
PHYSICAL REVIEW A 107, 013511 (2023)
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Phase plays an essential role in both classical and quantum wave dynamics, which has motivated many
scientists to study the phases of many different nonlinear waves. Among those nonlinear waves, the ones
described by rational solutions have been given much attention, partly because some of them can describe
rogue wave dynamics. We revisit the phase of several well-known one-dimensional rational solutions and
clarify that sudden phase inversion processes indeed exist for rogue waves, in contrast to the ones reported
before. Moreover, we investigate the phase properties of rogue waves and rational W-shaped solitons in the
Hirota and Sasa-Satsuma model, for which some high-order physical effects are considered, i.e., the third-order
dispersion delayed nonlinear response and self-steeping effects. The quite distinctive phases are uncovered
for the rational W-shaped solitons with similar density profiles in the two models, by limitation analysis on
the underlying topological vector potentials of other related nonlinear waves. These results indicate that the
underlying topological vector potentials can be used to identify the phases of nonlinear waves, especially for
localized waves with abrupt phase jumps.
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I. INTRODUCTION

Phase is one of the most important properties of nonlinear
waves, because it plays an essential role in both classical and
quantum wave dynamics. This has motivated many scientists
to study the phases of many different nonlinear waves, such
as bright solitons [1], dark solitons [2], Akhmediev breathers
[3], Kuznetsov-Ma breathers [4,5], and rogue waves (RWs)
[6]. For example, a dark soliton usually admits a phase jump
across its density dip, and the relative phase between bright
solitons plays an important role in their interaction behaviors.
The Akhmediev breather usually possesses a phase shift of
its plane wave background [7,8], which could be seen as a
nonlinear geometric phase. For the Peregrine RW, two sharp
π phase jumps can be seen when the density peak admits the
maximum value [8–14]. Systemic analysis was performed on
phase evolution of RWs and high-order RWs [8,9], based on
related rational solutions of integrable nonlinear partial equa-
tions. We note that the phases of the identical first-order RW
were different between Ref. [8] and Ref. [9]. The phases of
high-order RWs given in Ref. [9] have no phase inversion pro-
cess, in contrast to the ones in Ref. [15]. Considering that the
relative phase evolution in the temporal-spatial plane should
be unique with choosing a reference state [16], we would like
to revisit the phase of RWs and other related nonlinear waves
described by rational solutions.

The phase of wave function ψ can be generally described
by the arctan

[ Im[ψ]
Re[ψ]

] + nπ or other arccosine forms (where n
is an integer and is determined by the phase gradient direc-

*zhaolichen3@nwu.edu.cn

tion). But this form cannot deal with the cases with abrupt
phase jumps, since the phase gradient becomes divergent on
the abrupt phase jump point. This means the mathematical
forms usually cannot identify a phase uniquely and correctly,
especially for the real functions with many nodes (each node
with ±π phase jump) and wave functions with some abrupt
2π phase jumps. Note that the phase jump direction can be
chosen arbitrarily if we just observe the phase at one moment,
but the phase jumps should be unique when investigating the
relative phase on the whole temporal-spatial plane. For exam-
ple, the π → −π phase jump along the evolution direction
for the first-order RW cannot be seen from the mathematical
phase form, but its existence plays an important role in its am-
plitude decay dynamics [10,14,15]. How to identify the phase
of waves with abrupt phase jumps physically and conveniently
is still a challenging problem.

In this paper, we suggest that the relative phase can be de-
termined uniquely based on the general phase form, with the
aid of investigating the topological vector potential underlying
nonlinear waves [15,17]. The topological vector potential can
be given from the analytic complex extension of the phase
gradient function. The limitation analysis of topological vec-
tor potential can be used to determine the phase distribution
and evolution when there are abrupt phase jumps. We investi-
gate the phase properties of several one-dimensional nonlinear
waves with the aid of topological vector potentials. The abrupt
phase jump jπ → − jπ ( j = 1, 2, 3 is the order of RW) is
uncovered for the first-, second-, and third-order RWs when
the density peak possesses the maximum value. Moreover,
the phase properties of RWs and rational W-shaped solitons
in the Hirota and Sasa-Satsuma (S-S) models are analyzed
in detail, which uncovers the quite distinctive phases for the
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rational W-shaped solitons with similar density profiles in the
two models.

The paper is organized as follows. We analyze the phase
of the first-, second-, and third-order RWs of the simplest
nonlinear Schrödinger equation (NLSE) model in Sec. II. In
Sec. III, we calculate the phase of RWs and rational W-shaped
solitons in the Hirota model and the S-S model. We show
that their phases are quite distinctive even though they admit
similar density profiles. A conclusion is made in Sec. IV.

II. ROGUE WAVE PHASE OF THE SIMPLEST NONLINEAR
SCHRÖDINGER EQUATION

We choose one of the simplest models, the scalar NLSE, to
discuss the phase of nonlinear waves. It can be written as

i
∂ψ

∂z
+ 1

2

∂2ψ

∂t2
+ |ψ |2ψ = 0, (1)

where t is the retarded time and z is the propagation distance
for nonlinear optical fiber systems [18]. The above model
admits bright solitons, Akhmediev breathers, Kuznetsov-Ma
breathers, and RWs [3–6,19–21]. Those nonlinear waves have
different structures and periodic properties. Especially, they
exhibit distinctive phases, which is highly correlated with
their density evolution [7,8]. For the RW, when its amplitude
reaches the maximum value, the phase increases rapidly and
a localized π phase jump occurs. Experimental observation
has been done for the first-order RWs and some high-order
RWs [10], which provides possibilities to observe the phase
evolution on the spatial-temporal plane. Noting that there
were several different phase characterizations for the identi-
cal RWs [8,9,15], we revisit the phase of RWs with the aid
of topological vector potentials, which reveals the topology
underlying the phase jumps of dark solitons [17].

A. The phases of the first-order rogue waves

The first-order RW solution can be written as

ψ =
[

1 − 4(1 + 2iz)

4z2 + 4t2 + 1

]
eiz, (2)

whose dynamics process is shown in Fig. 1(a) [22,23]. The
amplitude peak is located at t = 0, and on either side of
the peak, there are two valleys at t = ±a0 (a0 =

√
3

2 ). Many
theoretical and experimental investigations have been done
on the phases of RWs [7–10,12–14,19]. Recently, we showed
that the first-order RW admitted several phase jumps and a
sudden phase inversion [15], which is completely different
from the other previous studies [8,9]. We discuss the phases
of RWs in more detail to clarify the differences.

In order to obtain the actual phase evolution of nonlin-
ear waves, the phase gradient flow F (t ) = dφ(t,z)

dt must be
considered. Here, φ(t, z) denotes the phase of the RW, for
which the global trivial phase of the background (the factor
eiz) is removed, in order to investigate the phase evolution
of RWs more conveniently. Noting that density zeros play
an important role in phase jumps, we analytically extend
the function F (t ) to be F (m), replacing t with m = t +
iτ , to investigate density zeros on the complex plane. We
can see that F (m) has four singularities, i.e., m1,2 = t1,2 +

FIG. 1. (a) The amplitude evolution of the first-order RW so-
lution. (b) The corresponding phase evolution. (c) The virtual
monopoles distribution on the extended complex plane and phase
distribution before (z = -0.5) and after (z = 0.5) the highest
peak emerging. The monopoles with positive and negative charges
(i.e., ± 1

2 ) are indicated by � and ⊗, respectively. (d) Phase-diagram
trajectories on the (Re[ψe−iz], Im[ψe−iz]) space of the first-order
RW wave function at t = 0 (I) and t = 2 (II). The black dot indicates
the starting and ending positions. The evolution directions at I and
II are marked by black arrows and purple arrows, respectively. The
dashed square indicates the position of phase inversion π → −π .

iτ1,2 = ±(a + ib) and m3,4 = t3,4 + iτ3,4 = ±(a − ib), where

a = 2
√

2z√
4z2+√

16z4+40z2+9−3
and b =

√
4z2+√

16z4+40z2+9−3
2
√

2
. Then

we can define a vector potential Ac = ∂φ(m,z)
∂t et + ∂φ(m,z)

∂τ
eτ on

the complex plane (t, iτ ), where et and eτ are the unit vectors
along the t and τ directions, respectively. The real part of the
above vector potential, i.e., A = Re[Ac], can be derived as
[15]

A =
4∑

N=1

±π [(t − tN )eτ − (τ − τN )et ]

2π [(t − tN )2 + (τ − τN )2]
. (3)

The ± can be known directly from the residue of each sin-
gularity for F (m). The topological vector potential describes
four Dirac monopoles, which locate on density zeros on the
complex plane. The relative phase variation can be described
by the integration of the vector potential A along the real
t axis. Recently, wavefront dislocation and phase singular-
ity of several nonlinear waves were discussed [24,25], for
which topology is defined on the spatial-temporal plane. The
phase singularities locate at density zeros on the real spatial-
temporal plane, which could be understood from the density
zeros on the extended complex plane. The relations between
topologies on the different spaces still need further research.
In this paper, we mainly intend to identify the relative phase of
rogue waves with the aid of these topological vector potentials
on the complex plane.
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But the wave function becomes real when z = 0, which
makes it difficult to fix the phase at this moment. We can deal
with the case by taking limitation analysis on the above vec-
tor potential. As z → ±0, a → ±a0 and b → 0. The vector
potential on the real axis then takes the following form:

lim
z→±0

A = lim
b→0

{−π [(t ± a0)eτ+bet ]

2π [(t ± a0)2 + b2]
+ π [(t ± a0)eτ − bet ]

2π [(t ± a0)2 + b2]

+ π [(t ∓ a0)eτ + bet ]

2π [(t ∓ a0)2 + b2]
+ −π [(t ∓ a0)eτ − bet ]

2π [(t ∓ a0)2 + b2]

}

= (−πδ[t ± a0] + πδ[t ∓ a0]) et . (4)

The line integral of the above vector potential along the real
axis predicts the π phase jumps and abrupt phase inversion
(π → −π phase jump). The vector potential composed of op-
positely charged monopoles can fully capture the fundamental
features of the nonlinear wave’s phase evolution [15,17,26].

We note that the relative phase evolution should be
uniquely determined in the temporal-spatial plane, although
the phase of a single point can be chosen arbitrarily. There-
fore, we plot the phase evolution of the first-order RW, fixing
a reference state. For simplicity and without losing generality,
we choose ψ at z → −∞ as the reference state [16], namely,
φ(t, z → −∞) = 0, to determine the phase of RW. Judging
the phase gradient flow and taking the limitation analysis on
vector potential [see Eq. (4)], we plot the phase evolution
of the first-order RW [shown in Fig. 1(b)], based on the
general arctan

[ Im[ψe−iz]
Re[ψe−iz]

] + nπ form. One can find that the
phase grows from zero to a π jump as the peak of the RW is
compressed. Then it shows a sudden phase jump π → −π ,
which is somewhat similar to the cases reported in linear
optic waves [16,27]. Phase bifurcations are marked by zero-
amplitude troughs, as pointed out in Ref. [9]. After that, the
phase gradually tends to zero, and the corresponding density
decreases to be identical to the plane wave background. The
phase gradient determines the density flow, and the abrupt
phase inversion in the phase distribution can provide an un-
derstanding of the growth and decay of RWs. Our results
are in sharp contrast to Fig. 1(c) of Ref. [9], in which the
RW phase evolves without inversion and it cannot explain the
RW’s amplitude decay process. Our results are also different
from the ones in Fig. 6 of Ref. [8], in which the 2π phase
jump was admitted by the RW’s plane wave background, and
the local phase of the RW evolved continuously. In fact, the
phase of the first-order RW cannot be determined uniquely
when it admits the highest peak [at z = 0 in Fig. 1(b)], since
the phase for waves in regime [−a0, a0] along the z direction
is discontinuous at the point z = 0. In the experiment of mea-
suring the RW’s phase (i.e., Fig. 3(c) in Ref. [10]), we think
that the phase was measured at the distance slightly before the
RW’s highest peak appearing.

From the vector potential characters, we know that in addi-
tion to these singular points, the corresponding magnetic field
is zero everywhere in the whole complex plane. That is,

B = ek

∑
N

±πδ[m − mN ], (5)

where m is the vector on (t, τ ) plane, and ek is a unit vector
which is perpendicular to the (t, τ ) plane. The ± represents

the magnetic flux direction. Each singularity in the vector po-
tential forms a monopole field with an elementary π quantized
magnetic flux. We show the monopole field at two differ-
ent distances in Fig. 1(c). Each pair of oppositely charged
monopoles in the vertical direction approaches the other and
results in more sharp phase changes. At z = 0, the two pairs
collide, which results in the two π phase jumps. Then they
bounce back after exchanging charges, and the phase jump
direction abruptly inverses. As the monopoles move away, the
phase of RW returns to zero.

To understand the differences between our results and the
ones in Refs. [8,9], it is meaningful to investigate the trajecto-
ries of wave function on the complex plane [28]. We plot the
trajectories of ψe−iz and the corresponding phases at t = 0
(denoted by I) and t = 2 (denoted by II) with propagation dis-
tance on the (Re[ψe−iz], Im[ψe−iz]) plane, which are shown
in Fig. 1(d). We can see that our phase at t = 0 first increases
and reaches π at z = 0, then presents an abrupt inversion to
−π and continues to increase, and finally it returns to zero.
If we just observe trajectory I on the (Re[ψe−iz], Im[ψe−iz])
plane, the circle around the coordinate origin suggests that
the phase should admit a 2π phase difference compared to
the initial state. This indicates that a 2π phase evolution was
argued to be possessed continuously by the RW signal, and
the RW’s background was suggested to admit an abrupt 2π

phase jump (see Fig. 6 in Ref. [8]). The abrupt 2π phase
jump possessed by RW’s background can make the phase
gradient agree with the density flow during the RW’s decay
process. However, we argue that the 2π phase difference is
possessed only by the RW signal, which is hidden in the
π → −π phase jump [see the dashed square in Fig. 1(d)].
The abrupt π → −π phase jump makes the RW’s initial phase
(z → −∞) equal to the final phase (z → ∞), in sharp contrast
to the ones in Ref. [8]. Especially, we think that there is no
phase jump for the RW’s plane wave background, which is
supported by the trajectories far from the RW’s hump and
valleys. For the phase at t = 2 [trajectory II in Fig. 1(d), which
is outside the two valleys], the small circle is not around the
coordinate origin, and there should be no phase difference be-
tween the initial state and final state. If we further investigate
the phase at t → ∞, the trajectory is continuously reduced
to one point, which is far from the coordinate origin. There-
fore, there should be no phase change for RW’s plane wave
background.

On the other hand, the phase of RW’s plane wave back-
ground was also suggested to admit no variations, and the
2π phase difference was continuously possessed by RW, see
Fig. 1(c) in Ref. [9]. The difference between the RW peak’s
initial phase (z → −∞) and the final phase (z → ∞) was
2π , in contrast to our zero phase difference. This indicates
that the plane wave background admits two striking 2π phase
jump points along the distribution direction after the highest
density peak emerges. Considering that the RW localizes at
the temporal-spatial plane, we think that the abrupt π → −π

phase jump should be more naturally possessed by the RW
signal. This ensures that the whole plane wave background
admits no phase variations. Our results are also helpful in
understanding the differences between Refs. [8] and [9] for
the identical RWs.
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FIG. 2. (a) and (b) The amplitude and phase evolution of the
second-order RW solution. There are two abrupt phase jumps (2π →
−2π and π → −π ) in the phase evolution of the second-order RWs.
(c) and (d) The amplitude and phase evolution of the third-order RW
solution. There are three abrupt phase jumps (3π → −3π , 2π →
−2π , and π → −π ) in the phase evolution of the third-order RWs.

B. The phase of the second-order and third-order rogue waves

We further characterize the phases of high-order RWs,
which admit much higher amplitude peaks and more com-
plex phases. For the second-order RW [22,29], the maximum
amplitude peak is reached at z = 0, and on either side of the
peak there are four valleys located at t = ±av1,±av2, which
are shown in Fig. 2(a). The previous studies showed that the
maximum value of a phase was π [10,12] or close to 4π [9].
But we think that the maximum phase of the RW signal is
2π , relative to the reference state’s phase φ(t, z → −∞) = 0.
The second-order RW has twelve singularities on the complex
plane (denoted by mN = aN + ibN ), of which the four pairs
close to the real axis will collide elastically in the vertical
direction at z = 0. The collision process can be described well
by limitation analysis on vector potential. As z → ±0, a →
±av1(±av2) and b → 0. The vector potential on the real axis
can be expressed as

lim
z→±0

A= lim
b→0

{−π [(t ±av1)eτ+bet ]

2π [(t ±av1)2 + b2]
+ π [(t ±av1)eτ−bet ]

2π [(t ±av1)2+b2]

+ −π [(t ±av2)eτ+bet ]

2π [(t ±av2)2+b2]
+ π [(t ±av2)eτ−bet ]

2π [(t ±av2)2+b2]

+ π [(t ∓av1)eτ+bet ]

2π [(t ∓av1)2+b2]
+ −π [(t ∓av1)eτ−bet ]

2π [(t ∓av1)2+b2]

+ π [(t ∓av2)eτ+bet ]

2π [(t ∓av2)2+b2]
+ −π [(t ∓av2)eτ−bet ]

2π [(t ∓av2)2+b2]

}

= (−πδ[t ± av1] − πδ[t ± av2]

+πδ[t ∓ av1] + πδ[t ∓ av2])et . (6)

FIG. 3. (a1) and (a2) Phase-diagram trajectories of second-order
RW wave function at t = 0 and t = 3, marked by I and II in Fig. 2(a).
(b1) and (b2) Phase-diagram trajectories of third-order RW wave
function at t = 0 and t = 5, marked by I and II in Fig. 2(c). The black
dot indicates the starting and ending positions. The dashed square
indicates the position of phase inversion. Black arrows indicate the
direction of the track.

The line integral of Eq. (6) along the real axis indicates that
when z → 0, a π (−π ) phase jump occurs at t = −av1 (av1)
and t = −av2 (av2). Thus, the maximum phase is indeed 2π .
We plot the phase evolution of the second-order RW [shown in
Fig. 2(b)], based on the general arctan

[ Im[ψe−iz]
Re[ψe−iz]

] + nπ form,
with the aid of the phase gradient flow and limitation anal-
ysis on vector potential. We can see that abrupt 2π → −2π

and π → −π phase jumps exist along the propagation dis-
tance for the second-order RWs, and both the RW signals
and the background admit no phase changes between the
initial state (z → −∞) and final state (z → ∞). In contrast,
the plane wave background always admits four phase jump
points along the distribution direction after the highest peak
emerges [9] for the identical second-order RW. Similarly, the
density and phase evolution of the third-order RW [22] are
shown in Figs. 2(c) and 2(d), respectively. There are three
abrupt phase jumps (3π → −3π , 2π → −2π , and π → −π )
along the propagation distance. We emphasize that the rela-
tive phase jumps should be taken seriously, as they play an
important role in the amplitude magnification of high-order
RWs.

We plot the trajectories of ψe−iz and the corresponding
phases at t = 0 (denoted by I) and t = 3 (denoted by II) for
the second-order RW in Fig. 2(a) with propagation distance
on the (Re[ψe−iz], Im[ψe−iz]) plane, which are shown in
Figs. 3(a1) and 3(a2). We can see that trajectory I revolves
around the origin twice, and the hidden 2π → −2π phase
jump (marked by the black dashed square) also makes the
final phase variation of the highest peak be zero, but not be
4π [9]. Meanwhile, the phase change 4π (circling around
the origin twice) is hidden reasonably in the abrupt phase
jump. The phase-space orbit of trajectory II in Fig. 3(a2) does
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FIG. 4. (a) and (b) Amplitude and phase evolution of the second-
order RW solution with the triplet structure, whose dynamics is
described by Eq. (4) in Ref. [9] with the parameters being (xd , td ) =
(0.2, 0). (c) and (d) Amplitude and phase evolution of the second-
order RW solution with the triplet structure, whose dynamics is
described by Eq. (4) in Ref. [9] with the parameters being (xd , td ) =
(3, 0). When the three fundamental RWs separate further and further,
each of them tend to admit phase evolution in Fig. 1(b). Especially,
there is a small region for the 2π phase relative to the plane wave
background, which is caused by the nonlinear interactions between
RWs.

not encircle the origin. This indicates that the phase finally
returns to the initial position and there is no phase variation
for the RW’s background. These characters are helpful for
understanding the phase in Fig. 2(b). Trajectories I and II in
Fig. 2(c) are shown in Figs. 3(b1) and 3(b2) for the third-order
RW. The hidden 3π → −3π phase jump is marked by the
black dashed square. We can see that the plane wave back-
ground’s phase also remains unchanged. This suggests that the
phase difference between the initial state and final state is zero
rather than 2Kπ (K is a nonzero integer) for high-order RWs.
Similar discussions can be extended to other high-order waves
on finite backgrounds [30], and the monopoles are also helpful
for understanding the wavefront dislocations underlying those
nonlinear waves.

The high-order RWs not only have the above polymer-
ization structure shown in Fig. 2, but also some scattering
structures. As an example, the amplitude and phase of second-
order RWs with triplet structures are characterized [see
Figs. 4(a) and 4(b)] based on the analytic solutions (Eq. (4)
in Ref. [9]) with identical parameters in Figs. 3(c) and 3(d) in
Ref. [9]. It is shown that the phase of each hump is different
from the ones in Ref. [9]. When the three fundamental RWs
separate well [see Figs. 4(c) and 4(d)], each of them admits
phase evolution similar to the ones in Fig. 1(b). Especially,
there is a small region for the 2π phase relative to the plane
wave background, which is caused by the nonlinear interac-
tions between RWs.

FIG. 5. (a) and (b) Amplitude and phase evolution of RW in the
Hirota model with the parameter q = 0. (c) The phase distribution of
the RW at z = −0.1 in the Hirota model and its corresponding virtual
magnetic field on the complex plane. (d) and (e) The amplitude and
phase evolution of the RW in the S-S model. (f) The phase distribu-
tion of the RW at z = −0.01 in the S-S model and its corresponding
virtual magnetic field on the complex plane.

III. THE PHASES OF ROGUE WAVES AND RATIONAL
W-SHAPED SOLITONS IN HIROTA MODEL

AND SASA-SATSUMA MODEL

Taking some high-order effects, the Hirota equation and
S-S equation can be used to describe the evolution of optical
pulses, which have been shown to admit RW solutions and
rational W-shaped solitons [31–36]. We would like to further
investigate their phases. In dimensionless form, the Hirota
equation can be written as

iEz + 1

2
Ett + |E |2E + iε(Ettt + 6|E |2Et ) = 0. (7)

The S-S equation [37] has also been given much attention
[38–41]. In dimensionless form, it reads

iEz + 1

2
Ett + |E |2E + iε(Ettt + 6|E |2Et + 3E |E |2t ) = 0. (8)

The small parameter ε is introduced to describe the third-order
dispersion, delayed nonlinear response term, and self-steeping
effects (the difference between Hirota and S-S equation). If
ε = 0, Eqs. (7) and (8) reduce to the scalar NLSE. In the previ-
ous studies, the densities of RWs in these two models possess
similar profiles to RW in the NLSE, with only a deflection
caused by high-order effects. But the phase characteristics
have not been studied. We then try to investigate the phase of
RWs in Hirota and S-S equations. As an example, we choose
the solutions in Refs. [32] and [34] with the parameter ε = 0.1
to discuss the phase of RWs in the two models.

A. The phases of Rogue waves

The density and phase evolution of RWs in the two models
are shown in Fig. 5 by performing the above analyzing phase
method. It can be seen that the two RWs admit similar density
distribution, but they have different phases. There is a small
region with the 2π phase for RW in the S-S model which
is absent for the Hirota model. We would like to understand
their phase difference with the aid of the topological vector
potentials [15]. As shown in Fig. 5(c), monopoles for the RW

013511-5



LI, MENG, AND ZHAO PHYSICAL REVIEW A 107, 013511 (2023)

FIG. 6. (a) Amplitude distribution of W-shaped soliton in the S-S
and Hirota models. (b) Corresponding phase distribution given by the
limitation analysis in Fig. 7. The parameter in the Hirota model is
q = qs. The parameter in the S-S model is ω1 = 0.

in the Hirota model are very similar to that for NLSE [see
Fig. 1(c)]. The monopole number and distribution for RW
in the S-S model are different from the ones in the Hirota
model, shown in Fig. 5(f). During the process of z → 0, the
monopole pairs for the RW in the Hirota model collide at the
same propagation distance. But the monopole pairs collide
at different propagation distances for RWs in the S-S model,
which causes the phase to suddenly rise to 2π . The phases on
the temporal-spatial plane can be used to investigate the phase
evolution of the time- and space-like Peregrine breather with
taking some high-order effects [11].

B. The phases of rational W-shaped solitons

We note that there are rational W-shaped soliton solutions
[32,42] for the two models, which are induced by modula-
tional stability character for the resonant perturbations. The
rational W-shaped soliton solution in the Hirota model can be
expressed as [33]

E1 =
[

4

1 + 4(t − vsz)2
− 1

]
eiθs , (9)

where θs = qst − q2
s z/3 and vs = (2 + q2

s )/(2qs). The param-
eter qs is the critical frequency of the plane wave background,
for which the corresponding modulational instability growth
rate is vanishing in the low perturbation frequency region.
The rational W-shaped soliton only exists on the critical fre-
quency. In contrast, the rational W-shaped soliton can exist
in a frequency window with finite width for the S-S model
[43]. It was shown that the density profile of the W-shaped
soliton depends on the parameter ω1, where ω1 = ω0 − 1

6ε
and

ω0 represents the frequency of the plane wave background.
When ω1 = 0, its amplitude profile is almost identical to the
W-shaped soliton in the Hirota model [see Fig. 6(a)]. The
rational W-shaped soliton solution with ω1 = 0 in the S-S
model [43] can be reduced as

E2 =
[

2

4T 2 − 2T (48zε + √
2 − 4) + M(z)

− 1

]
eiθ , (10)

where T = t − z
12ε

, M(z) = 576z2ε2 + 24(
√

2 − 4)zε −
2
√

2 + 5, and θ = t− z
18ε

6ε
. We would like to further analyze

their phases with ignoring the trivial phase of the plane wave
background. But their phases cannot be determined uniquely,
since the functions E1e−iθs and E2e−iθ are real functions with

FIG. 7. (a)–(c) Virtual monopoles for RWs at z = −0.3 in the
Hirota model with the parameter q = 0, q = 0.5qs, and q = 0.8qs,
respectively. The phase of rational W-shaped solitons in the Hirota
model can be given taking a limit q → qs, which predicts the red
dashed line in Fig. 6(b). (d)–(f) The virtual monopoles for W-shaped
solitons in the S-S model with the parameter ω1 = 0.5, ω1 = 0.3,
and ω1 = 0.1, respectively. We take the limit ω1 → +0 and predict
the blue solid line in Fig. 6(b).

nodes. This is similar to the above RW with its highest peak.
We suggest that their phases can be measured by approaching
the precise states from proper states with no nodes. Namely,
we can perform analysis on their related states with no nodes,
and then take a limitation to approach them. The results are
shown in Fig. 6(b). One can see that they admit quite different
phases, although they admit similar density profiles. Next, we
describe the analyzing process for obtaining the phases.

For the rational W-shaped soliton in the Hirota model, we
choose the RW solution [32] at the distance z = −0.3 (slightly
before its highest peak location z = 0) to calculate the un-
derlying virtual monopoles. The RW solution with z = −0.3
admits no nodes, and it can be used to approach well the
rational W-shaped soliton by varying the parameter q. We
show the phases and monopoles for the RW solution with
q = 0, 0.5qs, 0.8qs in Figs. 7(a)–7(c). It is seen that there are
always two pairs of monopoles with opposite charges in the
(t, τ ) plane. The phase of rational W-shaped soliton can be
given taking a limit q → qs [32], which is 0 → π → 0 [the
red dashed line in Fig. 6(b)]. If we approach q = qs from the
RW solution at the distance slightly after its highest peak lo-
cation (e.g., z = +0.3), the corresponding phase will become
0 → −π → 0. By the way, the phase jumps do not depend on
the approach direction of q → qs, but on whether the chosen
propagation distance is before or after the RW’s highest peak
location. This means that rational W-shaped solitons in the
Hirota model only have two possible phases from the mea-
surement viewpoint.

For the S-S model, we choose a rational W-shaped soliton
with ω1 �= 0 to approach the case with ω1 = 0, since the RW
solution cannot directly approach the rational W-shaped soli-
ton with ω1 = 0 [43]. We take ω1 = 0.5, 0.3, 0.1 to show their
phases and monopoles in Figs. 7(d)–7(f). It is seen that there
are also two pairs of monopoles with opposite charges. But
there are two monopoles with identical charges on the upper
or lower half of the (t, τ ) plane which are quite different from
the cases in the Hirota model. We take the limit ω1 → +0,
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FIG. 8. The revised experimental phase profile (black circle) of
the second-order RW in Ref. [10] vs our theoretical phase profile
(blue solid line).

and the monopoles merge gives the phase of the rational W-
shaped soliton with ω1 = 0, which is 2π → π → 0 [shown
by the blue solid line in Fig. 6(b)]. If we approach ω1 = 0
from ω1 < 0, the corresponding phase will be 0 → π → 2π .
This indicates that the rational W-shaped solitons with ω1 = 0
in the S-S model also only have two possible phases from
the measurement viewpoint. Therefore, the phases of rational
W-shaped solitons in the two models always show different
measurement results in experiments.

IV. CONCLUSION AND DISCUSSION

By analyzing the phase gradient flow and taking the limita-
tion analysis on vector potential, we can determine the phase
evolution of nonlinear waves uniquely with choosing a refer-
ence state, based on the general arctan

[ Im[ψ]
Re[ψ]

] + nπ form. The
phase gradient flow and limitation analysis on vector potential
can help us to choose the n value reasonably. This enables
us to report that there is an abrupt phase jump jπ → − jπ
( j = 1, 2, 3) for the jth-order RWs. The abrupt phase jumps
can be used to explain both the phase and amplitude evo-
lution of RWs, and can help to understand the differences
between Refs. [8] and [9] for several identical RWs. The phase
evolution in the whole temporal-spatial plane could also be
helpful for understanding the phase evolution of the time- and
space-like Peregrine breather [11]. We further investigate the

phases of RWs and rational W-shaped solitons in the Hirota
model and S-S model, for which some high-order physical
effects are taken. These results show that topological vector
potentials are very useful to study the phase characteristics of
nonlinear waves. The phase of the Kuznetsov-Ma breather is
similar to the RW’s except that there are periodic oscillations
along the propagation distance, and we do not show them
in detail. But many efforts are still needed to address the
background’s phase shift of the Akhmediev breather [8], due
to its periodic properties on the wave distribution direction.
We expect that the background’s phase shift of the Akhmediev
breather should admit some more striking properties, based
on our discussions on RWs’ phases and our analysis of its
underlying topological vector potential.

It was demonstrated that the phase of the highest peak
region is identical to the continuous background for the
second-order RWs in the experiments [10]. We suggest that
there is a 2π phase difference between the highest peak region
and the continuous background, based on the phase of the
second-order RW in Fig. 2(b). The phase was measured at
one propagation distance, which made the 2π and 0 phases
indistinguishable. But if we measure the phase with different
propagation distances, especially slightly before the highest
peak emerging location, our results predict that the phase of
second-order RW possesses a 0 → π → 2π → π → 0 dis-
tribution (see blue solid line in Fig. 8). It is different from the
ones in Fig. 4(c) in the experiments [10], but the 2π phase
regime could be marked by 0 in experimental data. We cannot
distinguish the 2π and 0 at a certain propagation distance, but
they predict different phase gradients around the position for
the highest peak. If we revise the phase experimental data
of Fig. 4(c) in Ref. [10] by adding a 2π on the central 0
phase regime, the whole phase will become the black circles
in Fig. 8, which agrees well with our results (see blue solid
line). Based on our results, we expect that the 2π → −2π

and π → −π phase jumps could also be observed for the
second-order RWs, if we measure the phase evolution process
before and after the highest peak emerging location.
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