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Temporal Kerr cavity solitons are pulses of light that can persist in coherently driven, dispersive resonators
with Kerr-type nonlinearity. Many studies have shown that such solitons can react to parameter inhomogeneities
(e.g., variations in the complex amplitude of the driving field) by experiencing a temporal drift. The vast majority
of such studies assume that the inhomogeneity varies slowly across the soliton, leading to the prediction that the
soliton drift rate is linearly proportional to the gradient of the inhomogeneity at the soliton position. However, the
assumption of a slowly varying inhomogeneity may not hold true in all situations, e.g., when using bichromatic
driving or in the presence of third-order dispersion that gives rise to an extended dispersive wave tail. Here we
report on theoretical and numerical results pertaining to the behavior of dissipative temporal Kerr cavity solitons
under conditions where parameter inhomogeneities vary nonlinearly across the width of the soliton. In this case,
the soliton velocity is dictated by the full overlap between its so-called adjoint neutral mode and the parameter
perturbation, which we show can yield dynamics that are manifestly at odds with the common wisdom of motion
dependent solely upon the gradient of the inhomogeneity. We also investigate how the presence of third-order
dispersion and the associated dispersive wave tail changes the motion induced by parameter inhomogeneities.
We find that the dispersive wave tail as such does not contribute to the soliton motion; instead, higher-order
dispersion yields counterintuitive influences. Our results provide new insights into the behavior of temporal
cavity solitons in the presence of parameter inhomogeneities and can impact systems employing pulsed or
bichromatic pumping and/or resonators with non-negligible higher-order dispersion.
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I. INTRODUCTION

Coherently driven, dispersive resonators with Kerr non-
linearity can sustain localized dissipative structures known
as temporal Kerr cavity solitons (TCSs) [1–3]. Such soli-
tons, also known as dissipative Kerr solitons, have attracted
significant attention over the past decade due to their rich
dynamics [4–10] as well as significance with regards to prac-
tical applications. In particular, TCSs underpin the generation
of coherent microresonator optical frequency combs [11–15],
whose many applications range from telecommunications
[16] and distance measurements [17–19] to spectroscopy
[20,21] and imaging [22].

At their simplest, TCSs manifest themselves in an environ-
ment with full translation invariance. That is to say that the
parameters of the system (including the complex amplitude
of the coherent field driving the resonator) exhibit negligible
variation in time. Under such conditions, the solitons circu-
late the resonator with a constant (intrinsic) group-velocity,
and therefore they appear stationary in a retarded tempo-
ral reference frame that moves with that same velocity. In
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stark contrast, the presence of parameter inhomogeneities—
arising, e.g., from amplitude or phase modulations applied
on the driving field—can cause the solitons to drift in the
solitons’ intrinsic reference frame (as defined in the absence
of inhomogeneities) [23–31]. The parameter inhomogeneity
essentially modifies the solitons’ group-velocity, providing
valuable means to trap TCSs into dedicated temporal positions
or to lock their repetition rate to an external signal [27,29,32–
35]. It is worth noting that, while our study focuses on the
induced soliton motions, inhomogeneity can also have other
impacts on the existence and stability of solitons [36–38].

The complete dynamics of TCSs in the presence of
inhomogeneities can be analyzed exactly by numerically
integrating or solving the underlying equations of motion
(the generalized Lugiato-Lefever equation, LLE). To lessen
the computational burden, and to generate more general
(analytical) insights, several approximate techniques have
also been developed and used to study how the inhomo-
geneity causes the solitons to drift [23–27,29,31,34,39,40].
These approaches typically assume that the soliton is in-
finitely localized and that the parameter inhomogeneity varies
slowly (i.e., linearly) across its extent, yielding the commonly
used result that the TCS drift velocity is directly propor-
tional to the gradient of the perturbation [27,29,31]. The
influence of perturbations that vary nonlinearly across the
soliton have been studied in the context of spatially localized
structures in diffractive resonators [25,41], but the problem
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has not been extensively explored in the context of disper-
sive resonators. In addition to representing a fascinating topic
from a fundamental vantage, understanding how TCSs be-
have in the presence of rapid parameter inhomogeneities is
also of considerable practical relevance. For instance, the
use of bichromatic driving [34,42–46] can in principle yield
arbitrarily fast (harmonic) temporal inhomogeneities, whilst
dispersive waves generated due to higher-order dispersion
[11,47–49] can greatly increase the solitons’ temporal extent
(and thus render nonlinear parameter variations more likely
to occur over that extent). Although the dynamics of TCSs
in the presence of bichromatic driving and dispersive waves
have been studied in the past [34,42,50], to our knowledge
the specific question of how rapidly varying parameter inho-
mogeneities influence the dynamics has not been extensively
explored.

In this paper, we report on a theoretical and numerical
study of TCS motion induced by an inhomogeneity that
varies nonlinearly across the soliton. We demonstrate that,
depending upon the specific parameters, such an inhomo-
geneity can give rise to soliton motion that is manifestly at
odds with simple gradient motion that would be expected for
an infinitely localized soliton subject to a linearly varying
perturbation. We also consider the interplay between parame-
ter inhomogeneities and higher-order dispersion, investigating
how the presence of an extended dispersive wave tail affects
the motion of TCSs. Surprisingly, we find that the disper-
sive wave tail as such does not influence the soliton motion;
instead, higher-order dispersion can modify the soliton drift
dynamics in a highly counterintuitive fashion: external in-
homogeneities that do not overlap with the soliton or its
dispersive wave can nonetheless induce observable drift. In
general, our calculations show that operation close to con-
ditions where higher-order dispersion plays a significant role
leads to diminished soliton velocities, thus reducing the effec-
tiveness of using inhomogeneities to control TCSs. Our results
shed new light on the inhomogeneity-induced motion of TCSs
and could have impact on the control and manipulation of
TCSs in the presence of higher-order dispersion or driving
fields with rapidly varying phase or amplitude.

II. THEORY

We first recount the basic model and theories of soliton
motion pertinent to our study. To this end, we consider a
dispersive ring resonator with Kerr-type nonlinearity that is
coherently driven with laser light. We focus our attention
to the specific scenario where soliton motion is induced by
a rapid inhomogeneity associated with the coherent driving
field, with the inhomogeneity temporally synchronized with
the intrinsic round-trip time of the soliton. Considering disper-
sion to third-order, the evolution of the slowly varying electric
field envelope E (t, τ ) can be modeled using the following
generalized Lugiato-Lefever equation (LLE) [11]:

∂E

∂t
=

[
−1 + i(|E |2 − �) − d1

∂

∂τ
+ i

∂

∂τ 2
+ d3

∂

∂τ 3

]
E

+ S(τ ). (1)

Here, t is the slow time that describes how the intracavity
envelope E (t, τ ) changes from round trip to round trip and
τ is the fast time that describes the field profile within a single
round trip. The terms on the right-hand side of Eq. (1) describe
linear losses; Kerr nonlinearity; linear phase detuning of the
slowly varying envelope’s carrier frequency from the nearest
cavity resonance (� is the detuning parameter); first-, second-,
and third-order dispersion; and coherent driving [S(τ ) is the
driving field amplitude], respectively. For the full normaliza-
tion of Eq. (1), we refer to Ref. [2]. However, to give an idea
of the timescales involved in the soliton motion, we note that
one unit of normalized slow time corresponds to FtR/π in
dimensional units, where F and tR are the resonator finesse
and round-trip time, respectively. For the cavity parameters
discussed in Sec. III C, this yields 3 μs.

The first-order dispersion term (proportional to d1) is in-
cluded in Eq. (1) to eliminate soliton drifts that can occur
in the absence of parameter inhomogeneities; specifically,
the term is used to set the reference frame of Eq. (1) to be
such that it moves with the solitons’ intrinsic group-velocity.
This choice of reference frame reflects our focus on pump
inhomogeneities that are synchronous with the solitons’ in-
trinsic round-trip time (note in this context that the driving
term S(τ ) is stationary in the sense that it does not depend
on the slow time t). In the absence of third-order dispersion
(d3 = 0), TCSs move with the group velocity of the coherent
driving field such that d1 = 0. In contrast, in the presence
of third-order dispersion (d3 �= 0), the solitons experience a
group velocity that is different from the group velocity at the
carrier frequency of the driving field, giving rise to drifts in
the reference frame where d1 = 0 [47,48]. Thus, by choosing
d1 to match the rate of solitons’ intrinsic drift, we reestablish
synchronicity between the inhomogeneity and the soliton,
forcing both to be stationary in the new reference frame. In
what follows, we refer to this reference frame as the solitons’
intrinsic reference frame and, unless otherwise specified, op-
erate in it.

In the absence of pump inhomogeneity, TCSs correspond
to steady-state solutions of Eq. (1) (when the equation is
expressed in the solitons’ intrinsic reference frame with
appropriate d1). To first order, the presence of a weak inho-
mogeneity does not affect the soliton profile, but gives rise
to a drift along the fast time axis. To analyze this motion,
we use theories originally developed in the context of local-
ized structures in spatial systems [23–25]. Assuming a TCS
to be located at τcs, and writing without loss of generality
S(τ ) = S0 + P(τ ), where P(τcs) = 0, theory predicts that the
TCS will drift due to the pump inhomogeneity at a rate given
by [24,25]

v ≡ dτcs

dt
= −〈v0(τ − τcs)|P(τ )〉〈

v0(τ )
∣∣ dEs (τ )

dτ

〉 . (2)

Here, Es(τ ) is the TCS solution to the homogeneous LLE
when centered at τcs = 0, v0(τ ) is the adjoint neutral mode
corresponding to Es(τ ) (associated with translation symmetry
in the homogeneously driven LLE), and the inner product is
defined as

〈 f (τ )|g(τ )〉 ≡
∫ ∞

−∞
fr (τ )gr (τ )dτ +

∫ ∞

−∞
fi(τ )gi(τ )dτ, (3)
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where the subscripts r and i denote the real and imaginary
parts of the (in general) complex-valued functions, respec-
tively. Equation (2) is found in the continuous limit of a
discretized representation of Eq. (1) where the τ axis is sec-
tioned into a finite number of points [24,31]. The continuous
form presented here is more amenable to our forthcoming
analysis, but the discrete version (where the inner products can
be easily evaluated as vector dot products) is better suited for
practical calculations. Note that the minus sign in front of the
right-hand side of Eq. (2) corrects a misprint that is present in
existing literature [31]. Also note that the adjoint neutral mode
v0(τ ) exhibits a sign ambiguity: in what follows, we choose
the sign such that the denominator in Eq. (2) is positive.

Typically, the perturbation P(τ ) is assumed to change
slowly in comparison to the TCS profile, such that a first-order
Taylor series expansion is sufficient, i.e., P(τ ) ≈ dP

dτ
|τcs

(τ −
τcs). In this case, we have

v = −N

(
〈v0r (τ − τcs)|τ − τcs〉dPr

dτ

∣∣∣∣
τcs

+〈v0i(τ − τcs)|τ − τcs〉dPi

dτ

∣∣∣∣
τcs

)
, (4)

where we have defined the (positive) normalizing factor

N ≡ 1〈
v0

∣∣ dEs
dτ

〉 . (5)

When the perturbation is purely real (e.g., for driving field
amplitude modulation [29]) or purely imaginary (e.g., for
driving field phase modulation [27]), Eq. (4) amounts to the
conventional result that the induced drift is proportional to the
gradient of the perturbation at the TCS position. In contrast,
our goal is to demonstrate that this linear approximation is
not always valid in physically realizable circumstances and to
explore the implications that arise as a result. While it would
be tempting to approach this problem by simply including
more Taylor series expansion terms to describe P(τ ), this
plan of attack is unwieldy and unnecessarily computationally
expensive in general. Rather, in what follows, we consider the
full overlap between the adjoint neutral mode and the inho-
mogeneity and use Eq. (2) to gain insights on TCS motion.
We achieve this by finding the steady-state TCS solutions of
Eq. (1) with a multidimensional Newton-Raphson method,
which then allows us to compute the adjoint neutral mode as
described in Refs. [24,31]. To confirm our calculations, we
also perform direct dynamical simulations of Eq. (1) using a
standard split-step Fourier algorithm.

III. RESULTS

A. Impact of rapid parameter inhomogeneities

We begin by providing an illustrative example on how
conventional wisdom based on the assumption of gradient
motion may fail. To this end, we ignore third-order dispersion
(d3 = 0) and consider a driving field that is phase modulated,
S(τ ) ≡ S0 exp[iφ(τ )], with the phase profile φ(τ ) being a
cubic polynomial in the vicinity of the soliton:

φ(τ ) ≡ pτ (τ + q)(τ − q), (6)

FIG. 1. (a), (b) Numerical simulation results, showing TCS dy-
namics with driving amplitude S0 = √

10 and an applied driving
phase modulation φ(τ ) given by Eq. (6) with p = 0.02 and q = 1 for
two different detunings: (a) � = 10 and (b) � = 7. The top panels
show the cubic phase profile (with the local maximum indicated as
a vertical line) while the bottom panels show the simulated soliton
dynamics. Green dashed curves show soliton trajectories predicted
from Eq. (2). (c), (d) TCS intensity profiles (c) and imaginary com-
ponents of the adjoint neutral modes (d) for � = 10 (green dashed
curves) and � = 7 (blue solid curves) compared to φ(τ ) (black,
rescaled vertically for clarity).

where p and q are positive real numbers. If p is chosen to be
sufficiently small, we have in the vicinity of the TCS S(τ ) ≈
S0[1 + iφ(τ )] = S0 + iS0φ(τ ), yielding a purely imaginary
perturbation P(τ ) = iS0φ(τ ). In this case, the linear approx-
imation predicts that the induced drift rate v ≈ 2 dφ

dt , such
that a TCS initially located at τcs = 0 will drift towards the
local phase maximum at τM = −

√
q2/3 [23,27]. While (ap-

proximately) true for large values of q, this prediction fails
as q gets small enough such that the phase gradient changes
substantially across the TCS width. Figure 1 shows results
from numerical simulations of Eq. (1) that illustrate this point.
Here we consider TCS dynamics in the presence of a cubic
phase profile with p = 0.02 and q = 1 with constant driv-
ing intensity S2

0 = 10 but for two different detunings � = 10
[Fig. 1(a)] and � = 7 [Fig. 1(b)]. Despite the solitons being
associated with identical pump inhomogeneity and identical
initial position (τcs = 0), we observe starkly different dynam-
ics for the two detunings. For � = 10, the soliton drifts up the
gradient and becomes trapped near (but not at) the phase max-
imum, whilst for � = 7 the soliton drifts down the gradient.

The qualitatively different behaviors observed in Figs. 1(a)
and 1(b) can be understood by recalling that the width of a
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TCS scales as 1/
√

� [51], with similar scaling implied to the
corresponding adjoint neutral mode v0(τ ) [see Figs. 1(c) and
1(d)]. Specifically, for � = 10, the adjoint neutral mode is
comparatively more localized in the vicinity of τ = 0, where
the product between the adjoint neutral mode and the phase
perturbation yields positive values, thus resulting in an overall
positive value for the corresponding overlap integral in Eq. (3)
[and hence a negative velocity in Eq. (2)]. As a consequence,
the soliton drifts towards the local phase maximum at τM,
but ultimately halts at a position where the overlap between
the imaginary component of the adjoint neutral mode and
the phase perturbation becomes zero (this position can be
seen to be slightly offset from the phase maximum). In stark
contrast, because the adjoint neutral mode is less localized
for � = 7, the full overlap between the phase perturbation
and the adjoint neutral mode yields a negative value (and
hence a positive velocity). As a result, the TCS is pushed
away from the local phase maximum with an accelerating
drift rate in a way similar to that observed in Ref. [25] for
spatial cavity solitons. Around � ≈ 7.5, the overlap integral
transitions from positive to negative and is exactly zero at one
point, in which case the soliton does not move. In all cases,
we find that Eq. (2) provides a good quantitative agreement
with the observed soliton trajectories [dashed green curves in
Figs. 1(a) and 1(b)]. Although not shown here, we remark
that our simulations reveal that the TCS for � = 7 eventu-
ally ceases to exist because the phase perturbation varies too
rapidly across it for sufficiently large τcs.

B. Bichromatic driving

The results shown in Fig. 1 clearly illustrate that, for
sufficiently rapid perturbations, TCS motion is not solely de-
termined by the local gradient of the perturbation. While it
is unlikely that direct (electronic) phase modulation can yield
such rapid perturbations in practice, the use of bichromatic
driving [42–44,46] can in principle yield arbitrarily fast phase
modulations (along with concomitant amplitude modulations
which can affect the overall dynamics). To gain more insights
into such situations, we next consider a bichromatic driving
field of the form S(τ ) = S1 + S2ei�τ and analyze how the
modulation frequency � (the angular frequency spacing of the
driving fields) qualitatively changes the soliton motion. For
the sake of simplicity, we still consider the situation where
third-order dispersion is negligible (d3 = 0).

The analysis pertaining to bichromatic driving is similar
to the analysis considered by earlier works in the context of
localized structures in diffractive systems in the presence of
sinusoidal perturbations [25,41]. We first define P(τ ) such that
it satisfies the assumption P(τcs) = 0 by rewriting the driving
field as

S(τ ) = S0 + S2(ei�τ − ei�τcs ), (7)

where S0 ≡ S(τcs) = S1 + S2ei�τcs is the complex amplitude
of the driving field at the position of the soliton. Substituting
the perturbation P(τ ) = S2(ei�τ − ei�τcs ) into Eq. (2) yields

v = −N〈v0(τ − τcs)|S2(ei�τ − ei�τcs )〉. (8)

When d3 = 0, the adjoint neutral mode, v0(τ − τcs), is an odd
function. In this case, Eq. (8) can be simplified (after some

algebra) into

v = NS2[ur (�) sin(�τcs) − ui(�) cos(�τcs)], (9)

where ur (�) = Im[̃v0r (�)] and ui(�) = Im[̃v0i(�)] are the
imaginary parts of the Fourier transforms of the real and
imaginary parts of the adjoint neutral mode defined through

ṽ0x(�) ≡
∫ ∞

−∞
v0x(τ )ei�τ dτ. (10)

Equation (9) shows that the TCS velocity in the pres-
ence of two driving fields separated by angular frequency
� is dependent upon the Fourier amplitudes of the real and
imaginary parts of the adjoint neutral mode evaluated at �.
To gain more insights, we plot these Fourier coefficients in
Fig. 2(a) for � = 7 and |S0| = √

10. As can be seen, the
magnitudes of both coefficients grow linearly for small �,
but quickly deviate from this trend to peak at � ≈ 2 and
subsequently decay to zero. The initial linear growth of the
Fourier transforms is equivalent to gradient motion, as can
be readily seen by using ux(�) ∝ � in Eq. (9). For ui(�),
the low-frequency slope is equal to −2/(NS2), as expected
to maintain congruence with the familiar expression v = 2 dφ

dτ

known to hold for (purely imaginary) phase perturbations
[23,27,31]. In a similar manner, the slope of ur (�) is equal
to aA(�, |S0|)/N , where aA(�, |S0|) is the drift coefficient
that describes TCS motion under the presence of pure (real)
amplitude inhomogeneities [29].

The dashed lines in Fig. 2(a) show that the linear approxi-
mation to the Fourier amplitudes is accurate until about � ≈
1. However, as � increases, the coefficients deviate from lin-
earity, signaling departure from gradient motion. Figures 2(b)
and 2(c) show numerical simulations of TCS motion under
bichromatic driving at two different frequency separations:
� = 2 [Fig. 2(b)] and � = 10 [Fig. 2(c)]. In both exam-
ples, the trajectories derived from Fourier theory (green solid
curves) agree very closely with the numerical observations.
In Fig. 2(b), the linear prediction (red dashed curve) overesti-
mates the initial speed by approximately a factor of 2, which is
consistent with the comparisons in Fig. 2(a). In Fig. 2(c), the
difference is far greater: the linear prediction angles sharply
towards the expected trapping point, while the Fourier predic-
tion (and the observed trajectory) moves more slowly. This
demonstrates the fact that increasing � will not arbitrarily
increase the induced drift speeds, contradicting the linear
result’s assertion and highlighting how the soliton velocity
decreases asymptotically as the frequency shift � becomes
large. This latter observation can be explained physically by
noting that the soliton is not able to parse the fine structure of
extremely rapid oscillations and will only respond to the mean
field.

Equation (9) demonstrates that, for perturbations that
possess both nonzero real and imaginary parts (such as bichro-
matic driving), the two components add linearly to yield the
total TCS velocity. With knowledge of the total velocity, one
can find the positions at which the TCSs will be trapped. For
bichromatic driving, the fast times where v = 0 are given by

τ0 = 1

�

[
arctan

(
ui(�)

ur (�)

)
+ mπ

]
, (11)
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FIG. 2. (a) ur (�) (light blue solid line) and ui(�) (dark red solid line) at � = 7 and |S0| = √
10 compared with the corresponding linear

predictions (dashed lines with denoted gradients). (b, c) Simulation results for a bichromatic driving field with � = 7, S1 = √
10, and S2 = 0.1,

and (b) � = 2 and (c) � = 10. The top panels show the final steady-state TCS profiles (blue dashed lines) superimposed with the intensity of
the driving field |S(τ )|2 (black solid lines) on the same scale. Pseudocolor plots in the bottom panels show the simulated TCS dynamics while
the dashed red and solid green curves show predictions from the linear and Fourier theories, respectively. (d) Simulation of solitons initialized
within a bichromatic driving field now with S2 = 0.2 and � = 0.2. The top panel shows the driving field intensity (solid black) and phase
(dashed red) with TCS trapping points predicted by Eq. (11) shown as vertical blue lines. The bottom panel is a pseudocolor plot of soliton
trajectories, while the middle panel shows their final positions.

where m is an integer. Equation (11) shows that, within each
period 2π/�, there are in general two fixed points. However,
only every other point is stable, with the stable trapping points
all being on the same side of the phase (or amplitude) maxima
of the driving field and thus naturally repeating at the period
of 2π/�. We illustrate this point in Fig. 2(d), where we show
results from simulations where five TCSs are initialized at
different positions along the driving field. The bottom panel
shows the electric field intensity evolving in slow time, the
middle panel shows the steady-state configuration to which it
converges, and the top panel presents the driving field inten-
sity (black solid curve) and phase (red dotted curve). As can
been seen, all of the solitons are attracted to positions on the
trailing edges of driving amplitude maxima, coinciding with
the stable trapping positions predicted by Eq. (11) (indicated
in the top panel by vertical lines). Note that our results agree
with recent findings where bichromatic driving was lever-
aged to realize perfectly periodic TCS sequences and hence
study discrete time crystals [46]. It is also worth noting that
Figs. 2(b) and 2(c) give evidence that the trapping points cal-
culated using the linear approximation [Eq. (4)] agree closely
with the full result—though the trajectories are notably differ-
ent. This is because the arctan function in Eq. (11) deviates
relatively little from its � = 0 value over the range of inputs
ui(�)/ur (�), and what deviation is present is diminished by
the factor of 1/�.

Before proceeding, we note that the adjoint neutral mode
v0(τ ) depends on the driving amplitude at the TCS position
|S0|. Correctly computing trajectories like those in Fig. 2 will,
in principle, necessitate finding the adjoint neutral mode at
every driving amplitude present along the trajectory. However,
if S2 is small, v0(τ ) (and the corresponding Fourier ampli-
tudes) will change very little, in which case computing one
v0(τ ) and treating that as applicable throughout (as we did
in Fig. 2) is sufficient. We also note that, as per our focus
on inhomogeneities that are synchronous with the resonator
round-trip time, our analysis above pertains to the special case

in which the frequency difference between the two driving
fields is an exact integer multiple of the cavity free-spectral
range. It is only in this special case that the superposition
driving field S(τ ) does not depend on the slow time t . In
the more general case of arbitrary frequency differences, the
driving field depends on the slow time t , giving rise to an
intracavity pattern that drifts in the natural reference frame
of the soliton [34,43,44]. Analysis of soliton motion within
this more general scenario would require significant (Floquet
type) extension of the methodology used in our work and is
therefore left for future work. We also note that, to obtain
the special case where the bichromatic driving field S(τ )
does not depend on slow time t , the detunings of the two
driving fields must be related in a manner that prevents phase
matching for the spectral extension processes studied, e.g., in
Refs. [43–45].

C. Third-order dispersion

So far, we have considered scenarios involving an in-
trinsically rapid parameter inhomogeneity. However, even a
modest inhomogeneity can become comparatively rapid if the
temporal extent of the soliton is broadened through some
mechanism—we now focus our attention to this latter sce-
nario. Specifically, it is well known that TCSs excited close
to the zero-dispersion point of the resonator develop an ex-
tended oscillatory tail due to higher-order dispersion [11,47–
49]. To the best of our knowledge, the impact of parameter
inhomogeneities on such near-zero-dispersion TCSs [52–55]
has not yet been investigated. This gap in the literature is
significant, since third-order dispersion and inhomogeneities
are both used to improve frequency combs; thus they have
a natural synergy. In particular, third-order dispersion can
spectrally broaden [11,47,49] and reduce phase noise in fre-
quency combs (by counteracting Raman scattering to operate
at so-called quiet points) [56,57]. Driving inhomogeneities are
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FIG. 3. (a) Spectral and (b) temporal intensity profiles of a near-
zero-dispersion TCS generated with S0 = √

10, � = 5.5, and d3 = 3
in the absence of any parameter inhomogeneities. (c) A pseudocolor
plot of the soliton’s evolution in the reference frame moving at the
group velocity at the carrier frequency of the driving field (i.e., with
d1 = 0).

also used to reduce frequency comb phase noise [32], which
motivates pairing them with third-order dispersion.

Figure 3 recalls well-known characteristics of a typical
TCS in the presence of significant third-order dispersion (d3 =
3, for other parameters, see caption) and in the absence of
any parameter inhomogeneity. Due to third-order dispersion,
the TCS emits a dispersive wave (DW) that appears in the
intracavity spectrum as a sharp peak in the normal dispersion

regime [cf. Fig. 3(a)]. In the temporal domain, the dispersive
wave interferes with the background on top of which the soli-
ton sits, resulting in an extended oscillatory tail [cf. Fig. 3(b)].
Moreover, the soliton (and the DW attached to it) undergoes
constant temporal drift (in the pump reference frame with
d1 = 0) as shown in Fig. 3(c): here the soliton can be seen
to drift at a rate of vd = dτcs

dt ≈ 3.3.
Systematic analysis of near-zero-dispersion TCS motion

in the presence of parameter inhomogeneities is significantly
complicated by the solitons’ intrinsic drift. This is in particular
due to the rate of drift (vd) depending on the detuning � and
the driving amplitude |S|, thus forcing a different reference
frame (d1) to be used at all different positions when the in-
homogeneity lies in either of these parameters. However, the
drift rate does not depend on the phase of the driving field,
allowing motions induced by phase modulations of that field
to be examined in a single reference frame. We therefore focus
our attention on pure phase modulations of the driving field.
Moreover, in what follows, all calculations of soliton motion
have been performed in the soliton’s intrinsic reference frame,
i.e., with the parameter d1 chosen to match the soliton’s drift
speed under homogeneous driving. This essentially ensures
that the soliton’s motion is represented by a drift in the ref-
erence frame where the soliton would be stationary in the
absence of inhomogeneities.

Figure 4(a) shows the (imaginary part of the) adjoint
neutral mode (blue solid curve) associated with the near-zero-
dispersion soliton (red dashed curve) considered in Fig. 3.
As with the soliton’s intensity profile, third-order dispersion
manifests itself in the form of an oscillatory tail in the ad-
joint neutral mode. But rather surprisingly, while the DW tail

FIG. 4. (a) The imaginary part of the adjoint neutral mode (blue solid curve) corresponding to a TCS with S0 = √
10, � = 5.5, and d3 = 3,

whose intensity profile is shown as a red dashed curve. See Fig. 3 for further temporal and spectral characteristics of the soliton. (b)–(e) Soliton
dynamics in the presence of a semirectangular phase modulation that (b), (c) leads and (d), (e) trails the soliton. The top panels show the phase
profiles of the driving field, S = S0 exp[iφ(τ )], while the pseudocolor plots in the bottom show dynamical simulations of soliton behaviors.
Panels (b) and (d) differ in fast timescale from (c) and (e): the former pair highlights the scale of the driving phase perturbation relative to
the soliton; the latter pair focuses on the soliton core to highlight the induced motion (or lack thereof). Vertical dashed lines in panels (b) and
(d) indicate the extent of the fast time axes in panels (c) and (e). (f) The steady-state intracavity field phase profile with driving parameters as
in panels (b) and (c) but with no soliton initialized in the cavity.
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trails the soliton’s intensity profile, the adjoint neutral mode
is associated with a tail that leads the mode. This feature
is not a numerical artifact, but is representative of the TCS
dynamics in the presence of third-order dispersion. To show
this, we consider two driving field phase inhomogeneities
that are nonzero only in regions that lead or trail the soliton.
Figures 4(b)–4(e) shows results from LLE simulations that
consider such inhomogeneities [Figs. 4(c) and 4(e) show the
same simulations as Figs. 4(b) and 4(d), respectively, but on
different fast timescales]. As can be seen, an inhomogeneity
that leads the soliton [Figs. 4(b) and 4(c)] gives rise to no-
ticeable motion; in contrast, an inhomogeneity that trails the
soliton [Figs. 4(d) and 4(e)] does not enact observable motion,
as the adjoint neutral mode is essentially zero in the region
where the inhomogeneity is nonzero. The LLE simulations
shown in Figs. 4(b)–4(e) clearly corroborate the fact that the
adjoint neutral mode extends towards the leading edge of the
soliton. As further evidence, the dashed curves in Figs. 4(c)
and 4(e) show the soliton trajectories as predicted by the over-
lap integral of Eq. (2), and again we observe good agreement
with the simulation results.

On the one hand, the results shown in Fig. 4 confirm
the intuition that, by extending the soliton’s temporal extent,
higher-order dispersion permits parameter inhomogeneities to
act upon TCSs over a broader temporal range. On the other
hand, the specifics of the interaction are unexpected: the tem-
poral domain where interactions can take place (as determined
by the adjoint neutral mode) is extended in a direction that
is opposite to the direction in which the soliton’s intensity
profile is extended (the DW tail). To understand this result,
we recall that the soliton responds to the intracavity phase
profile, not the driving phase profile directly. When d3 is
nonzero, the intracavity phase profile responds to an external
phase modulation by developing oscillating tails—even in the
absence of a soliton—that extend in the same direction as the
oscillating tail of the soliton DW (e.g., for results in Fig. 4,
the tail trails the phase inhomogeneity). This is portrayed in
Fig. 4(f), which shows such an intracavity phase profile for the
driving phase profile in the top panel of Fig. 4(b) but with no
soliton in the resonator. When the driving phase perturbation
leads the soliton, the intracavity phase tail can overlap with
the soliton’s core (even if the external inhomogeneity does
not) and influence its dynamics. However, a driving phase
perturbation that trails the soliton has no extended tail in the
negative τ direction and thus no effect on the soliton which
precedes it. This directional ranged influence of phase inho-
mogeneities with third-order dispersion is incorporated within
the adjoint neutral mode’s “reversed” tail. In this context, it is
worth noting that the results indicate that the soliton’s DW tail
does not participate in the dynamics at all, but rather it is the
overlap between the intracavity phase profile and the soliton
core that dictates the drift.

The extended domain through which inhomogeneities can
act upon TCSs seemingly implies that the range of per-
turbations that satisfy the linear approximation [Eq. (4)] is
substantially constrained. However, because the tail of the
adjoint neutral mode oscillates around zero [see Fig. 4(a)], we
generically find that this tail contributes comparatively little
to the overall soliton velocity [assuming that the perturbation
does not change rapidly with respect to the oscillations, as

FIG. 5. (a) The trajectory of a soliton with |S| = √
10, � = 5.5,

d3 = 3, and the phase profile φ(τ ) = 0.1 sin(0.5τ ). The top panel
shows φ(τ ) (black solid curve) alongside the initial intracavity elec-
tric field intensity profile (blue dashed curve), while the bottom panel
overlays the simulated dynamics with the trajectories predicted by
Eq. (2) (green solid curve) and its linear approximation Eq. (4) (red
dashed curve). (b), (c) The proportionality between soliton speeds
and phase gradients (b) without and (c) with compensation for the
normalization.

was the case in Figs. 4(b)–4(e)]. As such, the induced velocity
is almost entirely determined by the perturbation near the
soliton core. Despite higher-order dispersion extending the
soliton’s temporal profile through the DW tail, the condition
for a perturbation to be sufficiently narrow for the linear ap-
proximation to be valid remains approximately the same as in
the absence of higher-order dispersion. We demonstrate this
point in Fig. 5(a), where we subject a soliton to a sinusoidal
phase perturbation that is narrow compared to the full soli-
ton structure but broad compared to the core of the soliton
(see the top panel). The bottom panel shows the soliton’s
trajectory under this modulation along with the predictions
of Eq. (2) (green solid curve) and its linear approximation,
Eq. (4) (red dashed curve). As can be seen, the linear approx-
imation agrees closely with both the full prediction and the
simulated soliton trajectory. These results support the claim
that the linear approximation can work well despite P(τ )
changing nonlinearly across the entire footprint of the soliton
that includes the DW tail.

Knowing that the linear approximation of soliton motion
remains broadly appropriate despite an extended DW tail al-
lows us to analyze how higher-order dispersion influences the
soliton drift velocities. Considering phase-modulated driving
fields specifically, we obtain from Eq. (4) that, in the linear
approximation, v = aP

dφ

dτ
, where

aP = − N

S0
〈v0i(τ − τcs)|τ − τcs〉. (12)

Figure 5(b) shows the phase modulation drift coefficient aP

as a function of the third-order dispersion coefficient d3 (for
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� = 5.5 and |S| = √
10). As expected, aP = 2 in the absence

of third-order dispersion (d3 = 0). However, as d3 increases,
the drift coefficient initially decreases, but quickly starts to
increase for d3 > 0.12.

The results shown in Fig. 5(b) suggest that the third-order
dispersion coefficient d3 can increase the magnitude of the
soliton drift velocity. While this is true in the context of the
normalized model described by Eq. (1), it is important to
consider the physical results in dimensional units. To this end,
we first recall that Eq. (1) is normalized such that [2]

d3 ≡
√

2α

9L

β3

|β2| 3
2

, (13)

where α is half the total cavity loss, L is the cavity round-
trip length, and β2 and β3 are the un-normalized second-
and third-order dispersion coefficients, respectively. While d3

can theoretically be increased by increasing the third-order
dispersion coefficient β3, in practice it is much more straight-
forward to decrease the second-order dispersion coefficient
|β2| (by pumping the resonator closer to the zero-dispersion
point). However, decreasing β2 also decreases the soliton drift
velocity, which in dimensional units reads

v′ = dτ ′
cs

dt ′ = L

2tR
|β2|aP

dφ

dτ ′ ≡ a′
P

dφ

dτ ′ , (14)

where v′, τ ′
cs, and t ′ are the dimensional equivalents of the

unprimed versions and tR is the round-trip time. We thus see
that decreasing |β2| directly decreases the amount of drift
induced by a given (phase) inhomogeneity.

To illustrate how the physical drift velocity in dimensional
units varies with increasing d3, we consider the resonator used
in experiments reported in Ref. [53]. The resonator has a
round-trip length of 5 m, a round-trip time of 24 ns, a finesse
of 400, a zero-dispersion wavelength (ZDW) of 1564.5 nm,
and a third-order dispersion coefficient of β3 = 0.13 ps3 km−1

at the ZDW. We consider a range of pump wavelengths
around the ZDW, and for each wavelength we compute
the normalized third-order dispersion coefficient d3 and the
proportionality coefficient a′

P. Results are shown in Fig. 5(c).

As can clearly be seen, in dimensional units, the propor-
tionality coefficient rapidly decreases with increasing d3.
These results thus suggest that, in real physical systems,
the capability of phase modulation to control TCS position-
ing and motion is significantly diminished when operating
under conditions where higher-order dispersion plays a sig-
nificant role (i.e., under conditions of low group-velocity
dispersion |β2|). This is physically reasonable, since the in-
stantaneous frequency shift imparted by a phase gradient
will shift the soliton’s group velocity very little near-zero-
dispersion. Counteracting this mechanism would require the
normalized drift coefficients to increase significantly as a
function of d3, which does not happen [see Fig. 5(b)].

IV. CONCLUSIONS

In summary, we have reported on a theoretical and nu-
merical study that explores how temporal Kerr cavity solitons
behave in the presence of parameter inhomogeneities that vary
rapidly across the solitons’ extent. We have shown how the
conventional linear approximation used to examine soliton
motion can fail and lead to qualitatively and quantitatively
inaccurate predictions. Moreover, we have shown that the
motion of TCSs in the presence of bichromatic driving fields is
dictated by the Fourier transforms of the solitons’ adjoint neu-
tral mode, and we have unveiled surprising features of TCSs in
the presence of higher-order dispersion. In addition to further
elucidating the dynamics of temporal Kerr cavity solitons in
the presence of parameter inhomogeneities, our results could
have practical implications for experimental systems utilizing
bichromatic pumping or for systems in which higher-order
dispersion plays an important role, such as those used, e.g.,
in Refs. [43–45,52–55].
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