂ · B′|
and

|ẑ · E′| ∼ |ẑ · B′| ∼ min

(
1

κ ′w0
, |1 − βI |κ ′w0

)
|ê · E′|. (11)

For circular polarization, these two scalings are sufficient.
Linear polarization has the additional scaling

|m̂ · E′| ∼ |ê · B′| ∼ min

(
1

κ ′w0
, |1 − βI |κ ′w0

)
|ẑ · E′|.

(12)
When βI = 0, these scalings reduce to those of a stationary
focus. In the limit as βI → 1, the duration τ becomes shorter
than 2π/κ ′, and the components of the electric and magnetic
fields orthogonal to ê and m̂ vanish.

III. EXPLICIT SOLUTIONS

This section presents expressions for the four-potential of
arbitrary-velocity subluminal and superluminal foci. The ex-
pressions exactly satisfy the wave equation. In each example,
the four-potential is derived from a single modal solution uκ .
At a single longitudinal location and time, any transverse pro-
file can be represented as a superposition of these solutions.
Explicit expressions for each component of the electromag-
netic field can be found directly from the four-potential, but
are unwieldy and provide little additional insight. Instead,
the structure of the electromagnetic fields is highlighted by
figures.

A. Subluminal focus

Expressions for the four-potential of subluminal foci are
obtained from the spherical solutions. As a first example, con-
sider the lowest-order radial and azimuthal mode (n = � = 0)
in Eq. (3a). Upon choosing the polarization vector ê = x̂, the
electric and magnetic Hertz vectors are given by

�e(x, t ) = 1
2α00 j0(κR)e−iκt x̂ + c.c. (13)

and �m = ẑ × �e, respectively. After applying the CSPM,
Eq. (6), and a Lorentz transformation to Eq. (13), one finds
the laboratory frame four-potential:

�′ = α00(1 − βI )γ<

2

κx

R
j1(κR)e−iκt + c.c.,

A′
x = − iα00

2
κ

[
j0(κR) + i

q(z)

R
j1(κR)

]
e−iκt + c.c.,

(14)

A′
y = 0, and A′

z = −�′, where κ = γ<(1 − βI )κ ′ and R =√
ρ2 + q2(z) with q(z) and t given by Eq. (8). For a stationary

focus with βI = 0, the fields derived from Eq. (14) are identi-
cal to those in Ref. [37].

Figures 2(a)–2(f) display cross sections of the resulting
electric and magnetic fields at the location of the moving
focus z′ = βI t ′ for βI = 0.5 and κ ′w0 = 20. The predominant
electric and magnetic fields, E ′

x and B′
y, have equal amplitudes

and Gaussian-like transverse profiles (see Appendix). The
remaining vector components exhibit more complex spatial
structure, but are much smaller in amplitude, consistent with
Eqs. (11) and (12). Figure 2(g) illustrates the motion of the
focus in the laboratory frame. The cycle-averaged longitudinal
component of the Poynting vector, S′

z = ẑ · 〈E′ × B′〉/4π , is
plotted as a function of z′ and t ′ at ρ = 0. As expected from
Eqs. (8) and (10), the peak of S′

z travels at the velocity βI and
has a duration τ = Z ′

R. For comparison, the dashed black line
demarcates the speed of light trajectory z′ = t ′.

A moving focus carrying orbital angular momentum can
be described by any solution with |�| > 0. The spheri-
cal solution with � = n = 1 is used as an example. The
electric and magnetic Hertz vectors for this mode are
given by

�e(x, t ) = − 1
2α11 j1(κR) sin(φ)eiθ−iκt x̂ + c.c. (15)

and �m = ẑ × �e, where ê = x̂ has been chosen for the polar-
ization vector. Following the same procedure described above
provides

�′ = α11(1 − βI )γ<

2R

[
j1(κR) − κρ2

R
cos(θ )eiθ j2(κR)

]
e−iκt

+ c.c.,

A′
x = iα11

2

κρ

R

[
j1(κR) + i

q(z)

R
j2(κR)

]
eiθ−iκt + c.c., (16)

A′
y = 0, and A′

z = −�′. Figure 3 shows cross sections of
the fields and the longitudinal Poynting vector for the case
of a backward focus with βI = −0.99 and κ ′w0 = 20. The
predominant field components, E ′

x and B′
y, exhibit the charac-

teristic donutlike profile with a maximum amplitude located
at ρ ≈ w0/

√
2. As before, the other field components exhibit

more structure, but are much smaller in amplitude. In contrast
to the � = 0 example, the longitudinal field components of the
moving focus are nonzero at ρ = 0. Note that the longitudinal
Poynting vector is positive despite the backward motion of the
peak.
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FIG. 2. A subluminal focus with βI = 0.5, n = � = 0, and κ ′w0 = 20. [(a)–(f)] Cross sections of the electromagnetic field amplitudes
at the location of the moving focus z′ = βI t ′. Here Ẽ ′ = 〈E ′2〉1/2, where 〈〉 denotes a cycle average. The amplitudes are normalized to the
max(Ẽ ′

x ). (g) The longitudinal component of the cycle-averaged Poynting vector S′
z at ρ = 0, showing the motion of the focus. The dashed

black line demarcates the trajectory z′ = t ′ for reference.

B. Superluminal focus

Expressions for the four-potential of superluminal foci are
obtained from the hyperbolic solutions. For the simplest ex-
ample, consider the lowest-order radial and azimuthal mode
(n = � = 0) of the hyperbolic solution. The electric and mag-
netic Hertz vectors are

�e(x, t ) =
√

2
4 α00k0(κR)eiκz(x̂ + iŷ) + c.c., (17)

and �m = ẑ × �e, respectively. Here circular polarization,
i.e., ê = 1√

2
(x̂ + iŷ), has been chosen to demonstrate the gen-

erality of the solutions to describe polarizations other than
linear. Upon using the CSPM, Eq. (6), and a Lorentz trans-

formation, one finds the laboratory frame four-potential:

�′ =
√

2α00(1 − 1/βI )γ>

4

ρ

R2
(1 + κR)k0(κR)eiθ+iκz

+ c.c.,

A′
x = − i

√
2α00

4
κ

[
1 + i

q(t )

R
+ i

q(t )

κR2

]
k0(κR)eiκz + c.c.,

A′
y =

√
2α00

4
κ

[
1 + i

q(t )

R
+ i

q(t )

κR2

]
k0(κR)eiκz + c.c., (18)

and A′
z = −�′, where κ = γ>(1 − 1/βI )κ ′ and R =√

ρ2 − q2(t ), with q(t ) and t given by Eq. (9). Figure 4
displays cross sections of the resulting fields and the

FIG. 3. A backward focus carrying orbital angular momentum with βI = −0.99, n = � = 1, and κ ′w0 = 20. [(a)–(f)] Cross sections of
the electromagnetic field amplitudes at the location of the moving focus z′ = βI t ′. Here Ẽ ′ = 〈E ′2〉1/2, where 〈〉 denotes a cycle average. The
amplitudes are normalized to the max(Ẽ ′

x ). (g) The longitudinal component of the cycle-averaged Poynting vector S′
z at ρ = 0, showing the

motion of the focus. The dashed black line demarcates the trajectory z′ = t ′ for reference.
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FIG. 4. A circularly polarized superluminal focus with βI = 2, n = � = 0, and κ ′w0 = 20. [(a)–(f)] Cross sections of the electromagnetic
field amplitudes at the location of the moving focus z′ = βI t ′. Here Ẽ ′ = 〈E ′2〉1/2, where 〈〉 denotes a cycle average. The amplitudes are
normalized to the max(Ẽ ′

x ). (g) The longitudinal component of the cycle-averaged Poynting vector S′
z at ρ = 0, showing the motion of the

focus. The dashed black line demarcates the trajectory z′ = t ′ for reference.

longitudinal Poynting vector for βI = 2 and κ ′w0 = 20. The
use of circular polarization results in identical, near-Gaussian
profiles for each of the transverse field components and
symmetric donutlike profiles for the longitudinal components.
The peak of the longitudinal Poynting vector follows the
trajectory z′ = βI t ′ and has a duration τ .

C. Luminal focus

Expressions for the four-potential of luminal foci can be
found by taking the limit of the subluminal and superluminal
solutions as |βI | → 1. The limit as |βI | → 1 is identical from
above and below, and the sub- and superluminal solutions
reduce to the same expression. When βI = −1, the transverse
vector potential exactly satisfies a paraxial wave equation and
thus can be expressed as a Laguerre-Gaussian mode (see
Sec. V). Taking the limit of the linearly polarized n = � = 0
sub- or superluminal solution as βI → 1 yields

A′
x ∝ j1(κ ′(z′ − t ′)) (19)

and �′ = A′
z = A′

y = 0. Equation (19) is independent of the
transverse coordinates, i.e., it is a plane wave with E ′

x = B′
y

and all other field components are equal to zero [see Eqs. (11)
and (12)].

As βI → 1, the complex coordinate introduced in the
CSPM approaches the real axis. The absence of the imaginary
term in Eqs. (8) and (9) eliminates the beamlike behavior of
the solutions and results in the plane wave solution [Eq. (19)].
With a plane wave, there is no distinction between the near
and far fields. Even when taken in superposition, the laser
pulse and the focal plane would have to coincide everywhere
in space for all time, rendering the plane wave solution impos-
sible to produce in this configuration. Nevertheless, a flying
focus with βI = 1 can be generated using other techniques
like the achromatic flying focus or arbitrary structured laser
(ASTRL) pulses [5,6].

IV. PULSED SOLUTIONS AND FOCAL RANGE

In every example presented in Sec. III, the electromagnetic
fields were generated from a single modal solution uκ . The
modal solutions used to generate subluminal foci are localized
in space, but oscillate at a single period 2π/κ for all time. The
modal solutions used to generate the superluminal foci are
localized in time, but oscillate at a single wavelength 2π/κ

everywhere on the z axis. In both cases, the focus travels
along the trajectory z′ = βI t ′ forever, and the electromagnetic
energy is infinite. Physically realizable electromagnetic fields
are localized in space and time and have finite energy; i.e.,
they are pulsed. Such fields can be generated from a discrete
or continuous superposition of the modal solutions, u(x, t ) =∫

uκ (x, t ) dκ .
The temporal or longitudinal profile of a pulse depends on

the spectral amplitude and phase of each modal solution in
the superposition. The spectral amplitudes and phases, i.e.,
the αn�(κ ), can be chosen such that a single component of
either the Hertz vectors, four-potential, or fields exhibits a
particular temporal or longitudinal profile. For consistency
with the previous section, the αn�(κ ) will be chosen to specify
the profile of the predominant component of the four-potential
in the laboratory frame A′

x.
To begin, note that an A′

x derived from a single
modal solution always takes the form of either A′

x =
αn�(κ ) fn�(x⊥, z; κ )e−iκt + c.c. for subluminal foci or A′

x =
αn�(κ ) fn�(x⊥, t ; κ )eiκz + c.c. for superluminal foci. The
space-time location of the maximum of | fn�| is insensitive to
κ (and is fully independent of κ in the paraxial limit). As a
result, the choice

αn�(κ ) = a0gn�(κ )

max| fn�| (20)

ensures that a pulse with a subluminal or superluminal focus
has a temporal profile, ĝn�(t ) = ∫

gn�(κ )e−iκt dκ , or a longi-
tudinal profile, ĝn�(z) = ∫

gn�(κ )eiκz dκ , respectively. Further,
if |ĝn�(0)| = 1, then the transverse vector potential in the
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FIG. 5. A pulsed subluminal focus constructed from a super-
position of modal solutions with βI = 0.5, n = � = 0, κ ′

0w0 = 20,
and T = 10Z ′

R (L = 10Z ′
R). (a) The longitudinal component of the

cycle-averaged Poynting vector S′
z at ρ = 0, showing the motion and

finite extent of the focus [cf. Fig. 2(g)]. The dashed black lines mark
the full width at half maximum of the pulse ĝ00, which travels at
the speed of light. [(b)–(d)] The profile of the longitudinal Poynting
vector in the x − z′ plane at t ′ = −10Z ′

R, 0, and 10Z ′
R. The right

and left edges of the focus at t ′ = −10Z ′
R and 10Z ′

R are clipped by
the front and rear edges of the pulse, respectively, leading to the
asymmetric profile in z′.

laboratory frame will have a maximum amplitude of a0.
To ensure that the moving focus has a near-constant profile
and maximum Poynting vector over its entire trajectory, ĝn�

should have a near-flat-top profile. In this work, ĝn�(t ) =
exp [−(2t/T )4 − iκ0t] and ĝn�(z) = exp [−(2z/T )4 + iκ0z]
are used.

The pulsed fields generated by a superposition of modal
solutions exhibit a moving focus over a finite duration and
spatial extent. The length L over which the focus persists,
i.e., the focal range, is determined by the transit time �T
of the focus through the entire pulse duration T . In vacuum,
the pulse propagates at its group velocity c = 1, such that
�T = T/|1 − βI |. Over the interval �T , the focus travels a
distance L = |βI |�T , providing

L =
∣∣∣∣ βI

1 − βI

∣∣∣∣T . (21)

Equation (21) demonstrates that the focal range L increases
with T , approaches T as |βI | → ∞, and is much greater than
T when βI ≈ 1. In addition, Eq. (21) can be combined with
Eq. (10) to show that τ/T = Z ′

R/L. Note that every wave
number or frequency κ ′ within the superposition will have a
different Rayleigh length, 1

2κ ′w2
0. For this section, the quantity

Z ′
R is defined in terms of the central frequency or wave number

κ ′
0, such that Z ′

R = 1
2κ ′

0w
2
0.

Figure 5 displays the longitudinal Poynting vector of a
pulsed solution with βI = 0.5, n = � = 0, κ ′

0w0 = 20, and
T = 10Z ′

R. The moving focus maintains a near-constant

FIG. 6. Propagating the fields backward to z′ = −150Z ′
R pro-

vides (a) the slow phase �s, (b) the corresponding time-dependent
focal length f , and (c) the amplitude required to create a flying
focus pulse with βI = 0.5, n = � = 0, κ ′

0w0 = 20, and L = 10Z ′
R

(the same parameters as in Fig. 4). In panels (a) and (c) the dashed
lines illustrate the parabolic shape of �s and the on-axis ampli-
tude, respectively. The transverse dimension is normalized to the
spot size of a standard Gaussian beam at the same location: w =
w0[1 + (z′/Z ′

R )2]1/2. More generally, a flying focus can be created
by using a lens with focal length that depends linearly on time:
f (t ′) = f0 + f1t ′, where f1 is given by Eq. (22).

profile and maximum over 10 Rayleigh ranges (L = 10Z ′
R).

The black dashed lines in Fig. 5(a) mark the full width at
half maximum boundary of the pulse ĝ00, which travels at
the speed of light. The pulse propagates from left to right,
but only has an appreciable Poynting vector in the vicinity of
the moving focus. Consistent with the super-Gaussian profile
of the pulse and in contrast to Fig. 2(g), the maximum of
the Poynting vector increases and then decreases as it moves
through the focal region. At t ′ = −10Z ′

R and 10Z ′
R, the bound-

ary of the pulse encroaches on the focus from behind and
ahead, respectively, causing the asymmetry in the longitudinal
profile observed in Figs. 5(b) and 5(d).

The pulsed electromagnetic fields can be propagated back-
ward in space to determine the amplitude and the phase that
an optical assembly must produce to realize these fields in
an experiment. When discussing the phase, it is convenient
to define a “slow” phase �s which excludes the contribution
from the carrier frequency, i.e., �s ≡ � + κ ′

0t ′, where � is
the total phase. Figure 6(a) shows the slow phase of the
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transverse electric field at z′ = −150Z ′
R for the same parame-

ters of Fig. 5. The slow phase decreases linearly in time and
has a transverse profile that is nearly parabolic. This is equiv-
alent to the phase imparted by a lens with a focal length that
depends linearly on time, which is consistent with Eq. (10)
and the flying focus X (see Ref. [4] for practical examples).
The time-dependent focal length f (t ′) can be extracted from
the phase by equating �s = −κ ′

0ρ
2/2 f (t ′) [Fig. 6(b)]. In gen-

eral, one can show that f (t ′) ≈ f0 + f1t ′, where

f1 = L

T
=

∣∣∣∣ βI

1 − βI

∣∣∣∣. (22)

Higher-order contributions to f (t ′), e.g., f2t ′2, drop as 1/z′2
or faster and thus are negligible in the near-field of the optical
assembly.

The amplitude of the transverse electric field is plot-
ted in Fig. 6(c). The transverse profile is nearly Gaussian
with small deviations due to nonparaxiality. The temporal
profile is nearly super-Gaussian, consistent with ĝn�(t ) ∝
exp[−(2t/T )4], but has an observable taper at earlier times.
The later time slices of the pulse are farther from their focus
and therefore have slightly larger spot sizes than the earlier
time slices. In the case of a superluminal focus, the taper
would be reversed; i.e., the earlier time slices would be closer
to their focus and have smaller spot sizes. From conservation
of power, the change in spot size throughout the pulse is
accompanied by a change in amplitude. Specifically,

d|E ′
x|

dt ′ ≈ −βI |1 − βI |Z ′
R

z′2 (23)

to leading order in Z ′
R/z′. Far from the central focus z′ = 0,

the variation in amplitude is negligible and can be ignored for
experimental purposes.

V. COMPARISON TO PARAXIAL SOLUTIONS

The exact expressions for the four-potential of a flying
focus and the extension to pulsed solutions can be somewhat
complicated, especially when considering higher-order radial
or azimuthal modes. In many cases of interest, the bandwidth
is narrow (κ ′

0T � 1), the spot size is much larger than the
wavelength (κ ′

0w0 � 1), and the vector nature of the field
is unimportant. In these cases, paraxial solutions provide a
simpler alternative to the full solutions. However, the reli-
ability and accuracy of the paraxial solutions can only be
determined through comparison to the exact solutions. This
section presents such a comparison.

Exact modal solutions for the four-potential in the paraxial
approximation can be obtained without invoking the CSPM
or a Lorentz transformation. For consistency with the Hertz
vector formulation in the previous sections, consider the wave
equation for the transverse vector potential in the Lorenz
gauge: (

∇2
⊥ + ∂2

∂z′2 − ∂2

∂t ′2

)
A′

⊥(x′, t ′) = 0. (24)

Note that all quantities in Eq. (24) are written in the laboratory
frame. Upon performing the Galilean change of variables ξ ′ =
z′ − βI t ′ and η′ = z′ − t ′, the modal solution for A′

⊥ can be

expressed as A′
⊥(x′, ξ ′) = 1

2 a′
⊥(x⊥, ξ ′)eiκ ′η′

ê + c.c., where the
envelope a′

⊥ satisfies[
∇2

⊥ + (1 − β2
I )

∂2

∂ξ ′2 + 2iκ ′(1 − βI )
∂

∂ξ ′

]
a′

⊥(x⊥, ξ ′) = 0.

(25)
With a solution to Eq. (25), the remaining components
of the four-potential can be calculated from [2iκ ′ + (1 +
βI )∂ξ ′]A′

z = −∇⊥ · A′
⊥ and �′ = −A′

z.
The closed-form solutions to Eq. (25) are identical to those

described in Secs. II and III. While it is not obvious how to
arrive at these solutions directly from Eq. (25), closed-form
solutions can be obtained within the paraxial approximation.
Specifically, Eq. (25) reduces to the paraxial wave equation[

∇2
⊥ + 2iκ ′(1 − βI )

∂

∂ξ ′

]
a′

⊥(x⊥, ξ ′) ≈ 0 (26)

when |κ ′(1 − βI )∂ξ ′ | � |(1 − β2
I )∂2

ξ ′ |. Using the scaling
κ ′(1 − βI )∂ξ ′ ∼ ∇2

⊥ ∼ w−2
0 evident in Eq. (25), this condition

can be reexpressed as

κ ′2w2
0

∣∣∣1 − βI

1 + βI

∣∣∣� 1. (27)

Equation (27) reveals that the paraxial approximation is ac-
curate when βI ≈ −1 or when the variations of a′

⊥ with
respect to ξ ′ are slow compared to the frequency. Under these
conditions, the solutions to Eq. (25) can be approximated as
Laguerre-Gaussian modes (LG�p), such that

A′P
x (x⊥, η′, ξ ′) = A0w0

2w(ξ ′)

[ √
2ρ

w(ξ ′)

]|�|
L|�|

p

[
2ρ2

w2(ξ ′)

]

× exp

[
iκ ′η′ −

(
1 − i

ξ ′

ξ ′
0

)
ρ2

w2(ξ ′)

+ i�θ − i(2p + |�| + 1)arctan
ξ ′

ξ ′
0

]
+ c.c.,

(28)

where L|�|
p is a generalized Laguerre polynomial, w(ξ ′) =

w0[1 + (ξ ′/ξ ′
0)2]1/2, ξ ′

0 = |1 − βI |Z ′
R, ê = x̂ has been chosen

for the polarization vector, and the superscript P distinguishes
paraxial solutions A′P

x from exact solutions A′
x.

In the special case of βI = −1, Eq. (25) is identical to
Eq. (26), and the Laguerre-Gaussian modes are exact solu-
tions [16]. For p = n = � = 0, one can take the limit of the
solutions in Sec. III as βI → −1 from above and below to
show that A′

x = A′P
x . However, for n > 0 or |�| > 0, there is not

a one-to-one mapping between the exact solutions generated
from Eq. (3) and the Laguerre-Gaussian modes. This can be
readily verified by noting that Eq. (28) places no constraint on
the integer values that p and � can take, whereas in Eq. (3),
|�| � n. When n > 0 or |�| > 0, the exact solutions generated
from Eq. (3) are a superposition of multiple Lagerre-Gaussian
modes with the same � value. When βI = 1, the Galilean
coordinates become degenerate, i.e., ξ ′ = η′ = z′ − t ′; thus,
despite the equality of Eqs. (25) and (26), neither equation is
valid.

In the more general case of |βI | �= 1, the Laguerre-
Gaussian modes are only approximate solutions. For n=�=0,
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FIG. 7. One minus the projection integral [Eq. (29)] as a function
of the focal velocity βI for different values of spot size w0. The parax-
ial solutions are an excellent approximation to the exact solutions
everywhere except for a small interval around βI = 1.

the exact solutions derived in Secs. II and III approach the
LG00 mode in the paraxial limit. For n > 0, the exact solu-
tions approach a superposition of multiple LG modes with the
same � value. The one-to-one correspondence when p = n =
� = 0 allows for direct comparison of the exact and paraxial
solutions.

The similarity of the exact and paraxial solutions can be
quantified using the projection integral:

�(βI , κ
′w0) =

∫ 〈
A′

xA′P
x

〉
dx⊥√∫ 〈A′

xA′
x〉dx⊥

√∫ 〈
A′P

x A′P
x

〉
dx⊥

, (29)

where 〈〉 denotes an average over the rapidly varying phase
and A′

x and A′P
x are evaluated in the focal plane z′ = βI t ′. As

defined, � depends only on βI and κ ′w0. The values of � ∈
[0, 1]. A value of � = 1 indicates that the vector potentials
are identical, while a value of � = 0 indicates that they are
orthogonal. The quantity 〈A′

xA′
x〉 was chosen for the projection

because it is Lorentz invariant (recall from Sec. II that AμAμ =
A2

⊥).
Figure 7 displays 1 − � as a function of βI for several

κ ′w0 values. Consistent with Eq. (27), the paraxial solution
provides an excellent approximation to the exact solution
everywhere except for a small interval around βI = 1. The
width of this interval narrows as κ ′w0 increases, which reflects
the departure from paraxiality when the field is more tightly
focused. As expected, � → 1 as βI → −1.

The energy U of a linearly polarized flying focus pulse in
the paraxial approximation can be calculated using Eq. (28).
Upon multiplying Eq. (28) by an envelope profile g(η), cal-
culating the transverse field E ′

x, and integrating the energy

density 1
4π

(E ′P
x )2 over volume, one finds

U = �

16

(p + �)!

p!

|1 − βI |
|βI | Lκ ′2w2

0A2
0, (30)

where � is a numerical factor on the order of one that de-
pends on g [for g(η) = e−(2η/T )4

, � ≈ 0.76]. In addition to
the paraxial approximation, the validity of Eq. (30) requires
κ ′T � 1. In real units,

U [J] ≈ (p + �)!

p!

|1 − βI |
|βI |

I[W/cm2]L[cm](w0[μm])2

2 × 1018
, (31)

where I = 1
8π

cκ ′2A2
0 is the intensity. Note that for a particular

� and p value, the maximum intensity Imax is given by Imax =
max(|A′P

x |2/A2
0)I .

VI. SUMMARY AND CONCLUSIONS

The flying focus belongs to a broader class of optical
techniques for controlling the space-time structure of laser
pulses that also includes laser smoothing [52,53], light sheets
[54–56], and spatiotemporal optical vortices [57–59]. Each
of these has unique features that can lead to a deeper un-
derstanding of the fundamental properties of light or advance
laser-based applications. The flying focus provides a cylindri-
cally symmetric, programmable-velocity intensity peak that
can travel distances far greater than a Rayleigh range while
maintaining a near-constant profile [1,2,4,5]. These particular
features can enable or enhance the broad range of applications
that requires velocity matching and a high-intensity interac-
tion over an extended distance. Assessing the extent to which
a flying focus can improve these applications requires an
accurate description of the electromagnetic fields.

Motivated by this requirement, this paper has presented a
theoretical method for obtaining exact, closed-form solutions
for the electromagnetic fields of a constant-velocity flying
focus. The method consists of three steps. In the first step, one
finds multipole spherical or hyperbolic solutions to the wave
equation that satisfy appropriate boundary conditions. These
solutions are then converted into beamlike solutions using
the complex source-point method, i.e., by displacing one of
the coordinates into its complex plane. The spherical and
hyperbolic beamlike solutions have stationary foci in space
and time, respectively. In the final step, the beamlike solutions
are Lorentz boosted into a frame in which the foci appear to
be moving. The spherical solutions produce subluminal foci,
while the hyperbolic solutions produce superluminal foci.
The method produces all six components of the electromag-
netic field, does not impose a paraxial approximation, and
is generalized for arbitrary orbital angular momentum and
polarization.

Explicit expressions for the exact four-potential were pro-
vided to illustrate the structure of the solutions in select
examples. The procedure for constructing pulsed solutions
was then described. The pulsed solutions revealed that the
peak of the Poynting vector travels at the focal velocity,
whether it is positive or negative, while the sign of the Poynt-
ing vector always matches the direction of pulse propagation.
Propagating the pulsed solutions backward in space demon-
strated that the solutions describe a laser pulse focused by a
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lens with a focal length that depends linearly on time. As a
result, these solutions may be generated in practice using a
technique like the flying focus X [4]. Alternatively, a time-
ordered sequence of pulses each with a different focal length
could be used as in the ASTRL technique [6]. Finally, it was
shown that even in tight-focusing geometries, approximate
paraxial solutions for the flying focus [18] can be accurate as
long as the focal velocity is not too close to the speed of light.
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APPENDIX: GAUSSIAN-LIKE TRANSVERSE PROFILE

The transverse profile of the exact electromagnetic fields
can be approximated by the product of a polynomial and

Gaussian in ρ. When the inequality in Eq. (27) is satisfied, the
region over which the fields have an appreciable amplitude is
limited to ρ � |q|. This allows R or R to be Taylor expanded
in powers of ρ/q:

R ≈ q

(
1 + ρ2

2q2

)
,

R ≈ iq

(
1 − ρ2

2q2

)
.

(A1)

Substituting these expansions into the analytical expressions
for the lowest-order (n = � = 0) linearly polarized electro-
magnetic fields, retaining terms up to O(q−1), and evaluating
at focus (z′ = βI t ′) provides

E ′
x = B′

y = α00κ
′

2ZR
exp

[
κZR − iκt − ρ2

w2
0

]
+ c.c.

and

E ′
x = B′

y = α00κ
′

ZR
exp

[
−κZR + iκz − ρ2

w2
0

]
+ c.c. (A2)

for the predominate components of the subluminal and super-
luminal fields, respectively. In both cases, the exponentiated
terms, κZR or −κZR, and the multiplicative constants can be
absorbed into α00 if desired. Higher-order � modes would
have leading-order coefficients ∝ ρ|�| multiplying the Gaus-
sian profiles.
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