
PHYSICAL REVIEW A 107, 013507 (2023)

Enhancement of mechanical entanglement and asymmetric steering with coherent feedback
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We propose a scheme to enhance entanglement and asymmetric steering between two mechanical oscillators
in an optomechanical system with coherent feedback control. In the system, an optical cavity interacts with two
mechanical oscillators and an auxiliary cavity whose output field is fed back into the input port of the optical
cavity via a feedback loop. Due to the coherence between the auxiliary cavity and feedback, we derive the
effective decay rate and a nonzero frequency shift of the optical cavity. Consequently, the induced beam-splitter-
type and parametric-type interactions between the two mechanical oscillators are modulated, which leads to the
enhancement of entanglement and the generation of asymmetric steering even if the two mechanical oscillators
possess identical decoherence properties. And the direction of asymmetric steering can be controlled by tuning
the jumping phase between two cavities and optimizing the ratio of drive asymmetry. In contrast to the method
of adding losses or noises to one subsystem at the cost of reducing steerability, this scheme provides an active
way to achieve enhanced asymmetric steering. Furthermore, the steady-state and dynamical entanglement and
asymmetric steering can be generated in the unresolved-sideband regime, which is friendly for experimental
implementation.
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I. INTRODUCTION

Quantum entanglement recognized as the most intrinsic
feature of quantum mechanics is a valuable resource for
quantum information processing, such as performing com-
putation and secure communication [1–3]. A great deal of
effort has been devoted to generating and enhancing en-
tanglement [4–13], especially for the entanglement between
mechanical oscillators [14–16], because the mechanical oscil-
lator possesses a long decoherence time and plays a key role
in testing the validity of quantum mechanics [17] and prob-
ing decoherence theories [18,19]. However, the mechanical
oscillator is easily sensible to the external force but cannot
be directly detected. The optomechanical system, connecting
the optical and mechanical modes via radiation pressure, is
an ideal platform to detect the mechanical state [20–22] as
well as to generate mechanical entanglement [23–26]. Based
on the fact that entanglement is normally vulnerable to envi-
ronmental noise, reservoir engineering [27–31] is an efficient
avenue for obtaining a large degree of mechanical entan-
glement [15,24,32] by effectively modifying the dissipation
of the mechanical oscillator in the optomechanical system.
Recently, people have experimentally demonstrated macro-
scopic entanglement between two mechanical oscillators by
explicitly using the dissipative nature of the microwave res-
onator [33–36].

Feedback control is an alternative way to enhance entan-
glement [37–42] by implementing the additional operation on
the optical field via feedback loop where quantum information
is extracted from the system and fed back into the system.
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Depending on the presence of a measurement device in the
feedback loop, there are two kinds of feedback control: one is
the measurement-based feedback which involves the feedback
of the classical information (e.g., the photocurrent) obtained
by making a measurement on the system and makes the noise
spectrum squashed or antisquashed [43,44]; the other is coher-
ent feedback [45–47] involving the feedback of the quantum
information via a full quantum loop without measurement.
In the aspect of enhancing entanglement, coherent feedback
does not introduce additional noise and has a significant ad-
vantage [39–42]. Especially, Li et al. has reported a scheme
to reduce the optical decay rate via coherent feedback to
enhance the mechanical entanglement with the cooling of one
Bogoliubov mode [40].

On the other hand, Einstein-Podolsky-Rosen (EPR) steer-
ing, being a strict subset of entanglement [48,49], describes
the effect of one particle via local measurement on the
state of another in a pair of entangled particles. Such a
one-side device-independence feature attracts considerable
interests and is widely used in various quantum informa-
tion protocols, for example, quantum secret sharing [50–52],
one-way quantum computing [53], no-cloning quantum tele-
portation [54,55], and subchannel discrimination [56]. The
feature of steering significantly distinguishing it from entan-
glement and nonlocality is the asymmetry, which indicates the
different steerabilities in two opposite directions [57,58]. An
important method to achieve asymmetric steering is to obtain
asymmetric states by introducing different losses or noises to
the subsystems, which is at the expense of correlation [50,58–
60]. When the symmetric additional noise is introduced, the
steering can be enhanced but lacks the asymmetry [37,38]. In
contrast, the asymmetric steering can be achieved by intro-
ducing asymmetric additional noise with the cost of reducing

2469-9926/2023/107(1)/013507(10) 013507-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5088-3161
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.013507&domain=pdf&date_stamp=2023-01-11
https://doi.org/10.1103/PhysRevA.107.013507


PENG, ZHAO, YANG, YANG, AND ZHOU PHYSICAL REVIEW A 107, 013507 (2023)

steerability [38]. Therefore, we expect a method that can both
improve the correlation of the system and manipulate the
asymmetric steering without consuming correlation. Recently,
a phase-control scheme based on the interference effect was
proposed to manipulate and enhance the asymmetric steering
in a closed-loop three-mode system [61]. In the general model,
pairwise interactions between the three modes are required,
which limits the applicability of the general model.

In this paper, we aim at the enhancement of entangle-
ment and the manipulation of asymmetric steering between
two mechanical oscillators in an auxiliary-cavity-assistant op-
tomechanical system with coherent feedback control. In the
system, the optical cavity interacting with two mechanical
oscillators couples to an auxiliary cavity whose output field
is fed back into the input port of the optical cavity via
feedback loop. Under the joint effect of auxiliary cavity and
feedback, the steady-state entanglement and steering can be
enhanced significantly, which benefits from the modification
of the induced beam-splitter and parametric-type interactions
between two mechanical oscillators. Moreover, we show that
the steady-state and dynamical entanglement and steering can
be generated under the unresolved-sideband regime, which
results from the reduction of the effective optical decay rate.
And the enhanced dynamical entanglement and steering can
reach steady values in a shorter time, because the induced
interaction between two mechanical oscillators and mechani-
cal damping rate are improved simultaneously. On the other
hand, it is possible to obtain asymmetric steering between
two mechanical oscillators possessing completely symmetric
decoherence properties. And the direction of steering can be
manipulated by modulating the jumping phase between cavi-
ties and optimizing the ratio of drive asymmetry.

This scheme significantly distinguishes from the method
by introducing different amounts of losses or noises to the
subsystems [59,60] which in general leads to the reduction
of correlation. For the asymmetric steering of two me-
chanical oscillators induced by the interference effect, the
phase-dependent beam-splitter-like interaction between two
mechanical oscillators is required [61]. In our system, the
phase belongs to the coupling of two cavity modes, which
is more friendly for experimental implementation. Although
the coherent feedback has been used in improving quantum
entanglement in [40], manipulating asymmetric steering by
jointing the coherent feedback and the jumping rate between
two cavities in the current scheme is obviously different
from [40]. In contrast to the method of manipulating asym-
metric steering with measurement-based feedback [37,38],
this scheme avoids the degradation of correlations because
coherent feedback does not introduce additional noise to the
system. Therefore, we demonstrate that there is a significant
advantage of extending coherent feedback to manipulate the
asymmetry of steering.

The remainder of this paper is organized as follows.
In Sec. II, we first provide the Hamiltonian of the op-
tomechanical system without feedback, and then we derive
the modified quantum Langevin equations (QLEs) of the
feedback-modified system. In Sec. III, we present the measure
of quantum entanglement and Gaussian steering and show the
numerical results of the enhanced entanglement and steering
with the function of the auxiliary cavity and feedback. The

rotator

FIG. 1. Schematic diagram of the optomechanical system with
feedback loop. The optical cavity a1 driven by a pair of control lasers
interacts with two mechanical oscillators b1 and b2. The cavity a2

couples to cavity a1 with strength J and phase θ . The output field
of auxiliary cavity mode a2 is fed back to the input port of the cavity
mode a1 through highly reflective mirrors (HRM) and a control beam
splitter (CBS) with tunable reflectivity R. In the feedback loop, the
Faraday rotator and polarization beam splitter (PBS) combine to pre-
vent interference from reflections. a1,in, a2,in denote the input vacuum
noises for the cavities, and a f b

1,in is the new input field modified by
feedback from the output field of cavity mode a2.

experimental implementations of the system and the detection
of entanglement are given in Sec. IV. Finally, we draw our
conclusion in Sec. V.

II. MODEL

A. The system without feedback

As sketched in Fig. 1, the optomechanical system consists
of two membranes acting as mechanical oscillators and two
coupled cavities with resonant frequency ωc, where the output
field of the auxiliary cavity a2 is sent to the input port of the
other cavity a1 via feedback loop. The cavity a1 interacts with
two mechanical oscillators with frequencies �1 and �2 and is
driven by a pair of control lasers at frequency ωc ± ωd [ωd =
(�1 + �2)/2], which allows the generation of entanglement
between two mechanical oscillators. In the frame rotating with
H0 = ∑

j=1,2 ωca†
j a j , the Hamiltonian of the system can be

written as (h̄ = 1)

H =
∑
j=1,2

[� jb
†
jb j + g ja

†
1a1(b j + b†

j )]

+ [Jeiθ a†
1a2 + iE (t )a†

1 + H.c.]. (1)

a j (a†
j ) and b j (b†

j) ( j = 1, 2) refer to the annihilation (cre-
ation) operators of the jth cavity mode and the jth mechanical
oscillator with the optical decay rate κ j and the mechanical
damping rate γ j , respectively. g j = ωc/(L

√
mj� j ) character-

izes the single-photon coupling strength between the optical
cavity a1 and the mechanical oscillator b j . The coupling
strength between two cavities is J with phase θ . E (t ) =
E1eiωd t + E2e−iωd t is the time-dependent amplitude of the con-
trol lasers where Ej is related to the input laser power Pj and
defined by Ej = √

2κ1Pj/ωL. The dynamics of the system can
be described by the QLEs:

ȧ1 = − κ1a1 +
√

2κ1a1,in − i
∑
j=1,2

g ja1(b j + b†
j )

− iJeiθ a2 + E1eiωd t + E2e−iωd t ,
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ȧ2 = − κ2a2 +
√

2κ2a2,in − iJe−iθ a1,

ḃ j = − (γ j + i� j )b j + √
2γ jb j,in − ig ja

†
1a1, (2)

where oin (o = a j, b j) is the input noise operator, with
the nonzero correlation functions 〈aj,in(t )a†

j,in(t ′)〉 = δ(t −
t ′), 〈b†

j,in(t )b j,in(t ′)〉 = n j,thδ(t − t ′), and 〈b j,in(t )b†
j,in(t ′)〉 =

(n j,th + 1)δ(t − t ′). Here n j,th = [exp(h̄� j/kBT ) − 1]−1 is the
mean thermal phonon number at the environment temperature
T , and kB is the Boltzmann constant. When cavity mode
a1 is driven by the strong classical fields and evolves to a
large mean value, the standard linearization technique can be
adopted with o → 〈o〉s + δo (o = a j, b j), where 〈o〉s denotes
the classical c-number mean value and δo represents quantum
fluctuation around the classical mean value (for simplicity,
the δ in δo is ignored in the following). In the weak optome-
chanical coupling regime, i.e., |gj/� j | � 1, it is sufficient to
consider the zeroth-order term of gj for the classical mean
values. In the long-time limit, we have

〈a1〉(0)
s = E1eiωd t + E2e−iωd t

κ1 + J2

κ2

,

〈a2〉(0)
s = −iJe−iθ 〈a1〉(0)

s

κ2
, 〈b j〉(0)

s = 0. (3)

The linearized Hamiltonian can be given by

Hlin =
∑
j=1,2

{� jb
†
jb j + [G(t )a†

1 + G∗(t )a1](b j + b†
j )}

+ J (eiθ a†
1a2 + e−iθ a†

2a1), (4)

where g1,2 = g is assumed. G(t ) = g〈a1〉(0)
s = G1eiωd t +

G2e−iωd t with G1,2 = gE1,2/(κ1 + J2

κ2
) is the effective op-

tomechanical coupling. In the interaction picture with H0 =∑
j=1,2 ωd b†

jb j , the fast oscillating terms can be neglected
under the rotating-wave approximation (RWA) when the con-
dition 2ωd � {G1, G2} is satisfied, thus

HRWA = δ(b†
1b1 − b†

2b2) + J (eiθ a†
1a2 + e−iθ a†

2a1)

+ a†
1[G1(b1 + b2) + G2(b†

1 + b†
2)] + H.c., (5)

where the frequency difference of two mechanical oscillators
is δ = (�1 − �2)/2. From Eq. (5), it is clear that the two
mechanical oscillators can be entangled because both are cou-
pled with the cavity field. In view of the two-mode squeezed
state, the cavity mode a1 is used to cool the sum of Bo-
goliubov modes βsum = (b1 + b2)cosh(r) + (b†

1 + b†
2)sinh(r)

with the cooling rate
√

G2
1 − G2

2 and the squeezing param-
eter r = artanh(G2/G1), and the ground states of a pair of
Bogoliubov modes imply that two mechanical oscillators are
in a two-mode squeezed state [15,24,34]. Therefore, there is
a possible way to enhance the mechanical entanglement by
modifying the effective decay rate and frequency shift of the
cavity mode a1. In the following subsection, we show the
joint effects of coherent feedback and the auxiliary cavity
a2 on the cavity mode a1 and thus the modifications of the
effective mechanical damping rate and interactions between
two mechanical oscillators.

B. The feedback-modified system

We now analytically analyze the effect of feedback control
on the two mechanical oscillators in the limit of instantaneous
feedback. The coherent feedback loop is applied to construct
the unidirectional coupling between the source system with
the auxiliary cavity, where unidirectivity can be achieved by
using a Faraday rotator and polarization-sensitive beam split-
ters [45,62]. The feedback channel sends the output field of
cavity a2 to the input port of cavity a1, and the output of
the cavity mode a1 cannot reflect into the auxiliary cavity a2

with the assistance of unidirectional coupling. According to
the standard input-output relation, the output field a2,out can
be obtained as a2,out = √

2κ2a2 − a2,in, and then the new input
field of cavity a1 is the superposition of the original input field
a1,in and the output field a2,out. By mixing the two fields in a
beam splitter, the input field modified by the feedback is

aFB
1,in = Ta1,in + Ra2,out, (6)

where T and R are the transmission and reflectivity, re-
spectively, with T 2 + R2 = 1 for a beam splitter without
absorption. Due to the loss in the feedback channel, the perfect
reflection cannot be realized, i.e., 0 � R < 1. The original
input noise operator a1,in is replaced by aFB

1,in and then we can
find the modified QLE of the cavity mode a1:

ȧ1 = − κ1a1 + (−iJeiθ + 2R
√

κ1κ2)a2

− i[G1(b1 + b2) + G2(b†
1 + b†

2)]

+
√

2κ1(Ta1,in − Ra2,in ). (7)

Comparing the second equation of (2) with Eq. (7), it is
clear that the one-way feedback contributes an asymmetric
coupling between two optical modes with strength 2iR

√
κ1κ2.

In order to find the effect of the jumping between two cavities
and feedback, we can mathematically eliminate mode a2 in
the frequency domain. The Fourier transform of the operator
is defined by o(ω) = 1√

2π

∫ ∞
−∞ o(t )eiωt dt . In the frequency

domain, plugging the second equation of Eqs. (2) into Eq. (7),
then the modified dynamical equation of cavity mode a1 is

χa(ω)a1(ω)=−i
∑
j=1,2

[G1b j (ω) + G2b†
j (−ω)] +

√
2κAin(ω).

(8)

Here, κ1 = κ2 = κ is assumed. The optical input noise is mod-
ified as Ain(ω) = Ta1,in(ω) + R̃ωa2,in(ω), where the modified
reflectivity is R̃ω = Rmod(ω) − R with Rmod(ω) = 2Rκ−iJeiθ

−iω+κ
.

The optical susceptibility is defined by χa(ω) = −iω +
κ + χFB(ω), where χFB(ω) = J2+2iκJRe−iθ

−iω+κ
= (iJe−iθ )Rmod(ω)

arises from the auxiliary cavity and coherent feedback. In
the resonant condition, we can obtain the effective decay rate
κeff = κ + Re[χFB(0)] and frequency shift �eff = Im[χFB(0)]
of the cavity mode a1, which are given by

κeff = κ[1 + J2/κ2 + 2Rsin(θ )J/κ],

�eff = 2JRcos(θ ). (9)

Therefore, the modified optical susceptibility can be further
simplified as χa(ω) = κeff − i(ω − �eff ). From Eqs. (9), it is
clear that the feedback and the jumping between cavities are
jointed together to modulate the loss of cavity a1 and induce
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an effective frequency shift. We will show that the effective
decay rate κeff can be reduced, and the effective detuning
can induce an effective parametric-type coupling between two
mechanical oscillators.

To clearly show the dynamical equations of two mechan-
ical oscillators under the effect of κeff and �eff, we can
eliminate optical modes in the frequency domain. Then we
have

χ1(ω)b1(ω) = �1(ω)b2(ω) + �2(ω)[b†
1(−ω) + b†

2(−ω)]

+
√

2γ b1,in(ω) + Bin(ω),

χ2(ω)b2(ω) =�1(ω)b1(ω) + �2(ω)[b†
1(−ω) + b†

2(−ω)]

+
√

2γ b2,in(ω) + Bin(ω), (10)

where the optical noise term is Bin(ω) =
−i

√
2κ[ G1

χa(ω) Ain(ω) + G2
χ∗

a (−ω) A
†
in(−ω)]. The effective

coupling coefficients are �1(ω) = G2
2

χ∗
a (−ω) − G2

1
χa(ω) and

�2(ω) = G1G2( 1
χ∗

a (−ω) − 1
χa(ω) ). Plugging the modified

optical susceptibility χa(ω) into �1(ω) and �2(ω), then we
can obtain

�1(ω) = (κeff − iω)
(
G2

2 − G2
1

) + i�eff
(
G2

1 + G2
2

)
(κeff − iω)2 + �2

eff

,

�2(ω) = 2i�effG1G2

(κeff − iω)2 + �2
eff

. (11)

From Eqs. (10), we know that �1(ω) and �2(ω) respectively
express the effective beam-splitter-type and parametric-type
interactions between the two mechanical oscillators, both
of which are dependent on the modified κeff and �eff. In-
terestingly, the parametric-type interaction exists only when
the nonzero optical frequency shift is induced. As we all
know, the parametric-type interaction is beneficial for the
generation of entanglement, therefore the nonzero optical fre-
quency shift will support the enhancement of entanglement.
On the other hand, the mechanical susceptibilities in Eqs. (10)
are defined by χ1(ω) = −iω + iδ + γ − �1(ω) and χ2(ω) =
−iω − iδ + γ − �1(ω), respectively. It can be found that
the effective mechanical damping rate (Re[χ1,2(ω)]) is  =
γ − Re[�1(ω)], and the effective mechanical frequency shifts
are δ1 = δ + δ0 (corresponding to mode b1) and δ2 = −δ +
δ0 (corresponding to mode b2), where δ0 = −Im[�1(ω)]
represents the induced mechanical detuning. Then, the
free Hamiltonian, in addition to δ(b†

1b1 − b†
2b2), is added,

δ0(b†
1b1 + b†

2b2), which plays a key role in the manipulation
of asymmetric steering.

III. ENTANGLEMENT AND STEERING

A. The measure of entanglement and steering

The quantum properties of the system can be obtained
through the fluctuations of operators around the mean values.
If the initial state is the Gaussian state, the system gov-
erned by the linearized Hamiltonian is still Gaussian. The
properties of the system are fully represented by a 8 × 8
covariance matrix σ with elements defined as σmn = 〈UmUn +
UnUm〉/2, where Um is the mth row of the vector U defined
by U = [Xa1 , Pa1 , Xa2 , Pa2 , Xb1 , Pb1 , Xb2 , Pb2 ]T , and the posi-

tion and momentum quadratures of the bosonic modes o =
a j, b j are Xo = (o + o†)/

√
2, Po = (o − o†)/(

√
2i). Accord-

ing to the Hamiltonian Eq. (4) and introducing the feedback
Eq. (6), the dynamical QLEs can be written with a compact
form as U̇ = M(t )U + N , where the drift matrix M(t ) and
the vector of input noise N are given by Eqs. (A1) and (A3),
respectively. Then we can derive a linear differential equa-
tion for the covariance matrix σ :

σ̇ = M(t )σ + σM(t )T + D, (12)

where D is a diffusion matrix given by Eq. (A5). The compo-
nents of D are defined as

Dmnδ(t − t ′) = 〈Nm(t )Nn(t ′) + Nn(t ′)Nm(t )〉/2. (13)

Here Nm is the mth row of the vector N . The steady-state
covariance matrix σ can be obtained straightforwardly by
solving the Lyapunov equation M0σ + σMT

0 + D = 0, where
the time-independent drift matrix M0 is given by Eq. (A2).
According to the Routh-Hurwitz criterion [63], the system is
stable when all eigenvalues of drift matrix M0 have negative
real parts. The stability condition is carefully checked in all
simulations throughout this paper.

For the continuous-variable two-mode Gaussian state, it is
convenient to use logarithmic negativity EN [64,65] to mea-
sure the mechanical entanglement. In order to signify EPR
steering, we adopt the measure of steering proposed in [66] for
arbitrary bipartite Gaussian states. All measures mentioned
above can be computed from the reduced covariance matrix
V12 for two mechanical oscillators:

V12 =
[

v1 v12

vT
12 v2

]
, (14)

where v1, v2, and v12 are 2 × 2 sub-block matrices and can
be extracted from the covariance matrix σ and given by v1 =
[
σ55 σ56

σ65 σ66
], v2 = [

σ77 σ78

σ87 σ88
], and v12 = [

σ57 σ58

σ67 σ68
]. Then the

logarithmic negativity EN and Gaussian steering Si j in the
direction from mode b j to mode bi are expressed as

EN = max[0,−ln(2η−)],

S12 = max[0,R(2v2) − R(2V12)],

S21 = max[0,R(2v1) − R(2V12)], (15)

where η− = 1√
2

√
� −

√
�2 − 4det(V12), � = det(v1) +

det(v2) − 2det(v12), and R(w) = 1
2 ln[det(w)] is the Rényi-2

entropy. The larger values of EN and Si j imply the stronger
entanglement and steerability.

B. The enhanced entanglement and asymmetric steering

In the subsection, we numerically show the enhancement
of entanglement and the manipulation of asymmetric steering
through jointing effect of the auxiliary cavity and coherent
feedback.

From Eqs. (9), we know that the effective optical decay
rate is enhanced when sin(θ ) > 0, i.e., κeff > κ . In the follow-
ing numerical calculation, we mainly focus on the condition
sin(θ ) < 0. In Fig. 2(a), we plot the dependence of entangle-
ment EN on jumping rate J and reflectivity R for θ = 1.5π .
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FIG. 2. (a) The steady-state entanglement EN as a function of
jumping rate J and reflectivity R when θ = 1.5π and G2/G1 = 0.68.
The entanglement (b) and steering (c, d) as functions of jumping rate
J and phase θ when R = 0.99 and G2/G1 = 0.92. The other parame-
ters are G1/�1 = 0.1, δ/�1 = 0.03, κ/�1 = 0.5, γ /�1 = 5 × 10−6,
and nth = 350.

In this case, we have �eff = 0, and the effective interaction
between two mechanical oscillators is only of beam-splitter
form with coupling coefficient �1(ω) = (G2

2 − G2
1)/(κeff −

iω). When we fix the drive asymmetry G2/G1, the entangle-
ment is manipulated only by the effective optical decay rate
κeff = κ[1 + J

κ
( J
κ

− 2R)]. It is obvious that the entanglement
can be enhanced owing to the introduction of auxiliary cavity
and feedback. However, there is a significant degradation of
entanglement around R → 1 and J = 1, where κeff → 0 and
then �1(ω) increases. The enhanced coupling strength �1(ω)
can improve the entanglement, but meanwhile the increased
effective mechanical damping rate  = γ − Re[�1(ω)] is
harmful to entanglement. The competition between the two
contrary factors results in the degradation of entanglement.
That is, the entanglement does not increase monotonically
with the decreasing of κeff. For the ideal reflectivity R → 1,
the effective optical decay rate can be simplified as κeff =
κ ( J

κ
− 1)2. When J/κ varies from 0 (2) to 1, κeff decreases

monotonically, thus the entanglement is enhanced first and
then degraded.

Aiming at revealing the effect of frequency shift �eff,
we plot entanglement in Fig. 2(b) and steering in Figs. 2(c)
and 2(d) as functions of jumping rate J and phase θ .
From Fig. 2(b), it is obvious that the entanglement cannot
achieve its local maximum value at θ = 1.5π , especially
J/κ ∈ [0.94, 1.06], where the entanglement is absent. This
is because �eff = 0 for θ = 1.5π , the effective interaction
between two mechanical oscillators is only of beam-splitter
form, and the parametric form coupling is zero. The opti-
mal entanglement is achieved around θ = 1.48π, 1.52π and
J/κ = 0.66, 1.33 where �eff �= 0. The results mean that the
entanglement can be enhanced with the help of the nonzero
frequency shift. From Eqs. (11), both beam-splitter-type and
parametric-type interactions are dependent on �eff, so the en-
tanglement can be improved by inducing a nonzero frequency
shift �eff. As shown in Figs. 2(c) and 2(d), though the two
mechanical oscillators have identical decoherence properties

0.9 0.92 0.94 0.96 0.98 1
0
1
2
3
4
5

0.999 0.9995 1
0
1
2
3
4

1.42 1.46 1.5 1.54 1.58
0

0.1

0.2

0.3

0.4
(b)(a)

FIG. 3. (a) The steering S12(S21) as functions of the phase θ for
nth = 350, G2/G1 = 0.92, R = 0.99, J/κ = 0.66. (b) The entangle-
ment EN with (red solid curve) and without (black dotted curve) the
auxiliary cavity and feedback vs drive asymmetry G2/G1 for nth = 0
and θ = 1.48π . The other parameters are the same as those in Fig. 2.

γ1 = γ2 = γ , n1,th = n2,th = 350, it is striking that the asym-
metric steering can be achieved by tuning the phase of the
jumping between cavities, such as for the same jumping rate
J/κ = 0.66, S12 > S21 when θ = 1.52π and S12 < S21 when
θ = 1.48π . The asymmetric steering is strongly dependent on
the phase due to �eff affected by θ when the other parameters
are settled.

To further study the key ingredient of the asymmetric steer-
ing in the system, we plot the dependence of them on the phase
θ in Fig. 3(a). It can be found that at θ = 1.5π , �eff = 0, then
S12 = S21, which means that the asymmetric steering only can
be achieved with �eff �= 0. The asymmetric steering requires
a certain coherence condition between jumping and feedback.
For �eff �= 0, δ0 = −Im[�1(ω)] can be induced so that the
unequal effective mechanical frequency shifts |δ1| �= |δ2| are
satisfied. Furthermore, the system modified by the feedback
can realize the one-way steering which provides security in
one-sided device-independent quantum key distribution. For
example, when θ = 1.43π , there only exists the one-way
steering from mode b1 to mode b2, i.e., S12 = 0 and S21 �= 0;
in the opposite direction, the one-way steering from mode
b2 to mode b1 can be achieved with θ = 1.57π . Comparing
with the way to manipulate asymmetric steering by adding
asymmetric losses or noises to the subsystems, this method
has a significant advantage of avoiding the degradation of
correlation.

As we have presented in Eqs. (11), the effective interac-
tions between two mechanical oscillators are related to the
ratio G2/G1 when the effective optical decay rate κeff and
frequency shift �eff are fixed. It is necessary to reveal the
dependence of entanglement on drive asymmetry shown in
Fig. 3(b). Apparently, whether or not the auxiliary cavity and
feedback are introduced, there is always an optimal drive
asymmetry that maximizes the entanglement, which is re-
sulted from the nonmonotonic dependence of the interactions
�1(ω) and �2(ω) between the two mechanical oscillators
on G2/G1. Interestingly, the entanglement can be achieved
by introducing auxiliary cavity and feedback when nth =
0 and G2 = G1 [see the inset in Fig. 3(b)]. The result is
different from that case without the auxiliary cavity and feed-
back [24,60], where the mechanical entanglement is absent for
the symmetric drive G2 = G1, because the optical mode fails
to cool the Bogoliubov modes composed of the two mechan-
ical oscillators. From Eqs. (11), when G2 = G1, we can find
that there is no effective interaction between two mechanical
oscillators for the case J = 0 and R = 0. If J �= 0 and R �= 0,
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FIG. 4. The entanglement and steering as functions of
drive asymmetry G2/G1 for different optical decay rates:
(a) κ/�1 = 0.5, J/κ = 0.46, θ = 1.4π ; (b) κ/�1 = 2, J/κ =
0.72, θ = 1.48π , nth = 350.

thanks to the nonzero effective frequency shift of optical mode
�eff �= 0, the beam-splitter and parametric-type interactions
between two mechanical oscillators emerge enabling strong
entanglement under two symmetric classical drivings. In our
simulation, we find that the entanglement is extremely fragile
to the thermal noise when the system with feedback is driven
by two tones with the same amplitudes. That is the reason why
we choose nth = 0 for Fig. 3(b).

Considering that the effective optical decay rate can be
reduced due to the introduction of auxiliary cavity and feed-
back, we expect to relax the requirement for optical quality
factor Q = ωc/κ . In Fig. 4, we plot the dependence of steady-
state entanglement and steering on G2/G1 for different optical
decay rates. Whether in the regime of resolved or unre-
solved sideband, the strong entanglement and steering can
be achieved with the help of auxiliary cavity and feedback.
From Figs. 4(a) and 4(b), we find that the overall asymmetry
of steering is stepwise driven through the no-way regime
(S12 = S21 = 0), one-way regime (S12 �= 0 and S21 = 0), two-
way regime (S12 �= 0 and S21 �= 0), one-way regime (S12 = 0
and S21 �= 0), and no-way regime with the increase of ra-
tio G2/G1. The dependence of steering on G2/G1 also can
be explained by the dependence of �1(ω) on G2/G1, be-
cause �1(ω) is related with the induced mechanical oscillator
δ0 = −Im[�1(ω)] that results in the asymmetry of steering.
Therefore, we can manipulate the asymmetry of steering by
modulating the classical drivings when the asymmetric steer-
ing exists.

We show the entanglement and steering as functions of the
thermal phonon number nth displayed in Fig. 5. It is found that
EN is robust against the thermal phonon number where nth can

0 5 10 15

102

0

0.5

1

1.5

2

FIG. 5. The entanglement and steering of the system with the
auxiliary cavity and feedback R = 0.99, J/κ = 0.46, θ = 1.4π as
functions of the thermal phonon number nth for a certain drive asym-
metry G2/G1 = 0.68.
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FIG. 6. Time evolution of entanglement and steering
between two mechanical oscillators for the different optical
decay rates. (a) In the resolved-sideband regime κ/�1 = 0.316,
(J/κ, R, G2/G1, θ ) = (0, 0, 0.5, 0) are chosen to plot the black solid
curve. The other curves correspond to the modified system with
parameters (J/κ, R, G2/G1, θ ) = (0.75, 0.99, 0.88, 1.3π ). (b) In the
unresolved-sideband regime κ/�1 = 2, the relevant parameters are
fixed as (J/κ, R, G2/G1, θ ) = (0.85, 0.99, 0.85, 1.47π ). The other
parameters are γ /�1 = 1.1 × 10−5, δ/�1 = 0.158, G1/�1 =
0.047, nth = 85.

be as large as 1300 and the steering S12, S21 can survive even
if nth = 500. For a mechanical oscillator with resonant fre-
quency ω/2π = 400 kHz in the two-membrane-in-the-middle
optomechanical system [67], the entanglement and steering
can survive at the bath temperature T ≈ 24.96 and 9.60 mK
for nth = 1300 and 500, respectively. Moreover, in the super-
conducting microcircuit [36], the mechanical oscillator with
frequency ω/2π = 9.032 MHz is fabricated, such that the
thermal phonon number nth of 1300 and 500 correspond to the
bath temperature of T ≈ 563.7 and 216.9 mK, respectively.

As for the dynamical entanglement and steering, in Fig. 6,
we plot the time evolution of entanglement and steering
for different optical decay rates κ . To get closer to the
experiment, we choose the parameters from the experimen-
tal work [35], where the microwave optomechanical system
consists of two aluminum drums embedded into a single mi-
crowave resonator. The decay rate of the cavity is κ/2π =
800 kHz, two mechanical oscillators process frequencies
�1 = 15.898 MHz and �2 = 10.865 MHz, and mechanical
decay time 1/γ1 = 5.8 ms and 1/γ2 = 6.9 ms. The two ef-
fective electromechanical couplings are G1 = 82 × 2π kHz
and G2 = 94 × 2π kHz and the experimental parameters are
measured at a temperature 7 mK. In Fig. 6(a), by comparing
black and blue curves which correspond to the systems with
and without auxiliary cavity and feedback, respectively, we
can find that the dynamical entanglement is not only enhanced
but also reaches the steady values in a shorter time due to in-
troducing the auxiliary cavity and feedback. This result can be
explained by the increasing of beam-splitter and parametric-
type coupling strength and by the enhancing of the effective
mechanical damping rate  = γ − Re[�1(ω)] {Re[�1(ω)] <

0}. Without auxiliary cavity and feedback, the steering does
not exist in the system. In the unresolved-sideband regime
(e.g., κ/�1 = 2), the entanglement and steering do not exist
when R = 0. By introducing the auxiliary cavity and feed-
back, the effective optical decay rate is reduced and the
effective mechanical parametric-type interaction is induced
yielding the presence of the entanglement and steering as
shown by the curve in Fig. 6(b). In a word, the scheme
supports the generation of the dynamical entanglement and
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steering in the unresolved-sideband regime by the modulation
of jumping rate between cavities and reflectivity, which is
advantageous for the experimental implementation.

IV. EXPERIMENTAL IMPLEMENTATIONS

In this section, we discuss experimental realizations of the
current scheme and the entanglement measures.

By inserting two separated membranes inside a Fabry-
Pérot cavity, the two-membrane-in-the-middle cavity op-
tomechanical system is realized [67–72]. Based on the
device [67–72], if it is possible to introduce an auxiliary
cavity and coherent feedback, and the present scheme can
be constructed. The optomechanical coupling strength G1 and
G2 can be manipulated by controlling the membrane position
along the cavity axis [69,73–75]. For the jumping between
two Fabry-Pérot cavities, a feasible implementation is to ma-
nipulate the reflectivity of the common mirror between the
two cavities to tune the strength of coupling [76]. The phase
of the jumping rate is controllable by tuning the phase of the
driving lasers [77]. In addition, the beam-splitter-type inter-
action between two cavities also can be realized directly by
the beam splitter with the relative phase θ [78]. Furthermore,
we present a scheme to derive the complex coupling between
two Fabry-Pérot cavities, as shown in Appendix B. The phase
of the complex coupling is inherited from the classical field
and can be controllable [79]. We assume an instantaneous
feedback in this scheme because the feedback delay time is
small enough to be ignored, e.g., for a 10-cm feedback loop,
the delay time is 10−10 s. If the distance of light propagation
in the feedback loop is so long that the delay is not negligible,
one can cancel the effect of delay by imprinting a phase on
light in the feedback loop [80].

Recently, the macroscopic entanglement between two
micromechanical oscillators has been experimentally ob-
served in the superconducting microcircuit [34–36]. The
microwave optomechanical device consists of the super-
conducting transmission-line resonator and the mechanical
drum-type oscillator. Compared with the dielectric membrane
in the membrane-in-the-middle cavity optomechanical sys-
tem, the drum has a higher frequency, such as in [36], and the
two mechanical oscillators made of lithographically patterned
thin-film aluminum that forms drumlike membranes are of
frequencies �1/2π = 6.692 MHz and �2/2π = 9.032 MHz.
For a certain thermal phonon number nth = [exp(h̄� j/kBT ) −
1]−1, the mechanical oscillator with higher frequency can
put up with the higher bath temperature, therefore the en-
tanglement and steering can be more robust against the bath
temperature which is helpful to reduce the complexity of the
experimental setups. In addition, with the help of the time-
dependent exchange coupling [81–84] (the detailed derivation
is given in Appendix B) or the phase shifter [85], the complex
coupling between two superconducting microwave cavities
can be realized. Coherent feedback has been realized in the
superconducting circuits to produce the superconducting mi-
crowave multivibrator [86], in which two Kerr cavities are
coherently coupled to each other in a loop via a beam split-
ter and display both bistable and astable dynamics. These
researches support the experimental implementation of our
scheme in the microwave optomechanical device.

As to the detection and verification of the mechanical en-
tanglement and steering, whether with logarithmic negativity
or Duan’s inseparability criterion [87], one needs to measure
the elements of reduced covariance matrix V12, as used in [88].
One cannot directly measure the quadrature of the mechanical
oscillator but can resort to the additional “probe” cavity mode,
whose probe field is so weak that its effect on the mechanical
oscillator can be negligible. When the detuning between the
probe field and “probe” cavity mode is resonant with the me-
chanical oscillator, the beam-splitter-like interaction between
“probe” cavity mode and mechanical oscillator is activated.
And then in principle, all of the elements of matrix V12 can
be obtained by measuring the correlation between two output
fields of the “probe” cavity mode at the mechanical frequen-
cies.

V. CONCLUSION

We have studied the enhancement of entanglement and the
manipulation of steering between two mechanical oscillators
in an auxiliary-cavity-assisted optomechanical system with
coherent feedback. Due to introducing an auxiliary cavity and
coherent feedback, the effective decay rate and frequency shift
of the cavity mode are modulated. Consequently, the induced
beam-splitter-type and parametric-type interactions between
two mechanical oscillators are modified by the jumping rate
between cavities as well as feedback parameter. When there
is only the induced beam-splitter interaction between two
mechanical oscillators, we can obtain the enhancement of
entanglement and symmetric steering by manipulating the
jumping rate and feedback. Through modulating the jumping
phase between cavities, we can obtain the parametric-type
interaction which further improves the entanglement and
steering; furthermore, the manipulable asymmetric steering
can be reached. Based on the reduction of effective decay
rate for the cavity mode, we have presented the generation
of the steady-state and dynamical entanglement and steering
under the unresolved-sideband regime, which is friendly for
the experimental implementation in the view of relaxing the
requirement for the optical quality factor.
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APPENDIX A: THE DRIFT AND DIFFUSION MATRICES

The time-dependent drift matrix M(t ) in Eq. (12) is given
by

M(t ) =

⎡
⎢⎢⎢⎢⎣

ma1 m12 mab(t ) mab(t )

m21 ma2 02 02

mba(t ) 02 mb1 02

mba(t ) 02 02 mb2

⎤
⎥⎥⎥⎥⎦, (A1)
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where 02 is a 2 × 2 full-zero matrix, and maj =
[−κ j 0

0 −κ j
], mb1 = [−γ1 �1

−�1 −γ1
], mb2 = [−γ2 �2

−�2 −γ2
],

m12 =
[

Jsin(θ ) + 2R
√

κ1κ2 Jcos(θ )

−Jcos(θ ) Jsin(θ ) + 2R
√

κ1κ2

]
,

m21 =
[

−Jsin(θ ) Jcos(θ )

−Jcos(θ ) −Jsin(θ )

]
,

mab(t ) =
[

2Im[G(t )] 0

−2Re[G(t )] 0

]
,

mba(t ) =
[

0 0

−2Re[G(t )] −2Im[G(t )]

]
.

Under the RWA, the time-independent drift matrix M0 can
be obtained according to Eqs. (5) and (6) and is given by

M0 =

⎡
⎢⎢⎢⎢⎣

ma1 m12 m̄ab m̄ab

m21 ma2 02 02

m̄ab 02 m̄b1 02

m̄ab 02 02 m̄b2

⎤
⎥⎥⎥⎥⎦, (A2)

where m̄b1 = [−γ1 δ

−δ −γ1
], m̄b2 = [−γ2 −δ

δ −γ2
],

m̄ab =
[

0 G1 − G2

−(G1 + G2) 0

]
.

The vector of input noise operators N is given by

N = [√
2κ1A(in)

x ,
√

2κ1A(in)
y ,

√
2κ2X (in)

a2
,
√

2κ2P(in)
a2

,√
2γ1X (in)

b1
,
√

2γ1P(in)
b1

,
√

2γ2X (in)
b2

,
√

2γ2P(in)
b2

]T
, (A3)

where the modified amplitude and phase noise operators of
cavity mode a1 are

A(in)
x = T X (in)

a1
− RX (in)

a2
,

A(in)
y = T P(in)

a1
− RP(in)

a2
. (A4)

Here X (in)
o = (oin + o†

in )/
√

2 and P(in)
o = (oin − o†

in )/
√

2i (o =
a j, b j and j = 1, 2) are the input noise operators of Xo and Po,
respectively.

The diffusion matrix D is

D =
[

da1 d12

d12 da2

]
⊕

[
db1 02

02 db2

]
, (A5)

where daj = κ jI2, d12 = −R
√

κ1κ2I2, dbj = γ j (2n j,th + 1)I2.

APPENDIX B: THE REALIZATION OF THE COMPLEX
COUPLING

We present a scheme to derive the complex coupling
between two Fabry-Pérot cavities. We insert an auxiliary two-
mode cavity between cavity a1 and cavity a2 (see Fig. 1),
where the two-mode cavity interacts with a flying �-type
three-level atom, shown in Fig. 7. The three-level atom is
driven by a strong classical field, and two modes ã1, ã2 of the
auxiliary cavity interact with atomic transition |1〉 ↔ |3〉 and

|1〉 ↔ |2〉, respectively, where ã1,2 =
√

κ ′
1,2a1,2 and κ ′

1 (κ ′
2) is

FIG. 7. Schematic diagram of the atom-cavity coupling to derive
the complex coupling. A strong classical field drives the atomic
transition |2〉 ↔ |3〉, and two modes of the cavity fields interact with
atomic transition |1〉 ↔ |3〉 and |1〉 ↔ |2〉, respectively. The circular
dashed frame shows the energy-level configuration of the three-level
atom.

the tunneling rate of the right (left) cavity mirror. To simplify,
we write ã1,2 as a1,2, and the Hamiltonian of the atom-cavity
coupling system reads

H =
∑
j=1,2

ω ja
†
j a j + E2|2〉〈2| + E3|3〉〈3| + (g13a1|3〉〈1|

+ g12a2|2〉〈1| + �Reiθ |3〉〈2|e−iωd t + H.c.), (B1)

where ω j is the resonant frequency of the cavity mode a j ,
g13(g12) represents the coupling strength between the transi-
tion |1〉 → |3〉(|1〉 → |2〉) and the cavity mode a1(a2), and �R

is the Rabi frequency of the classical field with frequency ωd

and phase θ . In a rotating frame with respect to H0 = (E2 +
ωd )(a†

1a1 + |3〉〈3|) + E2(a†
2a2 + |2〉〈2|), the Hamiltonian of

the system becomes

H ′ =
∑
j=1,2

� ja
†
j a j + �|3〉〈3| + �R(eiθ |3〉〈2| + e−iθ |2〉〈3|)

+ (g13a1|3〉〈1| + g12a2|2〉〈1| + H.c.), (B2)

where �1 = ω1 − E2 − ωd , �2 = ω2 − E2 and � = E3 −
E2 − ωd . Under the condition �R � {g12, g13}, we can obtain
the dressed states that are expressed in terms of bare states as

|+〉 = cosϕ|3〉 + e−iθ sinϕ|2〉,
|−〉 = sinϕ|3〉 − e−iθ cosϕ|2〉, (B3)

where cosϕ = √
(d + �)/2d , sinϕ = √

(d − �)/2d with

d =
√

4�2
R + �2. The dressed states |+〉, |−〉 have their

eigenvalues λ± = 1
2 (d ± �), respectively. Therefore, the first

line of the Hamiltonian (B2) becomes H ′
0 = ∑

j=1,2 � ja
†
j a j +

λ+|+〉〈+| + λ−|−〉〈−|. In the rotating frame with respect to
H ′

0, we can obtain the Hamiltonian in the interaction picture:

Hint = |+〉〈1|(g13cosϕei(λ+−�1 )t a1

+ g12sinϕeiθ ei(λ+−�2 )t a2)

+ |−〉〈1|(g13sinϕei(λ−−�1 )t a1

− g12cosϕeiθ ei(λ−−�2 )t a2) + H.c. (B4)

Under the condition (λ± − �1,2) �
{g12sinϕ, g12cosϕ, g13sinϕ, g13cosϕ}, we can de-
rive the Hamiltonian of the two-mode field Heff =
−iHint(t )

∫ t
0 dsHint(s) when the atom collapses to a certain
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energy level after the measurement. For example, when the
atom collapses to the level |1〉, we can obtain

Heff =
∑
j=1,2

ωa j a
†
j a j + J (eiθ a†

1a2 + e−iθ a†
2a1), (B5)

with coefficients

ωa1 = g2
13

[ cos2ϕ

� − λ+
+ sin2ϕ

� − λ−

]
,

ωa2 = g2
12

[ sin2ϕ

� − λ+
+ cos2ϕ

� − λ−

]
,

J = g12g13
sinϕcosϕ(λ+ − λ−)

(� − λ+)(� − λ−)
, (B6)

where �1 = �2 = � is assumed to simplify. Therefore, the
complex coupling between two cavities is constructed and the
phase θ is inherited from the classical field [79].

The complex coupling between two cavities also can be
generated by the time-dependent exchange coupling which
has been investigated theoretically [81–83] and realized ex-
perimentally [84]. The Hamiltonian can be written as

H = ωca†
1a1 + (ωc + �opt)a

†
2a2

+ 2Jcos(�optt + θ )(a†
1a2 + a†

2a1). (B7)

In the rotating frame with respect to H0 = �opta
†
2a2, the

Hamiltonian becomes

H = ωc(a†
1a1 + a†

2a2) + J (eiθ a†
1a2 + a†

2a1e−iθ )

+ J (e−i(2�optt+θ )a†
1a2 + a†

2a1ei(2�optt+θ ) ). (B8)

Under the condition 2�opt � J , the high-frequency oscillat-
ing terms can be neglected and the Hamiltonian becomes

H =ωc(a†
1a1 + a†

2a2) + J (eiθ a†
1a2 + a†

2a1e−iθ ). (B9)

Thus, the phase-dependent coupling between two cavities is
achieved.
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