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The evaluation of the interaction between objects arranged on a lattice requires the computation of lattice
sums. A scenario frequently encountered involves systems governed by the Helmholtz equation in the context of
electromagnetic scattering in an array of particles forming a metamaterial, a metasurface, or a photonic crystal.
While the convergence of direct lattice sums for such translation coefficients is notoriously slow, the application
of Ewald’s method converts the direct sums into exponentially convergent series. We present a derivation of such
series for the two-dimensional (2D) and three-dimensional (3D) solutions of the Helmholtz equation, namely,
spherical and cylindrical solutions. When compared to prior research, our expressions are especially aimed at
computing the lattice sums for several interacting sublattices in one-dimensional lattices (chains), 2D lattices
(gratings), and 3D lattices. The presented approach establishes a unified framework to derive efficient expressions
for lattice sums. Besides reproducing previously known formulas in a more accessible manner the approach
results in expressions for interacting sublattices of a chain in three dimensions. Furthermore, the derived formulas
are not limited to the dipolar case but are applicable to arbitrary multipolar orders. We verify our results by
comparison with the direct computation of the lattice sums.
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The calculation of lattice sums for solutions of the
Helmholtz equation appears regularly in various fields of
physics, such as electrodynamics, solid-state physics, or
acoustics [1,2]. A particularly useful tool to treat those sums
is Ewald’s method [3] with its various applications [4–18].
There, the slowly converging series is split into two parts. One
of these parts converges rapidly in real space, and the other
one converges rapidly after a transition into reciprocal space.
In-depth discussions on this method applied to the Helmholtz
equations can be found in several reviews [19,20], and there
exist various derivations for special cases [21–31].

However, what has not yet been fully considered are lat-
tices with multiple sublattices. Yet, this case is important.
Typical systems with multiple sublattices in different dimen-
sions are chains with alternating distances between particles
[32], zigzag chains [33], helical structures [34], or structures
based on the honeycomb lattice [35]. Also, having many par-
ticles in one unit cell may require such lattice sums [36].
Applications using multiple sublattices emerge in the con-
text of many contemporary photonic materials. Examples are
Su-Schrieffer-Heeger chains found in topological photonics
[37], structures with an asymmetry in their unit cell to sup-
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port bound states in the continuum [38], dolmen structures
to observe plasmonically induced transparency [39], or moiré
lattices [40]. Conceptional illustrations showing such contem-
porary artificial photonic materials are presented in Fig. 1. We
highlight the multiple sublattices by using red, blue, and green
colors for the associated particles. To efficiently describe the
optical response from such photonic materials, we develop
here approaches for Ewald’s summations for lattices that con-
tain multiple sublattices with arbitrary relative positions with
respect to each other. That holds particularly for sublattices
that have a relative displacement perpendicular to the lattice.
Our sums are also useful to compute, e.g., the electromagnetic
field at an arbitrary position within the unit cell, because this
essentially is equivalent to a relative shift with respect to the
objects in the lattice [41].

The goal of this paper is twofold: first, we present a way of
deriving exponentially convergent expressions by extending
an existing approach [42] that, second, is applicable to many
of these problems of arbitrary positions in the unit cell of
the lattice. Besides reproducing known results for spherical
wave solutions [43,44] and cylindrical wave solutions [45],
our approach allows us to derive expressions for multiple
sublattices in one-dimensional (1D) lattices of spherical wave
solutions (d = 3, d ′ = 1 in the notation introduced in the next
section).
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FIG. 1. Illustrations for contemporary photonic materials featuring multiple sublattices. From panels (a) to (d) these are zigzag chains that
mimic the Su-Schrieffer-Heeger model, metasurfaces where bound states in continuum can be observed, plasmonically induced transparency
in dolmen structures, and moiré lattices.

The outline of the paper is as follows. In Sec. I, we give a
definition of the lattice sum and the notation used. In Sec. II,
we treat the real-space sum and, in Sec. III, the reciprocal-
space sum. For the reciprocal-space sum, we derive closed
form expressions for all cases individually. We conclude with
a comparison of the presented expressions with results ob-
tained from the direct summation approach in Sec. IV and
an example application of the lattice sums to the T-matrix
method [46,47] in Sec. V. These numerical examples clearly
demonstrate the usefulness and forte of our expressions.

The main results needed for an implementation are Eqs. (9)
and (10) for the real-space sum of cylindrical and spherical so-
lutions, respectively, one of Eqs. (21), (26), (31), and (36) for
the reciprocal-space sum depending on the spatial dimension
and the lattice dimension, and Eq. (15) as correction term for
the origin contribution.

I. PROBLEM STATEMENT AND NOTATION

We define the lattice sum as

Dd,ν (�d ′, k, k‖, r) =
∑

R∈�d ′

′
fd,ν (k,−r − R)eik‖R (1)

and derive expressions for the spatial dimensions d ∈ {2, 3}.
The second index ν is a placeholder for the parameters of the
function fd,ν . The lattice �d ′ is a set containing the d ′ � d
dimensional lattice vectors defined by

�d ′ =
⎧⎨
⎩

d ′∑
i=1

niai | ni ∈ Z

⎫⎬
⎭, (2)

where ai are the basis vectors of the lattice. We use k for the
wave number and k‖ for the wave-vector components in the
d ′ dimensional reciprocal space. Later, we use the notation

�∗
d ′ for the reciprocal-space lattice defined analogously to

Eq. (2) with basis vectors b j satisfying aib j = 2πδi j . The
vector r ∈ Rd describes the shift between sublattices, and it
can be decomposed into a tangential component r‖ ∈ Rd ′

and
a normal component r⊥ ∈ Rd−d ′

with respect to the vectors of
the lattice �d ′ .

On the right-hand side of Eq. (1), the sum includes all
lattice points with the exception that in the case of r + R = 0,
i.e., if r coincides with a lattice point, we omit that specific
contribution. We use the prime next to the summation sign as
a reminder of this omission. Each term of the sum contains a
phase factor and the scalar solutions of the Helmholtz equa-
tion for the chosen dimension d , namely,

f2,ν (k, r) = H (1)
m (k|r|)eimϕr (3)

and

f3,ν (k, r) = h(1)
l (k|r|)Ylm(θr, ϕr). (4)

Thus, the index ν stands for m ∈ Z, if d = 2, and for l ∈ N0

and m ∈ {−l,−l + 1, · · · , l}, if d = 3. The functions H (1)
m (x)

are the Hankel functions of the first kind, h(1)
l (x) are the spher-

ical Hankel functions of the first kind, and Ylm(θ, ϕ) are the
spherical harmonics. See Appendix A for the used normaliza-
tion convention. We also use the notation Ylm(r) = Ylm(θr, ϕr),
where cos θr = z

|r| and tan ϕr = y
x are the polar and azimuthal

angle of the vector r.
These definitions lead to five different possible cases

shown in Fig. 2. For d = 3, the lattice can have d ′ ∈ {1, 2, 3}
as shown in Figs. 2(a)–2(c). For d = 2 the lattice can have
d ′ ∈ {1, 2}.
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The starting points for the evaluation of the sum expressed
in Eq. (1) are the representations [48]

H (1)
l (x) = (−1)

l−|l|
2 2

iπ
x|l|

∫ ∞

0e−i π
2

dt t2|l|−1e− x2t2

2 + 1
2t2 , l ∈ Z

(5)
and

h(1)
l (x) = −i

√
2

π
xl
∫ ∞

0e−i π
2

dt t2l e− x2t2

2 + 1
2t2 , l ∈ N0, (6)

where we exchanged the azimuthal order index m for the case
d = 2 with the letter l to highlight the similarity between the
expressions for both cases. To ensure convergence, the inte-
gration contour has to be chosen such that |Im(t )| > |Re(t )|
for t → 0 at the lower boundary, which we impose by deform-
ing the contour to the half space of the complex plane with
negative imaginary part [48,49]. This condition is illustrated
by using 0e−i π

2 as the lower boundary of the integration.
We use this notation to keep track of the complex phase of
the integration boundary values since they will be crucial for
the correct branch choice in the final expressions. Inserting
these representations into the expression for Dd,ν in Eq. (1),
we arrive at

Dd,ν (�d ′, k, k‖, r) =
∑

R∈�d ′

′ 2eik‖R

iπ
(k|r + R|)|l|

×
∫ ∞

0e−i π
2

dt t2|l|−3+d e− (k|r+R|t )2

2 + 1
2t2

×
{

(−1)
l−|l|

2 eilϕ−r−R d = 2√
π
2 Ylm(−r − R) d = 3

. (7)

Now, the integration can be separated at some value η, which
divides the sum into a long-range (|t | > η) and a short-range
(|t | < η) contribution, each of which can be solved separately.
Indeed, this separation converts the short-range contribution
into a quickly convergent series in real space and the long-
range contribution into a quickly convergent series after a
transformation into reciprocal space. The following two sec-
tions are dedicated to these spaces individually.

II. REAL-SPACE SUM

The short-range part can be readily summed in real space.
The only change to the expression in Eq. (7) is that the re-
quired integration changes to

In(x, η) =
∫ ∞

η

dt tne− x2t2

2 + 1
2t2 , (8)

where n � −1. For a numerical implementation, this integral
can be evaluated by recurrence (see Appendix C). However,
the lattice sum is evaluated in general with the expressions

D(2)
2,l (�d ′ , k, k‖, r) = (−1)

l−|l|
2 2

iπ

∑
R∈�d ′

′
[(k|r + R|)|l|

× I2|l|−1(k|r + R|, η)eilϕ−r−R+ik‖R] (9)

and

D(2)
3,lm(�d ′, k, k‖, r) = −i

√
2

π

∑
R∈�d ′

′
[eik‖R(k|r + R|)|l|

× I2|l|(k|r + R|, η)Ylm(−r − R)], (10)

where the total sum of Eq. (7) has been conventionally written
in three terms as

Dd,ν = D(0)
d,ν

+ D(1)
d,ν

+ D(2)
d,ν

. (11)

Here, we omitted the arguments of the different sums. The first
two terms are related to the reciprocal-space sum discussed in
the next chapter. For an increasing length of the lattice vectors
R, the terms quickly decrease due to the exponential factor
in Eq. (8). Therefore, the lattice series can be truncated after
including a few lattice vectors. The expressions here make
no assumptions on the orientation of the lattice for the cases
when d ′ < d , but we will require the specific orientations
shown in Fig. 2 for the reciprocal-lattice sum. In the special
case of r⊥ = 0, the symmetry of the solution sets together
with the orientation of the lattices can lead to simplifications
(Appendix F) that can be used to reproduce the results for this
special case [20].

III. RECIPROCAL-SPACE SUM

The long-range contribution is summed in reciprocal space.
For the transformation into reciprocal space, a fully periodic
lattice is necessary, which requires the inclusion of the po-
tentially missing term for r + R = 0. To simplify the notation
slightly, we assume that r is in the Wigner-Seitz cell of the
lattice, such that r + R = 0 implies r = 0 = R. Now, starting
from Eq. (7) and replacing the upper integration boundary by
η we obtain

D(1)
d,ν

(�d ′ , k, k‖, r) + D(0)
d,ν

(r) =
∑

R∈�d ′

2eik‖R

iπ
(k|r + R|)|l|

∫ η

0e−i π
2

dt t2|l|−3+d e− (k|r+R|t )2

2 + 1
2t2

⎧⎨
⎩

(−1)
l−|l|

2 eilϕ−r−R d = 2√
π
2 Ylm(−r − R) d = 3

− δr lim
r→0

2

iπ
(k|r|)|l|

∫ η

0e−i π
2

dt t2|l|−3+d e− (k|r|t )2

2 + 1
2t2

⎧⎨
⎩

(−1)
l−|l|

2 eilϕ−r d = 2√
π
2 Ylm(−r) d = 3

, (12)
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FIG. 2. Layout of the geometry in the lattice summations. In all cases, we show two different sublattices with blue dots and green stars.
The shift between these sublattices is described by r. The dotted lines indicate the decomposition of that shift into r⊥ and r‖. In panels (a), (b),
and (d), the different sublattices are not required to be in the same plane or line. The vector R is a lattice vector. The first row with panels (a) to
(c) shows the case of spatial dimension d = 3 and d ′ ∈ {1, 2, 3}, respectively. In all three cases we use the coordinate system indicated on the
left. The second row with panels (d) and (e) shows the cases for d = 2, again, with coordinates as shown on the left. The orange color shows
the spatial domain of the lattice summation. The parallel component of the wave vector k‖ must lie in this domain.

where we now have the fully periodic long-range sum D(1)
d,ν

,
that needs conversion to the reciprocal space and the explicit
appearance of the origin contribution D(0)

d,ν
. First, we simplify

the origin contribution, since the result is independent of lat-
tice dimension. Then, the long-range sum is treated separately
in the following subsections.

When taking the limit r → 0, we observe that r appears
in three places in the expression. First, it appears in the expo-

nentiation, where we can safely set r to zero to get r|l| r→0−→ δl0.
Second, it appears as part of the integrand. However, we take
the integral from zero to η where r does not influence the
convergence of the integral and we can set r = 0. Finally,
r is in the expressions eilϕ−r and Ylm(−r) for d = 2 and 3,
respectively. Those expressions are finite for any value of r.
Combining these results, we obtain

D(0)
dν

(r) = −δl0δr0

iπ

∫ η

0e−i π
2

dt e
1

2t2

{
2
t d = 2
1√
2

d = 3
(13)

using that eilϕ−r = 1 and Ylm(−r) = 1√
4π

for l = 0 (and, thus,
also m = 0). Next, we substitute the integration variable using

t = e−i π
2√

2u
. This choice ensures that the lower boundary 0e−i π

r

transforms to ∞ after the substitution. The upper boundary
becomes e−iπ

2η2 . Thus, we arrive after substitution at the expres-
sion

D(0)
d,ν

(r) = δl0δr0

∫ ∞

e−iπ

2η2

du e−u

{
i
u d = 2

1

4u
3
2

d = 3
(14)

that can be readily evaluated using the upper incomplete
gamma function [50–52]

D(0)
d,ν

(�d ′ , k, k‖, r) = δl0δr0

{
i
π
	
(
0, e−iπ

2η2

)
d = 2

1
4π

	
(− 1

2 , e−iπ

2η2

)
d = 3

. (15)

We emphasize that special care has to be taken also for the
branch choice in the incomplete gamma function due to its
negative argument. We do so by explicitly keeping track of
the complex phase of the integration boundary. Thus, the sec-
ond argument of the incomplete gamma function e−iπ

2η2 shows
explicitly that the negative real axis should be approached
from below, i.e., that argument can be read as − 1

2η2 − iε for
ε → 0+.

Having dealt with the origin contribution, we now continue
with the main part of the long-range summation by the trans-
formation to reciprocal space using the Poisson summation
formula

D(1)
d,ν

(�d ′, k, k‖, r)

= 2k|l|

iπVd ′

∑
G∈�∗

d ′

e−i(k‖+G)r‖
∫ η

0e−i π
2

dt t2|l|−3+d e
1

2t2

×
∫
Rd ′

dd ′
r′|r′ − r⊥||l| exp

(
− (k|r′ − r⊥|t )2

2

)
e−i(k‖+G)r′

×
{

(−1)
l−|l|

2 eilϕr′−r⊥ d = 2√
π
2 Ylm(r′ − r⊥) d = 3

(16)

where we also performed a shift of the newly introduced
integral over r′ to absorb the component r‖ in the integral ex-
pression. We observe that components tangential to the lattice
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enter the expression now only with a phase factor e−i(k‖+G)r‖ .
Perpendicular shifts with respect to the lattice are consider-
ably more difficult due to the way they appear in Eq. (16).
The d ′ dimensional volume of the unit cell is Vd ′ .

At this point, it is necessary to individually treat the dif-
ferent cases of d and d ′. First, we consider full lattices, i.e.,
lattices where d = d ′. There, no perpendicular component
exists, and the integrals are straightforwardly solved. How-
ever, the cases where d > d ′ are each solved separately. All
possible cases are discussed in the following sections.

A. Case d = d ′

The two cases, d = 2 = d ′ and d = 3 = d ′, are among the
most commonly found ones in literature, and the results are
known [48]. However, we will rederive them here, since it is
instructive to follow the different steps before applying them
to the derivation of the more difficult expressions in the other
cases.

We focus first on the integration∫
Rd

dd r′ r′|l|e− (kr′t )2

2 e−i(k‖+G)r′
{

eilϕr′ d = 2
Ylm(r′) d = 3

(17)

over r′. We remark that in those cases a perpendicular compo-
nent to the lattice cannot exist, and we set r⊥ = 0 in Eq. (16).
Using the expansions of the plane wave e−i(k‖+G)r′

suitable
for the cases d = 2 and 3 (Appendix B), we can perform
the angular integration trivially due to the orthogonality of
the angular functions. The remaining radial integration for the
case d = 2 is

(−i)|l|eilϕk‖+G

∫ ∞

0
dr′ r′|l|+1e− (kr′t )2

2 J|l|(βkr′) (18)

and

4π (−i)lYlm(k‖ + G)
∫ ∞

0
dr′ r′|l|+2e− (kr′t )2

2 jl (βkr′) (19)

for the case d = 3, where we introduced β = |k‖+G|
k . The

integral is in both cases essentially the same and can be found
in literature [50, Eq. 6.631 4.]. Thus, we are now left with

D(1)
d,ν

(�d , k, k‖, r) =4(−i)l

iVdkd

∑
G∈�∗

d

e−i(k‖+G)rβ |l|

×
∫ η

0e−i π
2

dt

t3
e

γ 2

2t2

{
eilϕk+G d = 2
πYlm(k‖ + G) d = 3

,

(20)

where we use γ =
√

1 − β2 with the square root chosen such
that it has a non-negative imaginary part.

The remaining integral over t can be substituted to a simple
exponential, that we write here as the incomplete gamma

function

D(1)
d,ν

(�d , k, k‖, r) =4(−i)l−1

Vd kd

∑
G∈�∗

d

e−i(k‖+G)rβ |l|

× γ −2	

(
1, e−iπ γ 2

2η2

)

×
{

eilϕk+G d = 2
πYlm(k‖ + G) d = 3

(21)

to highlight the similarities to the following cases.
For the case of d = d ′, this calculation was quite straight-

forward compared to the other cases, especially since r⊥ 
= 0
is not possible. However, the basic idea of the calculation—
expanding the plane wave suitably and then using a direct
evaluation of the integral—remains the same for d 
= d ′,
although the details become more involved. They will be
discussed in the following.

B. Case d = 3, d ′ = 2

This case has been treated in depth by Kambe [44], and a
direct approach to the solution of this series exists for the case
when r⊥ = 0 [42]. We now generalize that derivation to the
case when r⊥ 
= 0. We start with the expression in Eq. (16).
Conventionally, we place the lattice in the z = 0 plane. By
inserting r⊥ = zẑ we obtain

D(1)
3,lm(�2, k, k‖, r)=

√
2

π

kl

iV2

∑
G∈�∗

2

e−i(k‖+G)r‖
∫ η

0e−i π
2

dt t2l e
1

2t2

×
∫
R2

d2r′(r′2 + z2)
l
2 e− k2 (r′2+z2 )t2

2 e−i(k‖+G)r′

× Nl|m|eimϕr′ (−1)
m−|m|

2 P|m|
l

( −z√
r′2 + z2

)
,

(22)
where we have replaced the spherical harmonics with a more
explicit expression [Eq. (A1)].

Now, we replace the plane wave e−i(k‖+G)r′
by a suitable

expansion for the evaluation of the spatial integral. The in-
tegration domain covers the d ′ = 2 dimensional space and,
therefore, the plane wave is expanded in cylindrical coordi-
nates [Eq. (B1)]. Now, the azimuthal angle integral can be
solved trivially, because the phase factors involving ϕr match
exactly. The remaining radial integral is∫ ∞

0
dr′ r′(r′2 + z2)

l
2 J|m|(βkr′)e− (kr′t )2

2 P|m|
l

( −z√
r′2 + z2

)
.

(23)
We insert a suitable representation of the Legendre polynomi-

als [Eq. (A12)] to eliminate the factor (r′2 + z2)
l
2 , up to a sum

over s ∈ {0, 1, · · · , � l−|m|
2 �} and the prefactors coming from

the Legendre polynomial representation.
The integral in Eq. (23) can now be evaluated as

∫ ∞

0
dr′ r′1+|m|+2sJ|m|(βkr′)e− (kr′t )2

2 = (s + |m|)!
|m|!βk

(
k2t2

2

) 1+|m|
2 +s

e− β2

4t2 M 1+|m|
2 +s, |m|

2

(
β2

2t2

)

= (s + |m|)!
βk

(
β

kt2

)1+|m|+2s

(−1)se− β2

2t2

s∑
n=0

(
s

n

) (− β2

2t2

)−n

(s + |m| − n)!
, (24)

013508-5



BEUTEL, FERNANDEZ-CORBATON, AND ROCKSTUHL PHYSICAL REVIEW A 107, 013508 (2023)

where we use the known result of the integral [50, Eq. 6.631 1] and use that M 1+|m|
2 +s, |m|

2
( β2

2t2 ) is a special case of the Whittaker
function that can be expressed as a finite sum of elementary functions [Eq. (E3)]. Combining Eqs. (22), (24), and (A12), we
obtain

D(1)
3,lm(�2, k, k‖, r) =

√
2(2l + 1)(l − m)!(l + m)!

im−1

V2k2

∑
G∈�∗

2

e−i(k‖+G)r‖eimϕk‖+G

∫ η

0e−i π
2

dt e
γ 2

2t2 − k2z2t2

2

×
� l−|m|

2 �∑
s=0

s∑
n=0

t2l−2−2|m|−4s+2n β |m|+2s−2n(−kz)l−|m|−2s(−1)n

22s+|m|−n(s + |m| − n)!n!(s − n)!(l − |m| − 2s)!
. (25)

The final step is now to simplify the expressions, especially the exponent of t , by making it only dependent on the outer sum
index to improve the practicality for a software implementation. Lengthy but straightforward manipulations of the two nested
series [Eq. (D1)] lead to the expression

D(1)
3,lm(�2, k, k‖, r) =

∑
G∈�∗

2

e−i(k‖+G)reimϕk‖+G

l−|m|∑
n=0

S3,lmn,2(k, β, z)γ 2n−1
∫ ∞

e−iπ γ 2

2η2

du

u
u

1
2 −ne−u+ (γ kz)2

4u (26)

with

S3,lmn,2(k, β, z) =
√

(2l + 1)(l − m)!(l + m)!(−i)m

(−2)lV2k2

min(l−|m|,2n)∑
s=n

(−kz)2n−sβ l−s

(2n − s)!(s − n)!
(

l+m−s
2

)
!
(

l−m−s
2

)
!
. (27)

For this final expression, we also substitute t = e−i π
2 γ√
2u

which, again, transforms the lower boundary to an integration to infinity.
We emphasize that the sum over s runs only over either all even or all odd values, such that the factorials only take integer values.
Thus, s takes on only values with the same parity as l + m. The sum S3,lmn,2 simplifies significantly if z = 0, where one gets the
simpler expressions from Eq. (F1). Now, only the integral for u has to be solved. If z = 0, the integral is the upper incomplete
gamma function 	( 1

2 − n, e−iπ γ 2

2η2 ), otherwise it can be transformed to an integral Il (Appendix C) that we defined already for
the real-space sum. The appearance of the incomplete gamma function with half-integer values is typical for the case d − d ′ = 1
and will later also appear for d = 2 and d ′ = 1. When |r⊥| = 0, our result is equivalent to Kambe’s expressions [44].

With our approach working for previously known cases, we now apply it to a 1D lattice of spherical waves where a derivation
of an equivalent result is not known to us.

C. Case d = 3, d ′ = 1

Here, we treat the one-dimensional lattice in three-dimensional (3D) space. We place the lattice along the z axis of our
coordinate systems [Fig. 2(c)]. Then, starting from Eq. (16), we can obtain

D(1)
3,lm(�1, k, k‖, r) =

√
2kl

i
√

πV1

∑
G∈�∗

1

e−i(k‖+G)r‖
∫ η

0e−i π
2

dt t2l e
1

2t2

∫ ∞

−∞
dr′(r′2 + ρ2)

l
2 e− k2 (r′2+ρ2 )t2

2 e−i(k‖+G)r′
Nl|m|(−1)

m−|m|
2

× eimϕ−r⊥ P|m|
l

(
r′√

r′2 + ρ2

)
, (28)

where we used |r⊥| = ρ. Also, we can now use simple scalars k‖ = k‖êz and G = Gêz instead of vectors for the parallel wave-
vector component and the reciprocal-lattice vectors. For lattices with d ′ = 1, there is no angular integration to do. We can reuse
the expansion of the Legendre polynomials [Eq. (A12)] to remove the factor (r′2 + ρ2)

l
2 , trading it instead for an additional sum.

After inserting the expansion, we integrate over r′ which is, again, an integral that can be found in literature [50, 3.462 2],

∫ ∞

−∞
dr′e− k2r′2t2

2 e−i(k‖+G)r′
r′l−|m|−2s = (l − m − 2s)!

√
2π

kt
e− β2

2t2

(
− iβ

kt2

)l−|m|−2s � l−|m|
2 −s�∑
n=0

(− t2

2β2

)n

(l − |m| − 2s − 2n)!n!
, (29)

and results in a finite series. Now, we are ready to assemble the full expression

D(1)
3,lm(�1, k, k‖, r) =

√
2l+1

π
(l − m)!(l + m)!

ikV1
(−i)l+m

∑
G∈�∗

1

e−i(k‖+G)r‖
∫ η

0e−i π
2

dt e
γ 2

2t2 − k2ρ2t2

2 eimϕ−r⊥

×
� l−|m|

2 �∑
s=0

� l−|m|
2 −s�∑
n=0

(kρ)2s+|m|

22s+|m|+n(s + |m|)!s!
t4s+2|m|+2n−1β l−|m|−2s−2n (−1)n

(l − |m| − 2s − 2n)!n!
(30)
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from Eqs. (28), (29), and (A12). Here, we use β = k‖
k , where k‖ is the (signed) scalar value of the parallel wave-vector component.

We can perform manipulations on the two nested finite series [Eq. (D2)] to finally get the expression

D(1)
3,lm(�1, k, k‖, r) = eimϕ−r⊥

∑
G∈�∗

1

e−i(k‖+G)r‖
l∑

n=|m|
S3,lmn,1(k, β, ρ)

γ 2n

4n

∫ ∞

e−iπ γ 2

2η2

du

u
u−ne−u+ (γ kρ)2

4u (31)

with

S3,lmn,1(k, β, ρ) = (−i)l+1im

2V1k

√
2l + 1

π
(l − m)!(l + m)!

min(2n−|m|,l )∑
s=n

(kρ)2n−sβ l−s(
n − s+m

2

)
!
(
n − s−m

2

)
!(l − s)!(s − n)!

. (32)

Again, the summation for s only takes values such that the factorials have an integer argument, namely, s must have the same
parity as m. As in the previous case, the expression can be simplified significantly [Eq. (F2)] if ρ = 0, where the remaining
integral transforms to the incomplete gamma function 	(−n, e−iπ γ 2

2η2 ). If ρ 
= 0 the integral can, again, be computed by
recurrence (Appendix C).

D. Case d = 2, d ′ = 1

The last case left treats the lattice sum on a 1D lattice for cylindrical solutions, which we place along the x axis of our
coordinate system [Fig. 2(e)] [45]. Then, Eq. (16) becomes

D(1)
2,l (�1, k, k‖, r) =2k|l|(−1)

l−|l|
2

iπV1

∑
G∈�∗

1

e−i(k‖+G)r‖
∫ η

0e−i π
2

dt t2|l|−1e
1

2t2

×
∫ ∞

−∞
dr′(r′2 + y2)

|l|
2 e− k2 (r′2+y2 )t2

2 −i(k‖+G)r′
(

r′ − isgn(l )y√
r′2 + y2

)|l|
. (33)

Here we used r⊥ = yêy. The term in brackets to the right corresponds to eilϕr′−r⊥ and its denominator cancels the factor (r′2 + y2)
|l|
2

exactly. We can expand its numerator using the binomial theorem, which replaces it with a sum over s ∈ {0, 1, · · · , |l|}. The
spatial integral over r′ for each term in the expansion of the binomial is essentially the same as Eq. (29),

∫ ∞

−∞
dr′ r′se− kr′2t2

2 e−i(k‖+G)r′ = s!
√

2π

kt
e− β2

2t2

(
− iβ

kt2

)s � s
2 �∑

n=0

(
− t2

2β2

)n

(s − 2n)!n!
, (34)

and can be solved accordingly [50, 3.462 2.]. Combining these results, we get

D(1)
2,l (�1, k, k‖, r) = 2il

√
2

i
√

πkV1

∑
G∈�∗

1

e−i(k‖+G)r‖
∫ η

0e−i π
2

dt e
γ 2

2t2 − k2y2t2

2

|l|∑
s=0

� s
2 �∑

n=0

t2(|l|−1−s+n)(−1)s+n |l|!(−sgn(l )ky)|l|−sβs−2n

(s − 2n)!n!2n(|l| − s)!
. (35)

Similarly to the previous cases, we have two finite series, that can be rearranged to simplify the exponent of the integration
variable t [Eq. (D3)], finally arriving at

D(1)
2,l (�1, k, k‖, r) =

∑
G∈�∗

1

e−i(k‖+G)r‖
|l|∑

n=0

S2,ln,1(k, β, y)γ 2n−1
∫ ∞

e−iπ γ 2

2η2

du

u
u

1
2 −ne−u+ (γ ky)2

4u (36)

with

S2,ln,1(k, β, y) = (−i)l2√
πV1k

min(2n,|l|)∑
s=n

(−sgn(l )ky)2n−sβ |l|−s

2s(2n − s)!(|l| − s)!(s − n)!
(37)

again after substituting t = e−i π
2 γ√
2u

. Here, the sum in s takes
every value in its range in contrast to the other cases.
Major simplifications are possible when considering ρ = 0
[Eq. (F3)], where the integral becomes, analogously to the
d = 3, d ′ = 2 case, the incomplete gamma function 	( 1

2 −
n, e−iπ γ 2

2η2 ).

IV. COMPARISON WITH THE DIRECT SUM

We verify and compare our results by evaluating the sum
directly with an increasing number of lattice points and by
using the expressions derived in this paper.

In the first example, we use the values l = 2 and m = 0
in case of d = 3 and for m = 2 in case of d = 2. The shift
vector is r = (0.2, 0.1, 0.3) for d = 3 and r = (0.1, 0.3) for
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d =3, d ′=1 d =3, d ′=2 d =3, d ′=3

d =2, d ′=1 d =2, d ′=2

FIG. 3. Comparison of the direct evaluation of the series and the value for the exponentially convergent expressions. Each panel shows the
real part (solid line) and imaginary part (dashed line) of the value for the direct summation (blue), the exponentially convergent ones (orange),
and the relative deviation of the direct summation (green). The x axis shows the number of included layers. These layers have a square and
cubic shape for 2D and 3D lattices, respectively. Panels (a), (b), and (c) show the values for the 1D lattice (chain), 2D lattice (grating), and 3D
lattice examples for the spherical solution of the Helmholtz equation, respectively. Panels (d) and (e) show the values for the 1D lattice and 2D
lattice for the cylindrical solution, respectively. Panel (f) shows an example of an application of the lattice sums for a chain of spheres on two
sublattices. The lattice sums are used to calculate the coupling of the spheres within the T-matrix framework and also to compute the electric
field the intensity of which is shown here

d = 2. The parallel component of the wave vector is k‖ = 0.3,
k‖ = (−0.1, 0.2), and k‖ = (0.3,−0.1, 0.2) for the 1D, two-
dimensional (2D), and 3D lattices, respectively. In all cases,
we use k = 3 and a lattice pitch a = 1.9. The 2D and 3D
lattice are square or, suitably, cubic.

For the chain there is mostly only one way to include lattice
points in the direct summation, namely, taking the origin unit
cell and then expanding outwards on both sides. This sum-
mation scheme can be generalized to higher dimensions in a
spherical or cubic fashion. This means that all points within a
region defined by either a fixed Euclidean distance√√√√ d∑

i=1

|xi − yi|2 (38)

between two vectors x and y or a fixed Chebyshev distance

max(|x1 − y1|, . . . , |xd − yd |) (39)

from the reference unit cell are considered in the sum. We opt
for the latter because of its better convergence behavior [20]
and express the number of points considered by the number of
layers n, i.e., all points with ‖R‖∞ � na.

The first row in Fig. 3 shows the results for d = 3 and
d ′ ∈ {1, 2, 3} in Figs. 3(a), 3(b) and 3(c), respectively. The
second row shows the results for d = 2 and d ′ ∈ {1, 2}. We
observe in all five cases presented in Figs. 3(a)–3(e) very fast
oscillations of the direct sum, depending on the number of
layers. For Figs. 3(a) and 3(d), corresponding to the chain, we
included up to 105 layers, such that the fast oscillations are
not resolved and appear as a blue area. Although converging
fairly rapidly initially, the direct summation needs more than
105 layers to deviate only by 10−4 from Ewald’s method result
for d = 3 and d ′ = 1. For d = 2 and d ′ = 1 the convergence
is even slower by up to two orders of magnitude. The expo-
nentially fast converging result obtained with Eqs. (10) and
(9) for the real part and Eqs. (21), (26), (31), and (36) for the
reciprocal part is shown as an orange line.

Figure 3(b) shows the results for d = 3 and d ′ = 2. Here,
we included up to 1000 layers. In comparison to d ′ = 1, the
convergence of the direct sum is more time consuming. To
reach a relative accuracy of roughly 10−2, the contributions
of over 4 × 106 lattice points have to be evaluated. Such a
deteriorating convergence behavior as d ′ gets closer to d is
commonly found for direct summations. This is even more
pronounced in Figs. 3(c) and 3(e), which show the results for
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d =3, d ′=1 d =3, d ′=2 d =2, d ′=1

FIG. 4. Comparison of the direct summation and the value of exponentially fast converging series for large shifts r⊥ perpendicular to the
lattice. Panel (a) and (b) show the results for 1D and 2D lattice summing spherical solutions. The values of l = 2 and m = 1 are chosen, which
in case of r⊥ = 0 must vanish. Panel (c) shows the case d = 2 and d ′ = 1.

the full lattices. Here, for the number of layers included, no
convergence is visible at all but only oscillations.

In summary, we find that the formulas derived converge
quickly to a precise value suitable for numerical evaluations.
While it is possible to improve the convergence of the direct
summation by averaging over one or multiple oscillations (see
Appendix G), it is clear that the exponentially fast converging
series are a major improvement.

Additionally to our first example, we also look into larger
shifts |r⊥| away from the lattice and mainly the components
that are not present for r⊥ = 0. For this, we choose the param-
eters l = 2 and m = 1 for d = 3 and m = 2 for d = 2. For
d = 3 and d ′ = 2 we set r = (1.5, 1.1, 0.3), for d = 3 and
d ′ = 1 we set r = (0.2, 0.1, 1.3), and for d = 2 and d ′ = 1
we set r = (0.1, 1.3). The values of k, a, and k‖ remain un-
changed. The entries with l = 2 and m = 1 for d = 3 that are
shown in Figs. 4(a) and 4(b) would be zero in case of r⊥ = 0,
but it becomes nonzero when r⊥ 
= 0. The direct summation
in those cases converges comparably fast, and we can confirm
that the derived formulas are correct. Figure 4(c) shows the
result for d = 2 and d ′ = 1 with large r⊥. Also, in that case,
the result of the derived exponentially convergent formula
is approached by the direct summation with an increasing
number of layers. However, the convergence is quite slow.

V. EXEMPLARY APPLICATION

A typical field of application for the lattice sum is in sum-
ming translation coefficients for vector spherical waves like
they appear as part of the T-matrix method. Here, we apply the
summation for a 1D lattice for vector spherical waves, where
we derived an expression. The example system corresponds
roughly to the sketch shown in Fig. 2(a). It consists of two
spheres per unit cell with radii 40 and 60 nm and relative
permittivity ε = 9 with a relative shift r = (70, 0, 80)T nm
from the larger to the smaller sphere. The chain has a lattice
constant of 200 nm and is illuminated with a plane wave of
wavelength 500 nm under oblique incidence with a π

6 angle
with respect to the x axis. We remark that for the given pa-
rameters the geometrical cross sections of the spheres overlap
along the z axis. There exist other methods using finite sums
of polylogarithmic functions for r⊥ = 0 or using a conver-

sion of the scattered field to outgoing cylindrical waves [29].
However, for the case of overlapping spheres but r⊥ 
= 0, they
are not applicable. This is similar to the case of 2D lattices
where different summation approaches are used for the over-
lapping and nonoverlapping case as described by Kambe in
[44].

Figure 3(f) shows the field intensity in one unit cell. Using
the T-matrix method together with the lattice sums, we can
efficiently compute the electric field in the entire space outside
the spheres. This example not only makes use of the lattice
sums to translate the scattered fields between the two sublat-
tices associated with each type of sphere for computing the
mutual interaction but also uses them to translate the scattered
field to each point in the sampled space to obtain the electric
field within the unit cell.

VI. CONCLUSION

We presented a derivation of exponentially fast converging
series for quasiperiodic Helmholtz equation sums in d = 2
and 3 spatial dimensions. Our approach is suitable to derive
exponentially convergent series for arbitrary lattice dimen-
sions d ′ � d in a unified manner. A special emphasis is placed
on the accessibility of the complete derivation and the appli-
cability of the lattice sums to the case when there is a relative
shift between multiple sublattices. This enables us to apply the
sums to a wide range of applications. Especially, the approach
enables us to derive expressions for the case d = 3, d ′ = 1.

For an implementation of the exponentially fast lattice sum,
the formulas in Eqs. (9), (10), (15), (21), (26), (31), and (36)
can be directly used with the integrals evaluated by recursion.
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APPENDIX A: SPHERICAL HARMONICS AND
ASSOCIATED LEGENDRE POLYNOMIALS

The spherical harmonics we use are defined by

Ylm(θ, ϕ) =
√

2l − 1

4π

(l − m)!

(l + m)!︸ ︷︷ ︸
Nlm

Pm
l (cos θ )eimϕ, (A1)

where Pm
l (x) are the Legendre polynomials

Pm
l (x) =(−1)m(1 − x2)

m
2

dm

dxm
Pl (x) (A2)

= (−1)m

2l l!
(1 − x2)

m
2

dl+m

dxl+m
(x2 − 1)l , (A3)

where Eq. (A2) defines the associated Legendre polynomials,
in principle, only for m � 0. After using Rodrigues’s formula
for the Legendre polynomials, to arrive at Eq. (A3), the ex-
pression can be used for all |m| � l .

To derive the closed form expression for the associated
Legendre polynomials in the main text, we begin with

P|m|
l (cos θr) =P|m|

l

(
z√

ρ2 + z2

)
=

� l−|m|
2 �∑

j=0

(−1) j+|m|(l − 2 j)!

2l (l − |m| − 2 j)!

×
(

l

j

)(
2l − 2 j

l

)
zl−|m|−2 jρ|m|√
ρ2 + z2

l−2 j
(A4)

where r = (x, y, z)T and ρ =
√

x2 + y2, for the associated
Legendre polynomials, which can be derived by evaluating
Eq. (A2) and using the closed expression

Pl (x) = 1

2l

� l
2 �∑

j=0

(−1) j

(
l

j

)(
2l − 2 j

l

)
xl−2 j (A5)

for the Legendre polynomials [50, Eq. 8.911 1]. We expand√
ρ2 + z2

2 j
to arrive at

Pm
l

(
z√

ρ2 + z2

)

= (−1)|m|ρ|m|

2l
√

ρ2 + z2
l

� l−|m|
2 �∑

j=0

(−1) j (l − 2 j)!

(l − |m| − 2 j)!

(
l

j

)(
2l − 2 j

l

)

×
j∑

s=0

(
j

s

)
ρ2szl−|m|−2s. (A6)

Now, we can rearrange the series to

Pm
l

(
z√

ρ2 + z2

)

= (−1)|m|ρ|m|

2l
√

ρ2 + z2
l

� l−|m|
2 �∑

s=0

ρ2szl−|m|−2s

s!

×
� l−|m|

2 �∑
j=s

(−1) j (2l − 2 j)!

(l − |m| − 2 j)!(l − j)!( j − s)!
(A7)

where the last sum fulfills

f (l, m, s) =
� l−|m|

2 �∑
j=s

(−1) j (2l − 2 j)!

(l − |m| − 2 j)!(l − j)!( j − s)!
(A8)

= (−1)s(l + m)!2l−m−2s

(l − m − 2s)!(s + m)!
, (A9)

which can be shown by using the recursion formula

f (l + 1, m, s) = 2( f (l, m, s) + (l + m) f (l, m − 1, s)
(A10)

and the initial condition

f (l,−l, s) = δls(−1)l . (A11)

Thus, combining Eqs. (A7) and (A8), we arrive at

Pm
l

(
z√

ρ2 + z2

)
= (−1)

|m|+m
2√

ρ2 + z2
l

� l−|m|
2 �∑

s=0

ρ2s+|m|zl−|m|−2s

× (−1)s(l + m)!

22s+|m|(l − |m| − 2s)!(s + |m|)!s!
(A12)

as our final expression for the associated Legendre polynomi-
als, which we have generalized to negative values of m with

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x). (A13)

APPENDIX B: PLANE-WAVE EXPANSION

We use the expressions [53]

e−ikr =
∞∑

l=−∞
(−i)|l|J|l|(kr)eil (ϕk−ϕr ) (B1)

if k, r ∈ R2 and

e−ikr =4π

∞∑
l=0

l∑
m=−l

(−i)l jl (kr)Ylm(θk, ϕk)Y ∗
lm(θr, ϕr) (B2)

if k, r ∈ R3 to expand the plane waves using cylindrical and
spherical coordinates.

APPENDIX C: REAL- AND RECIPROCAL-SPACE
INTEGRAL

The integral

In(x, α) =
∫ ∞

α

dt tne− z2t2

2 + 1
2t2 (C1)

used for the real-space part of the sum fulfils the recursion
relation [43]

In(z, α) = (n + 3)In+2(z, α) − z2In+4(z, α) + αn+3e− z2α2

2 + 1
2α2 ,

(C2)

which can also be rearranged for increasing values of n instead
of decreasing values. As initial values, two integrals have to be
known for odd and even values of n, so in total four integrals.
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TABLE I. Possible simplifications in the case r⊥ = 0 for different lattices.

Space dimension d Lattice dimension d ′ Lattice position Simplification

3 2 z = 0 Ylm(θ−r‖−R, ϕ−r‖−R) = Ylm( π

2 , ϕ−r‖−R)

=
⎧⎨
⎩

√
2l+1
4π (l−m)!(l+m)!(−1)

l+m
2

2l ( l+m
2 )!( l−m

2 )!
eimϕ−r‖−R l + m even

0 l + m odd

3 1 x = 0 = y Ylm(θ−r‖−R, ϕ−r‖−R) =
√

2l+1
4π

{sgn[(−r‖ − R)ẑ]}l

2 1 y = 0 eimϕ−r‖−R = {sgn[(−r‖ − R)x̂]}l

We evaluate the integrals for n ∈ {−3,−2,−1, 0} directly.
For n = −2 and 0, we construct the new integral

zI0(z, α) ± iI−2(z, α) =
∫ ∞

α

dt

(
z ± i

t2

)
e− (zt∓ i

t )2

2 ∓iz

=e∓iz
√

2
∫ ∞

1√
2

(αz∓ i
α

)
du e−u2

=
√

π

2
e∓izerfc

(
αz ∓ i

α√
2

)
. (C3)

With this result, the required initial integrals for the recursion
over even numbers are

I0(z, α) =
√

π

2
√

2z

[
e−izerfc

(
αz − i

α√
2

)
+ eizerfc

(
αz + i

α√
2

)]
,

(C4)

I−2(z, α)= −i
√

π

2
√

2z

[
e−izerfc

(
αz − i

α√
2

)
− eizerfc

(
αz+ i

α√
2

)]
.

(C5)

In the case n = −1, the integral becomes after a substitution
u = z2t2

2

I−1(z, α) = 1

2

∫ ∞

z2t2
2

du

u
e−ue

z2

4u (C6a)

= 1

2

∞∑
n=0

1

n!

(
z2

4

)n ∫ ∞

z2t2
2

du u−n−1e−u (C6b)

= 1

2

∞∑
n=0

1

n!

(
z2

4

)n

	

(
−n,

z2t2

2

)
. (C6c)

This summation converges quite fast and can be truncated
for a numerical evaluation. Similarly, we derive

I−3(z, α) =
∞∑

n=0

1

n!

(
z2

4

)n+1

	

(
−n − 1,

z2t2

2

)
. (C7)

With these four starting values we can use the recursion for-
mula for positive and negative values of n.

The reciprocal-space integral reads∫ ∞

e−iπ γ 2

2η2

du

u
une−u+ (γ kz)2

4u (C8)

for n either integer or half-integer numbers. This integral
can be transformed to the integral Il . For this, we take the

substitution t =
√

2u
kγ z resulting in

2

(
k2γ 2z2

2

)n ∫ ∞

e
−i π

2
kzη

dt t2n−1e− (kγ zt )2

2 + 1
2t2

= 2

(
k2γ 2z2

2

)n

I2n−1

(
kγ z,− i

kzη

)
, (C9)

which has the exact same form as the real-space integral.
Therefore, it can be calculated with Eq. (C2) in combination
with the previously derived initial values.

APPENDIX D: SUM MANIPULATIONS

In the main text, the following manipulations of the sum-
mation indices are used.

1. d = 3, d ′ = 2

� l−|m|
2 �∑

s=0

s∑
n=0

as,n =
� l−|m|

2 �∑
s=0

l−|m|−s∑
w=l−|m|−2s

as,w−l+|m|+2s

=
l−|m|∑
w=0

min (l−|m|,� l−|m|
2 �)∑

s=� l−|m|−n
2 �

as,w−l+|m|+2s

=
l−|m|∑
w=0

min(l−|m|,2w)∑
v=w

a l−|m|−2w+v

2 ,v−w

(D1)

where v in the last line only takes values with the same parity
as l − |m|.

2. d = 3, d ′ = 1

� l−|m|
2 �∑

s=0

� l−|m|
2 �−s∑
n=0

as,n =
� l−|m|

2 �∑
s=0

� l+|m|
2 �+s∑

w=|m|+2s

as,w−|m|−2s

=
l∑

w=|m|

� w−|m|
2 �∑

s=max (0,n−� l+|m|
2 �)

as,w−|m|−2s

=
l∑

w=|m|

min(2n−|m|,l )∑
v=w

aw− v+|m|
2 ,v−w (D2)

where v in the last line only takes values with the same parity
as |m|.
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d =3, d ′=1 d =3, d ′=2 d =3, d ′=3

d =2, d ′=1 d =2, d ′=2

FIG. 5. The same parameters as in Fig. 3 are used but here we use a convolution to average over the oscillations to obtain a faster
convergence of the direct summation. Still, the direct approach needs significantly longer.

3. d = 2, d ′ = 1

|l|∑
s=0

� s
2 �∑

n=0

as,n =
|l|∑

s=0

|l|−� s
2 �∑

w=|l|−s

as,w+s−|l|

=
|l|∑

w=0

min(|l|,2|l|−2w)∑
s=|l|−w

as,w+s−|l|

=
|l|∑

w=0

min(2w,|l|)∑
v=w

av+|l|−2w,v−w.

(D3)

APPENDIX E: WHITTAKER FUNCTION

It holds that

M 1+|m|
2 +s, |m|

2
(z) = e

z
2 z

1−|m|
2 |m|!

(|m| + s)!

ds

dzs
(e−zz|m|+s) (E1)

for n ∈ N and m ∈ Z [54, Sec. 7.2.4]. With the generalized
product rule for derivatives

ds

dzs
( f (z)g(z)) =

s∑
n=0

(
s

n

)(
ds−n

dzs−n
f (z)

)(
dn

dzn
g(z)

)
, (E2)

we obtain the expression

M 1+|m|
2 +s, |m|

2
(z) = e− z

2 |m|!
s∑

n=0

(
s

n

)
z

1+|m|
2 (−z)s−n

(|m| + s − n)!
. (E3)

APPENDIX F: SIMPLIFICATIONS FOR R⊥ = 0

The following simplifications in the reciprocal-space sum
can be obtained for a vanishing shift perpendicular to the
lattice:

S3,lmn,2(k, β, 0) =
{√

(2l+1)(l−m)!(l+m)!
(−2)lV2k2

β l−2n

n!( l−m
2 −n)( l+m

2 −n) n �
⌊ l−|m|

2

⌋
and l − m even

0 otherwise
(F1)

S3,lmn,1(k, β, 0) =
{

(−i)l+1l!
2V1k

√
2l+1

π

β l−2n

n!(l−2n)! n �
⌊

l
2

⌋
and m = 0

0 otherwise
(F2)

S2,ln,1(k, β, 0) =
{

2(−i)l√
πV1k

β |l|−2n

4nn!(|l|−2n)! n �
⌊ |l|

2

⌋
0 otherwise

(F3)

which reproduce equivalent expressions as those in [20].
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Due to the properties of the spherical harmonics and the
complex exponential function, there can also be some simpli-
fications for the real-space sum if there is no perpendicular
component of the shift r⊥ = 0, and the lattice is placed
along certain high symmetry directions, which is done for
the derivation of the reciprocal-space integral anyhow. These
simplifications are listed in Table I.

APPENDIX G: DIRECT COMPUTATION WITH
AVERAGING OVER OSCILLATIONS

To improve the convergence of the direct summation, it
is possible to average over oscillations. The results shown in
Fig. 5 are obtained from the data in Fig. 3.
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