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Self-starting coherent mode locking in a two-section laser with identical gain and absorber media
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Coherent mode-locking (CML) represents a method for ultrashort pulse generation in lasers based on the
self-induced transparency (SIT) phenomena, which allows us to overcome the principal limitations on the pulse
duration imposed by the active medium’s gain bandwidth in standard passively mode-locked lasers. So far, this
regime was only studied in lasers with transition dipole moments in the absorber medium being twice larger than
in the gain medium. This fact ensures that the 2π -SIT-soliton in the absorber also forms the stable π -soliton in
the gain but can be barely realized in experiments. In this paper we demonstrate theoretically that the self-starting
stable coherent mode-locking regime can also arise if the same medium is used both in the gain and absorber
laser sections, i.e., the transition dipole moments are equal. These results are both obtained analytically using the
area theorem and confirmed by the numerical solution of the Maxwell-Bloch equations. Our findings can enable
new opportunities in the area of ultrafast lasers.
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I. INTRODUCTION

The coherent light-matter interaction arises when the pulse
duration is much smaller than the polarization (coherence)
relaxation time T2 in the medium [1,2]. Such interaction gives
rise to the self-induced transparency (SIT) phenomena, when
a light pulse can propagate in a resonant medium without
changing its shape [3,4]. The coherent interaction of a pulse
with a two-level resonant medium is described in terms of the
so-called pulse area, defined as follows [1]:

�(t, z) = d12

h̄

∫ t

−∞
E (t ′, z)dt ′, (1)

where d12 is the transition dipole moment and E (t, z) is the
envelope of the electric field in the pulse. Namely, a stable
SIT-soliton in an absorbing two-level medium has the pulse
area equal to 2π [1,4]. The pulse duration is therefore equal
to one period of Rabi oscillations of the atomic inversion, i.e.,
at the leading edge of the pulse the medium is excited, and at
the trailing edge of the pulse the medium returns back to the
ground state, leading to the lossless pulse propagation.

SIT phenomena has been observed in a variety of different
media so far [5–11] and has been suggested for some ap-
plications, such as the pulse compression [12]. As the most
promising, however, seems the possibility of SIT- or coher-
ent mode-locking (CML) in lasers [13], which was recently
experimentally demonstrated [14,15]. Such a mode-locking
mechanism relies on the formation of a SIT soliton in an active
media and allows us to obtain pulses with much smaller dura-
tion as compared with the standard passive mode locking with
saturable absorbers. While in standard passively mode-locked
lasers based on the incoherent gain and absorber saturation the
achieved pulse duration is limited by the coherence relaxation
time T2 in the active medium [16–19], by means of the coher-

ent mode locking of the pulses much shorter in duration than
T2 are obtained, since the generated pulse interacts coherently
with the laser medium [13,20–29]. In such a way pulses up to
a single-cycle duration can be obtained in widely used active
media [22,23,29].

In most previous studies of coherent, or self-induced
transparency, mode-locking the ratio of the transition dipole
moments in the gain and absorber media was equal to two:
d12,a = 2d12,g or close to this value [13,20–30]. This ratio
implies that the stable 2π pulse in the absorbing medium
represents at the same time the stable π pulse in the gain
medium, which ensures the stable circulation of such SIT-
solitons in the laser cavity. However, this criterion imposes
strong limitation on the choice of the intracavity laser media.
Indeed, one would then need to select gain and absorber
media with close frequencies of the resonant transition and
above the specific ratio of the transition dipole moments.
Although such media can be engineered and some examples
were even theoretically suggested in quantum cascade lasers
[20,21,30], fulfilling these conditions appears a challenging
problem for the experimental implementation of the coherent
mode-locking regime. Therefore it looks promising to extend
this regime to the simplest case of lasers with identical gain
and absorber media, i.e., d12,g = d12,a.

In this paper, we demonstrate how coherent mode-locking
can be realized in a two-section laser with identical media in
the gain and absorber sections. We reveal the underlying pulse
dynamics and find out that the stable and self-starting coherent
mode locking can be reached in this case. These findings may
provide a noticeable step towards the development of feasible
laser sources of few-cycle pulses.

It should be emphasized that, when gain and absorber
dipole moments are equal to each other, a SIT soliton cannot
be formed in the absorbing medium, as we see below. In
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this case, CML is based only on the π -pulse formation in
both intracavity media. It is contrary to the previous studies
of CML regimes, where a 2π pulse of SIT was formed in
the absorber [13,20–23,26,27,29,30]. So far, CML based on
π -pulse formation was studied only in a single-section laser
with the coherent gain medium [28]. A detailed analysis of
CML based on the π -pulse formation in a two-section laser
will be presented below.

The paper is organized as follows: In Sec. II we ana-
lytically demonstrate the existence and the stability of the
coherent mode locking in a two-section laser with identical
and inhomogeneously broadened gain and absorber media,
using the area theorem. Section III is devoted to the case of
homogeneously broadened media in the gain and absorber
sections and we show the stability of the CML regime through
the numerical solution of Maxwell-Bloch equations. Finally,
the paper summary and concluding remarks are provided in
Sec. IV.

II. INHOMOGENEOUSLY BROADENED ACTIVE MEDIA

If a light pulse coherently propagates in an inhomo-
geneously broadened two-level absorbing (or amplifying)
medium, an explicit equation can be derived for the pulse area
evolution. This important result, known as the area theorem,
was first obtained by McCall and Hanh and yields for the pulse
area � [1,2,4]

d�

dz
= ±α0

2
sin �,

α0 = 8π2N0d2
12ω12T ∗

2

h̄c
, (2)

where the plus sign corresponds to the amplifying medium,
and the minus sign to the absorbing medium, α0 is the gain
or absorption coefficient with the concentration of two-level
atoms N0, the medium transition frequency is ω12, and the
width of the inhomogeneously broadened line is 1/T ∗

2 . Equa-
tion (2) has the solution

tan

(
�

2

)
= tan

(
�0

2

)
e±α0z/2, (3)

with the initial pulse area �0.
In Fig. 1 we plot a diagram showing the solution Eq. (3)

both in gain and absorber media depending on the initial value
of the pulse area in the range �0 ∈ [0; 2π ]. The transition
dipole moments in both media here are assumed equal. The
initial value of the pulse area in Fig. 1 is assumed to be se-
lected along the vertical axis and the depicted curves provide
the respective pulse area evolution vs the coordinate z (up to
an arbitrary shift along the z axis). One can see that, in the
gain medium, the only stable value of the pulse area is � = π

and the pulse approaches this value upon propagation for any
�0 ∈ (0; 2π ). In contrast, in the absorber medium the state
� = π is unstable, while two other stable values � = 0 and
� = 2π arise instead. If �0 ∈ (0; π ), the pulse propagating
in the absorber approaches the pulse area � = 0, and for
�0 ∈ (π ; 2π ) the pulse approaches the value of the pulse area
� = 2π .

We proceed now with a two-section ring-cavity laser
configuration, with a gain and an absorber section placed

FIG. 1. Diagram showing the pulse area evolution in the gain
(red curves with left arrows) and absorber media (blue curves with
right arrows), αg = 1.5αa. Dashed lines show an example of the
stable limit cycle arising in the system with αgLg = 6, La = 1.25Lg,
where Lg and La are the lengths of the gain and absorber sections re-
spectively. Black arrow corresponds to the pulse reflection at the
output mirror M with r = 0.97

separately inside the cavity, as sketched in Fig. 2. The out-
put radiation is provided through the output mirror with the
amplitude reflection coefficient r = r(ω12) at the pulse carrier
frequency ω12. We also assume the unidirectional lasing in
the cavity, which can be ensured by placing an additional
intracavity component.

As we use identical gain and absorber media, we no longer
need to specify which transition dipole moment is taken in
the definition Eq. (1). Let us denote the pulse area just after
the gain section after n round trips inside the cavity as �n.
Now using Eq. (3) and the fact of identical transition dipole
moments in the gain and absorber one finds the following
simple expression for the value �n+1:

tan

(
�n+1

2

)
= tan

(
r�n

2

)
e(αgLg−αaLa)/2. (4)

Here we made use of the fact strictly proven in Ref. [28]
that the areas Eq. (1) of the incident and reflected pulses at
the mirror are simply related through the amplitude reflection
coefficient r.

In the steady-state regime we get

�n+1 = �n = �∗,

Gain 

Absorber
M 

FIG. 2. The scheme of the considered two-section ring-cavity
laser with the output mirror M; all other mirrors are assumed fully
reflecting.
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FIG. 3. The nontrivial steady-state solution �∗ of Eq. (5) vs the
mirror amplitude reflectivity r and the parameter κ from Eq. (6). to
the left of the white solid line κr = 1 only the trivial solution �∗ = 0
exists.

so that we end up with the following equation for �∗:

�∗ = 2 arctan

[
κ tan

(
r�∗

2

)]
, (5)

where we denote for convenience

κ = e(αgLg−αaLa)/2. (6)

For any values of the parameters κ and r, Eq. (5) possesses
the trivial solution

�∗ = 0. (7)

Let us check the stability of this trivial solution. We denote
the function on the right-hand side of Eq. (5) as f (�). Then
the stability of the steady state �∗ requires that

∣∣∣ df

d�

∣∣∣
�=�∗

< 1, (8)

what reduces to

κr < κ2 sin2

(
r�∗

2

)
+ cos2

(
r�∗

2

)
. (9)

The stability criterion Eq. (9) then yields the trivial solution
to be stable when

κr < 1. (10)

As one can easily see from Eq. (5), it has only the trivial so-
lution Eq. (7) in the range � ∈ [0; π ] as long as the inequality
(10) is fulfilled. Inversely, if

κr > 1,

a nontrivial steady state �∗ ∈ (0; π ] arises, while the trivial
steady state becomes unstable. Figure 3 shows the nontrivial
solution of Eq. (5) depending on the parameters κ and r. In the

FIG. 4. The stability of the nontrivial steady-state solution �∗

of Eq. (5), measured by the derivative (8), vs the mirror amplitude
reflectivity r and the parameter κ from Eq. (6). To the left of the
black solid line κr = 1, only trivial solution �∗ = 0 exists.

parameter region (10), i.e., to the left of the white solid curve
in Fig. 3, one gets only the trivial steady state.

We move on now to the stability analysis of the obtained
nontrivial steady state �∗. The stability of the nontrivial
steady state can be estimated in the first approximation, if we
take �∗ ≈ π and r ≈ 1. Then one can reduce Eq. (9) to

r < κ,

which is obeyed by default since r � 1 always and lasing is
only possible when κ > 1. In Fig. 4 we plot the calculated
derivative f ′(�)|�=�∗ . One can see that the stability criterion
(8) is indeed satisfied in the whole parameter region, where the
nontrivial steady state exists. Therefore the obtained coherent
mode-locking regime turns out unconditionally stable. It is
also interesting to note that the value of the derivative in
Fig. 4 decreases as one moves away from the boundary κr = 1
meaning that our laser system reaches the stable nontrivial
steady state �∗ faster as, e.g., the value of the parameter κ

gets increased for the fixed parameter r.
Hence, when a nontrivial steady state exists, one obtains

the stable limit cycle for the pulse area evolution. In such
stable regime of the coherent mode locking the pulse area
grows from

F ∗ = 2 arctan

[
e−αgLg/2 tan

(
�∗

2

)]
(11)

until �∗ upon the pulse propagation in the gain section gets
reduced to r�∗ after reflection at the output mirror and finally
decreases from r�∗ to F ∗ upon pulse propagation in the
absorber section. An example of such a stable limit cycle is
demonstrated by the dashed lines in Fig. 1. The red dashed
curve in Fig. 1 yields the increase of the pulse area in the
gain section, the black arrow denotes the reflection at the
output mirror M with the reflectivity r, and finally the blue
dashed curve shows the decrease of the pulse area in the
absorber section until the value (11) at the entrance of the gain
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section. The limit cycle in Fig. 1 arises spontaneously from a
near-zero value of the initial pulse area �0 after several round
trips in the cavity. One can see that, although neither a stable
0π pulse nor a stable 2π pulse is achieved in the absorber
section, the arising limit cycle for the pulse area still turns out
fully stable.

The obtained limit cycle exhibits some unusual features
contrasting with the previous studies of the coherent mode
locking. As can be seen in Fig. 3, the largest value of the
pulse area in the limit cycle, namely �∗, in the whole available
parameter range does not exceed π , but is close enough to this
value. As we assume identical media in the gain and absorber
sections, we therefore get close to π -pulse circulating inside
the laser cavity in the coherent mode-locking regime. This
behavior should be compared with the previous works on
CML, where the ratio of the transition dipole moments in the
gain and absorber media was equal to two: d12,a = 2d12,g or
close to this value [13,20–23,26,27,29,30]. In those papers
the pulse propagated in the absorber section in SIT regime
forming a stable 2π soliton.

This difference strongly alters the underlying physics of
the absorber functioning in the mode-locking regime. Indeed,
our approach based on the area theorem Eq. (2) has assumed
that the absorber medium in Eq. (2) has noninverted popula-
tion as the pulse enters the absorber section. If a stable 2π

soliton is formed in the absorber, the medium makes a full
Rabi flopping upon the pulse passage and returns back to
the nonexcited state. However, with the π pulse inside the
laser cavity the situation becomes largely different. The π

pulse entering an initially nonexcited medium in the absorber
section reverses the population difference, thus leaving behind
already the medium with the population inversion. In order
for the stable regime to be reached it is necessary that the
medium relaxes back to the noninverted state before the pulse
enters the absorber again after a full round trip in the cavity.
It is therefore needed that the lifetime of the excited state T1

is shorter or at least comparable to the round-trip time in the
cavity.

Finally, it is important to mention the role of the coherence
relaxation time T2 for the validity of the analysis performed.
The area theorem Eq. (2) is based on the assumption of the
large enough value of T2 as compared with the pulse dura-
tion, so that the coherence relaxation can be safely neglected.
Basically, the main limitation on the possible pulse duration is
imposed by the round-trip time of the cavity because the pulse
duration is always shorter than the round-trip time (typically
the pulse duration is no less than by one order of magnitude
smaller than the round-trip time). Hence, we can conclude
that the stability analysis performed in this section is only
valid when the coherence relaxation time T2 of the gain and
absorber media is at least of the same order of magnitude
as the round-trip time of the cavity. If this condition is not
obeyed and the round-trip time significantly exceeds T2, the
laser can operate in the passive (incoherent) mode-locking
regime with the pulse duration larger than T2, so that the area
theorem Eq. (2) does not work anymore together with the
whole stability analysis above. It is also worth noting that the
condition of the long-enough decoherence time T2 has to be
accompanied by the fast enough inversion relaxation time T1,
as discussed in the above paragraph.

III. HOMOGENEOUSLY BROADENED ACTIVE MEDIA

Equations (2) and (3) are derived for an inhomogeneously
broadened medium, so the performed stability analysis is not
directly applicable to a homogeneously broadened medium.
At the same time, it seems to be of significant interest to exam-
ine whether the stable coherent mode-locking regime obtained
in the previous section would also survive for homogeneously
broadened active media. Hence, we aim in this section to
figure out how the stability properties of the coherent mode-
locking regime are exhibited in a homogeneously broadened
medium. Furthermore, the analysis presented above can illus-
trate only the pulse area evolution in space. At the same time,
to investigate deeply the pulse propagation dynamics in the
gain and absorber numerical simulations are needed.

Due to the invalidity of the area theorem for homoge-
neously broadened media, we use the system of Maxwell-
Bloch equations and study the properties of the coherent
mode-locking by means of the direct numerical simula-
tions. We solve the standard one-dimensional (1D) system
of Maxwell-Bloch equations for two-level gain and absorber
media by using the finite-difference time-domain (FDTD)
method. As we expect long multicycle mode-locked pulses,
we make use of slowly varying envelope (SVEA) and
rotating-wave (RWA) approximations. Thereby the system of
equations to be solved is given as [1,2]

∂E

∂t
+ c

∂E

∂z
= −2π iω12 Pa,g,

dPa,g

dt
+ Pa,g

T2
= id2

12

h̄
Na,gE ,

dNa,g

dt
+ Na,g − N0,a,g

T1
= i

h̄
Pa,gE , (12)

where E and Pa,g are the slowly varying envelopes of the elec-
tric field and the polarization of the gain or absorber media,
respectively, Na,g = −�ρa,gÑa,g are the population inversion
in the gain or absorber sections with the population difference
�ρ = ρ11 − ρ22 and the density of two-level resonant centers
Ña,g, N0,a,g are the equilibrium values of the population in-
version, i.e., the pumping rate in gain or absorber sections.
Other parameters are the transition dipole moment d12, the
inversion lifetime T1, the medium coherence lifetime T2, and
the transition frequency ω12. For all media parameters we
deliberately skip the a, g subscripts since, as stated above,
we assume in this paper identical gain and absorber media.
The model equations Eq. (12) were applied to the analysis of
CML regime in the ring cavity with unidirectional propagation
of the electric field as in Fig. 2. One of the mirrors has the
amplitude reflection coefficient r, while the other mirrors are
fully reflecting.

It is important to notice that the two-level model in Eq. (12)
was successfully applied for the theoretical description of
the coherent pulse propagation and the self-induced trans-
parency phenomena in different gaseous and solid-state media
[1,2]. Moreover, the model (12) was also used to describe
the experimentally measured features of the Rabi flopping
in semiconductor media [31–33]. Finally, as several studies
have demonstrated [34,35], the propagation dynamics of SIT
solitons in resonant media with three or more levels well
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FIG. 5. The numerically obtained output pulse series from a co-
herently mode-locked laser. The laser parameters are listed in the
text.

reproduces the one obtained with the two-level approxima-
tion. As a result, we expect the numerical simulation with the
model (12) to yield quite general results, which can be well
justified for a variety of different resonant media.

We take the following parameter values in the simula-
tions: d12 = 5 D, ω12 = 2.7 × 1015 s−1 (λ12 = 700 nm), T1 =
160 ps, T2 = 40 ps, r = 0.8, Ña = Ñg = 1.25 × 1021 m−3,
�ρ0,g = −1, �ρ0,a = 1, Lg = 0.45 cm, La = 0.15 cm, total
cavity length L = 0.6 cm.

As we expect our results to be applicable to many different
resonant media, we do not focus here on a certain specific
material but rather assume in our calculations the parameters
corresponding to a “general” solid. For instance, a whole
range of semiconductors and dielectrics with tunable optical
parameters, like the band gap and the transition dipole mo-
ment, are available nowadays [36]. Also, present-day methods
allow fabrication of arrays of different nanoparticles with
tunable resonances, such as plasmonic nanostructures or semi-
conductor quantum dots [8,36–38]. Efficient control of the
value of the relaxation time T2 was realized, for example, in
semiconductor lasers with quantum-dot active media by vary-
ing the medium’s temperature with the T2 values of several
hundreds of ps achieved at low temperatures [39,40].

Numerical simulations yield self-starting stable mode-
locking regime (see review [26] for more detail on self-start
of CML), with the obtained time trace of the output inten-
sity plotted in Fig. 5. This pulse series was obtained using a
low-amplitude noise as the initial condition for the intracavity
field, i.e., with no external seed pulses injected inside the
cavity. Such property of the obtained mode locking, as the
self-start, seems to be one of its most advantageous features
because it can potentially allow us to greatly simplify the laser
setup. The obtained pulse duration at half maximum equals 2
ps, i.e., well below the coherence relaxation time T2, so that
the pulse interaction with gain or absorber media is coherent.

Another way to confirm the coherent nature of the light-
matter interaction in our setup is the lasing spectrum. In
Fig. 6 we plot the spectrum of the output laser field in Fig. 5
as well as the Lorentzian gain lineshape of the active laser
medium. In the case of the incoherent light-matter interaction

FIG. 6. The spectrum of the output pulse train from Fig. 5 (blue-
colored frequency comb) together with the gain bandwidth of the
gain medium (red-colored Lorentz-shaped line). ωr is the pulse
repetition angular frequency, so that ωr = 2π/Trt with the cavity
round-trip time Trt .

the spectrum of the emitted field has to fall into the gain
bandwidth of the active medium. The coherent light-matter
interaction is inversely manifested in much broader spectrum
of the laser radiation as compared with the gain bandwidth. As
can be seen from Fig. 6, the obtained lasing spectrum indeed
goes largely beyond the gain bandwidth, thus indicating the
coherent regime of the pulse interaction with the intracavity
media.

In Fig. 7 we show an instantaneous spatial distribution of
the field intensity and the population difference inside the gain
section as the generated pulse propagates inside. As one can
see, the population difference gets almost reversed as the pulse
passes through, which indicates that the pulse area is close
to π . Exact calculations indeed yield the pulse area at the
output of the gain section equal to 1.2π . It should also be
noted that, in the considered layout, the standard passive mode

FIG. 7. The numerically obtained instantaneous spatial distribu-
tion of the field intensity [blue (dark gray) line] and the population
difference in the gain section of the coherently mode-locked laser
[green (light gray) line]. Parameters are the same as in Fig. 5.
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FIG. 8. The numerically obtained instantaneous spatial distribu-
tion of the field intensity [blue (dark gray) line] and the population
difference in the absorber section of the coherently mode-locked
laser [green (light gray) line]. Parameters are the same as in Fig. 5.

locking cannot arise, since the round-trip time Trt in the cavity
(around 20 ps) is less than the coherence relaxation time T2,
while in passively mode-locked lasers the interaction of pulses
with media is incoherent, so that they produce pulses much
longer in duration than the relaxation time T2 of intracavity
media. Moreover, we have also performed the numerical sim-
ulations for shorter values of T2 down to T2 = 10 ps (which
is twice smaller than the round-trip time Trt) and found that
the coherent mode locking is still preserved. The reason for
such behavior is that the decoherence time T2 still significantly
exceeds the duration of generated mode-locked pulses (around
several ps). As the result, the revealed underlying dynamics of
the coherent mode-locking formation still holds.

Figure 8 demonstrates a similar instantaneous spatial distri-
bution of the field intensity and the population difference, but
inside the absorber section as the generated pulse propagates
inside it. The dynamics of the population inversion appears
similar to the one in Fig. 7, i.e., the population difference
changes its sign upon the pulse passage with close absolute
values before and after the pulse passage. Therefore we can
conclude that the pulse area in the absorber section is also
close to π . This finding appears to closely follow the results
of the previous section for inhomogeneously broadened me-
dia, where the pulse area in the stable CML regime varied
around π .

The obtained above pulse dynamics stands again in sharp
contrast to the earlier described pulse evolution in the CML
regime, when the transition dipole moment in the absorber
medium was taken equal to the doubled transition dipole
moment in the gain medium [13,20–23,26,27,29,30]. In the
latter case one ended up with the stable circulation of the
mode-locked pulse in the cavity, which represents the stable
2π soliton in the absorber section and at the same time the
π pulse in the gain section. The absorber thus works in the
self-induced transparency regime and balances the coherent
pulse shortening in the gain medium.

In the case of identical gain and absorber media, while the
gain medium still provides the pulse shortening and amplifica-

tion with the pulse area evolving towards roughly the π pulse,
the absorber section now acts in a different manner, as illus-
trated in Figs. 7 and 8. Namely, we do not obtain anymore the
self-induced transparency with the 2π -soliton formation when
the pulse leaves the absorber medium nonexcited. Instead, the
mode-locked pulse in Fig. 8 reverses the medium population
difference, leaving the absorber in the excited state. As the
result, the relaxation dynamics in the absorber starts playing
an important role in the formation of a stable coherent mode
locking, similar to the aforementioned for inhomogeneously
broadened active media.

It is worth to particularly address here the conditions on
the value of the inversion relaxation time T1. Figures 7 and 8
correspond to the value of T1, which by an order of magnitude
exceeds the round-trip time in the cavity Trt. In this case the
population differences in the gain and absorber do not manage
to completely relax back to their equilibrium values N0,a,g,
but only partially recover. As the result, in the stable coherent
mode-locking regime the respective population differences in
Figs. 7 and 8 do not get inverted between the values around 1
and −1, but rather attain the maximal values around 0.05–
0.06. We can therefore ease the requirement on the value
of T1. Specifically, the inversion relaxation time T1 can by
orders of magnitude exceed the round-trip time in the cavity
Trt without destroying the stability properties of the coherent
mode locking. The exact value of T1 mainly determines the
amplitude of the variations of the population differences in
intracavity media over the round-trip time. The faster is the
inversion relaxation, the more the inversion relaxes and the
larger gain or absorption experiences the mode-locked pulse
in the next round trip. Hence, the resulting amplitude of the
obtained mode-locked pulses decreases as the value of T1

increases. Still even much larger values of T1 as compared
with Trt do not lead to the disappearance of the stable coherent
mode-locking, but only to less intense generated pulses.

IV. CONCLUSION

We have demonstrated the possibility of the stable self-
starting coherent mode locking in a two-section ring-cavity
laser with identical resonant media both in the gain and ab-
sorber sections. The stability of the obtained CML regime
was both proven analytically in the whole available parameter
range for inhomogeneously broadened media and demon-
strated numerically in the case of homogeneously broadened
active media.

The underlying physics of the pulse propagation in the
considered case exhibits significant differences to the previ-
ous studies of the coherent mode locking. In particular, the
stabilizing role of the absorber section is now implemented
in another way, i.e., instead of the formation of a stable SIT
soliton with the pulse area equal to 2π , one obtains an unsta-
ble mode-locked pulse with the area close to π . Such pulse
reverses the population not only in the gain medium, but also
in the absorber. As the result, the fast recovery of the gain and
absorption in the respective laser sections appears of crucial
importance. We thus report the coherent mode-locking regime
based on the π -pulse formation in two-section lasers.

As the performed analysis yields, the strongest constraint
for the experimental validation of the described regimes is
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the need for the long-enough coherence relaxation time T2.
Namely, the coherence relaxation time T2 of the gain and ab-
sorber media must be at least of the same order of magnitude
as the round-trip time of the cavity Trt. For the cavity length
of the order of millimeters, the respective values of T2 have
to be at least in the picosecond range. Such values largely
exceed those for most solids at room temperatures with the
relaxation times T2 usually in the sub-ps range. Therefore
certain methods to increase the coherence relaxation time
must be applied. As the simplest one seems the cooling of
the active media to low temperatures, where, for example, the
decoherence times T2 up to several hundred picoseconds were
measured in semiconductor quantum dots [39–41].

The paper findings can provide a significant step towards
the practical implementation of the CML regime. Indeed, the
main limitation on the applicability of CML was the need for
the specific ratio of the transition dipole moments in the gain

and absorber media, namely, the transition dipole moment in
the absorber medium is twice larger than in the gain medium
(or at least relatively close to this value). This requirement
has led to CML phenomena being an interesting but purely
theoretical result, since it is hard to pick a pair of active laser
media with equal resonant frequencies and such a ratio of
the transition dipole moments. In this paper we have demon-
strated how this principal limitation can be overcome, thus
paving the way to gaining the efficiency of ultrashort pulse
generation in compact lasers.
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