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Polarization-sensitive second-harmonic-generation microscopy (pSHGM) allows one to determine the molec-
ular orientation of harmonophores. Conventional point scanning based pSHGM is time consuming and subject
to the assumption of the cylinder symmetry of the sample. Here, we propose a wide-field pSHGM measurement
scheme that is able to measure the second-order nonlinear polarization tensor. The measurement scheme is based
on first-order Born approximation, from which the relation between incident fundamental wave, second harmonic
wave, and nonlinear polarization tensor has been established. It suggests that the polarization tensor can be solved
by measuring the vectorial second harmonic complex fields corresponding to three independent polarization
states of the incident fundamental wave. An experiment on measuring the supramolecular orientations, in terms
of their symmetric axis, of myosin in rat muscle tissue has been carried out to demonstrate the proposed
measurement scheme. Benefiting from the ability of recording the second harmonic signal from different
positions parallelly, the proposed method possesses a higher imaging frame rate compared to point scanning
based pSHGM. With the present configuration, it takes 0.01 s to acquire a 128×128 pixels image, which is
mainly limited by the excitation power density for wide-field illumination. For the same data throughput using
pixel-by-pixel scanning, 0.16 s acquisition time is required for a pixel dwell time of 10 µs. Having the ability of
wide-field imaging and polarization measurement, the present work also lays a foundation for high-resolution
SHG microscopy using computed tomography.
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I. INTRODUCTION

The mechanical and rheological properties of biological
tissues are closely related to the anisotropic characteristics and
orientation of the forming structures [1]. Second-harmonic-
generation (SHG) microscopy is a powerful technique in
revealing such structures [2–4], since the SHG signal carries
the information about not only intensity distribution but also
polarization that is sensitive to the orientation and molecu-
lar level symmetry of the microstructure [5,6]. For instance,
nanoscale research has revealed that the hyperpolarization
of myosin in muscle and fibrous collagen, which are com-
mon SHG resources in biological tissue, exhibit approximate
cylinder symmetry (C∞) [7–10]. Under the cylinder symmetry
assumption, the relation between SHG signal intensity and
the polarization direction of an incident fundamental wave re-
flects the unique orientation of the harmonophores within the
illumination area [11]. Existing polarization-sensitive second-
harmonic-generation microscopy (pSHGM) mainly based on
raster scanning of a polarization-controlled and loosely fo-
cused laser spot (in order to avoid undesired polarization vari-
ation of tight focusing), collects the SHG signal strength under
different incident laser polarization directions [5,12–16].
Stoller et al. determined the orientation for each scanning
point by continuously modulating the polarization angle of the
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incident fundamental wave and measured the phase shift of
the modulated SHG signal [11]. The imaging frame rate was
reduced significantly compared to non-polarization-sensitive
SHG microscopy by a factor determined by the points within
a modulation period for resolving the phase shift with such
approach. With an improved method that controlled both the
polarizations of the fundamental and the SHG wave, the speed
of pSHGM can be boosted to a certain extent, since fewer po-
larization angles were required [17–19]. However, due to the
inherent low frame rate of the point scanning method, pSHGM
remains limited to a small range of applications. More impor-
tantly, the above scheme based on light intensity measurement
relies on the assumption that the hyperpolarization tensor is
cylindrical symmetry. Even though such assumption holds
for fibrous myosin and collagen in biological tissue, a more
general measurement method that is not model dependent is
desired for measuring more complex structures.

A promising approach to overcoming the low-speed is-
sue would be realizing wide-field SHG imaging, in which
an ensemble of sample points is illuminated and imaged
simultaneously [20–25]. In these schemes, the sample was
placed at the focus of a condenser lens having low numer-
ical aperture (NA) to realize “wide-field” (relative to point
scanning, usually in tens of micrometers limited by incident
light power) illumination. In addition, the coherent character-
istic of the harmonic signal allows one to record its complex
field distribution, including both amplitude and phase distribu-
tions, via common holography methods [23]. A combination
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of the intensity-based pSHGM scheme and the wide-field
measurement has been realized with the speed of recording
each image in milliseconds [19]. On the other hand, point
scanning interferometric SHG microscopy has been proposed,
which is able to resolve the polarization orientation of fibrous
collagen in tendons by measuring the relative phase between
a reference and the sample-induced SHG fields [16,26–28].
Although the orientation can be probed without resorting to its
relationship with intensity, this technique is also limited to the
cylindrically symmetric samples since there is no polarization
management.

In this paper, we propose a wide-field and universal
pSHGM scheme with the help of polarized complex field
sensing. A model describing the relation between the vec-
torial SHG complex field and the second-order nonlinear
polarization tensor in weakly scattering media is first derived.
Under first-order Born approximation in the weakly scattering
regime for both the fundamental and the second harmonic
waves, we show that each harmonophore acts as an indepen-
dent source emitting a spherical wave at the second harmonic
(SH) of the incident wave. In this sense, the harmonophore
is an analogy to the scatterer in the linear scattering process
under the above weakly scattering assumption. The sample’s
polarization tensor can then be obtained by solving the algebra
equations with different input and output polarization states.
Experimentally, a microscope images the SHG field induced
in the sample on a plane detector and a standard off-axis
interferometer records the complex field. We further adopt
complex field deconvolution, in which the complex valued
amplitude point spread function (APSF) is experimentally
measured, to the SHG field to improve both lateral and axial
resolutions. The overall scheme is summarized as pSHGM
using wide-field deconvolution of a polarized complex field
(pSHGM WD PCF) technique. Finally, we demonstrate the
pSHGM WD PCF for measuring the hyperpolarization tensor
of myosin in rat muscle tissue.

II. THEORY

We first derive the complex and vectorial field of a gen-
erated second harmonic signal in inhomogeneous but weakly
scattering nonlinear media. When the thickness of the speci-
men is below the transport mean free path, most of the photons
are transmitted without encountering any scatter, being bal-
listic photons; a small portion encountered scatter once and
changed their phase and transmission direction. In the wave
perspective, the transmitted optical field can be decomposed
into a dominating free-propagating wave and a scattered wave
as perturbation [29] (Appendix B). To show this, we measured
the optical field of the transmitted illumination wave (illu-
mination wavelength λ = 721 nm) through mice (C57/Bl6)
muscle tissues in different thicknesses. For a relatively thin
tissue slice (20 µm), good uniform distribution both for the
intensity and phase can be observed [Figs. 1(a) and 1(d)].
The standard deviation normalized to the mean value of the
data along the plotted dashed lines are within 0.76% and
0.93 rad, respectively. For the 200 µm thick tissue slice, these
values increase to 18.76% and >2π rad. This indicates that
the nonperturbed illumination wave dominates the overall
fundamental wave within thin tissues. The reduced scattering

FIG. 1. Measurement results of transmitted illumination wave
through tissues in different thickness and illustration of weak scat-
tering. (a), (b) show the transmitted images for 20 and 200 µm mice
(C57/Bl6) muscle tissues, respectively. (c) The intensity profiles for
20 µm tissue [dashed line in (a)] and for 200 µm tissue [dashed line
in (b)]. (d), (e) show the measured phase distributions corresponding
to the highlighted area in (a), (b). (f) The phase profiles for 20 µm
tissue [dashed line in (d)] and for 200 µm tissue [dashed line in (e)].
(g) Schematic diagram showing the relation between overall optical
field and unscattered field at the fundamental (ω0) and the SH (2ω0)
waves. Note that the polarization of the fundamental and the SH
waves is shown as the projection on the Real plane. (h) Illustrates
that the wave propagation in SHG under first-Born approximation
can be viewed as the harmonophores emitting the SHG wave. The
imaging optics converts the object field into a phase-conjugated field
in the image space. Scale bars: (a), (b) 10 µm; (d), (e) 5 µm.

coefficient at the second harmonic wavelength (400 nm) is
about 3 times larger than in the fundamental wavelength ac-
cording to the survey in Ref. [30], meaning that the scattering
effect of the SH wave may be of the same order as for the
fundamental wave at 60 µm thickness. Therefore, considering
such weak scattering, first-order Born approximation can be
applied at both the fundamental and the SH waves for thin
tissues (Appendix B), which suggests that the driving source
for the SHG mainly includes the unscattered illumination
fundamental wave and the detected SH optical field mainly
comes from the unscattered SH wave.

Based on the first-order Born approximation, the governing

equation of the unscattered SHG field vector
⇀

ESHG can be
expressed as (Appendix B)
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where χ
(2)

is the second-order nonlinear polarization tensor

and
⇀

E ill
ω0

is the vector of the unscattered part of illuminat-
ing wave, which dominates the fundamental wave and freely
propagates through the sample without perturbation; k2 and
n̄2 are the wave number of the SH wave in vacuum and
the spatially averaged refractive index at the SH frequency,
respectively (Appendix B). The vectorial Helmholtz equation
(1) can be solved with the Green’s function [31–33] with

driving force −k2
2[χ (2)(

⇀
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]. It simply indicates that
the optical field of the SHG wave is a superposition of waves
emitting by all point sources located at the harmonophores:
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where G(
⇀

r,
⇀

r
′
) is the Green’s function. This process is illus-

trated in Fig. 1(h), in which an individual point within the
harmonophore emits a spherical wave with the excitation of

the fundamental wave and the SH field
⇀

ESHG is superposed
by these spherical waves. With an imaging configuration, the
image and the objective planes are in conjugation with a
magnification factor M, so that EI

SHG (M
⇀

r ) = [EO
SHG (

⇀

r )]
∗
,

in which x∗ denotes the conjugation of a complex value x.
Therefore, the complex value of the generated SH wave in
the object space can be obtained by holographically recording
the complex field in the image plane. For a linearly polarized

illumination light, the generated
⇀

ESHG at location
⇀

r within the
sample can be expressed in terms of a Jones tensor according
to Eq. (2) [34]:
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or denoted as
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ik j . Note that if χ

(2)
is anisotropic, the refractive

index is very likely to be anisotropic, which means that the

driving force for SHG
⇀

Eωill
0

may not be parallel to the in-
cident wave. However, since the refractive index anisotropy
in biological tissue is small [35], the polarization variation
caused only causes an approximation error in Eq. (3). Further-
more, the components involving the z axis can be neglected
compared to the other two components [36]. The error of
approximation is determined by the intensity of scattering of
both the fundamental and the second harmonic waves as well
as the nonparallel components due to refractive anisotropy,
as illustrated in Fig. 1(g). The actual relationship should

be
⇀

E2ω0 (
⇀

r ) = Jactual(
⇀

r ) ·
⇀

Eω0 (
⇀

r ) instead of Eq. (3). However,
since the scattering fields are weak as described above, the
Eq. (3) is in fact a good approximation. To solve the 2×3

elements in J
(2)

, three independent vectors of
⇀

Eill can be found
by selecting proper polarization of the incident beam, e.g., 0,

π /4, π /2. In this way, we have
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where ESHG
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3×3 are matrices formed by
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Complex deconvolution. One side effect of the wide-field
excitation and imaging configuration, in contrast to point
scanning, is the interference between all the harmonophores,
since they are excited simultaneously. Such effect in the imag-
ing mode is embodied as the 3D complex-valued amplitude
point spread function (APSF) of the imaging optics [37]. A
single point SHG emitter in the sample is imaged as a spread
spot, so that the image is formed by convolution between the
SHG complex field and the APSF of the imaging optics:
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∫ +∞
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where
⇀

EI and
⇀

EO are the complex fields in imaging and object
space, respectively; M is the magnification factor. Note that
the APSF h(

⇀

r ) is in scalar form, based on the fact that most of
the imaging optics are polarization insensitive, including our
experimental setup. In the spatial frequency domain, Eq. (6)
can be expressed as
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where
⇀

E I and
⇀

EO are the spatial spectra obtained via three-

dimensional (3D) Fourier transform of
⇀

EI ,
⇀

EO; h is the
coherent transfer function (CTF) of the imaging system.
Given the ability to access the vectorial complex field of SHG
by the proposed method, the complex inverse filtering tech-
nique can be applied for deconvolution of the transmitted SHG
images, thus reducing the detrimental impact of interference
from adjacent harmonophores. Mathematically, the inverse fil-

tering can be performed by simple division of
⇀

E I (
⇀

k ) by h(
⇀

k );

however, this will amplify noise for small values of h(
⇀

k ).

Low-pass filtering to
⇀

E I (
⇀

k ) is necessary to suppress noises
outside the spectral region supported by the imaging optics:
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⇀
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⇀

k )�kmax(
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k ), (8)

where �kmax (
⇀

k ) is a circle-domain function that is equal
to 1 within the circle domain with radius less than kmax

and 0 otherwise, and kmax indicates the maximum spatial
frequency that can be accepted by the imaging system
(kmax = k2NA, where k2 is the wave number in the second
harmonic wavelength and NA is the numerical aperture). As
a consequence, the CTF is accordingly bandwidth limited by

dividing the low-passed spectrum
⇀

E
′
I (

⇀

k ).
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FIG. 2. Illustration of measurement scheme. (a) Experimental
setup. BBO: beta barium borate crystal; HWP: half-wave plate; SP:
short-pass filter; Pol.: polarizer; TL: tube lens; NPBS: nonpolar-
ized beam splitter; sCMOS: scientific complementary metal-oxide
semiconductor camera. (b) Illustration of polarization control and

detection. Three linearly polarized illumination states
⇀

E ill
1 ,

⇀

E ill
2 , and

⇀

E ill
3 are used and the corresponding SH signals are detected in the x

and y directions.
⇀

Zs represents the symmetric axis of the sample and
the included angle to the x axis is defined as the azimuthal angle ψ .
(c) Signal processing flow (cf. the main text).

III. RESULTS

The proposed pSHGM WD PCF scheme was carried out
on a microscope modified from our holographic SHG imaging
platform [38], as shown in Fig. 2(a). A femtosecond (fs)
pulse laser (Mira HP, Coherent Corp., USA) was tuned to
800 nm and focused onto a beta barium borate (BBO) crystal
(Huate Material Corp., China) to generate a SHG signal as
the reference in the following off-axis interferometry. The
collimated fundamental and SHG waves were separated by
a dichroic mirror (Chroma, T425lpxr), after which the funda-
mental wave was steered to the sample and the SHG signal
to the reference path. The sample was placed at the focus
of an aspheric condenser (ACL2018U-B, Thorlabs, USA) for
wide-field illumination. The 1/e radius of the illumination
spot was measured through the objective to be 18.86 µm
[Fig. 7(b)] and the power reaching the sample was about 980
mW. This results in a peak intensity of about 6.76 GW/cm2

at the sample according to the relation Ipeak = Ppeak/S =
[Pavg/( frepτ )]/(πR2), where the repetition rate and the pulse
width were measured to be frep = 76.3 MHz and τ = 170 fs.

Both simulation and measurement results (Fig. 7) show that
the fundamental field can be well approximated as a plane
wave at the condenser’s focus for the thin samples that we
used (less than 50 µm), which provides the exact form of

the incident field [the Eill
3×3(

⇀

r ) in Eqs. (3)–(5)]. An objective
(Nikon Plan Fluor 40×, NA = 0.75) collects the generated
SH signal, after passing through a short-pass filter (Chroma,
ET525sp-2p) and a tube lens, to a scientific complementary
metal-oxide semiconductor (sCMOS) camera (Andor SONA,
UK). A time-delayed configuration was set to the reference
beam path for optimizing the temporal overlap between the
reference and the object pulse chains. To produce a clean
referencing beam, a spatial filter [not shown in Fig. 2(a)] was
placed within the reference path.

Three elements were utilized to determine the excitation
and the generated SH wave polarizations; i.e., a half-wave
plate at the fundamental wavelength (HWP@800 nm) con-
trolled the excitation polarization. A polarizer placed after the
nonpolarized beam splitter (NPBS) determined the detected
polarization and a half-wave plate at the SHG wavelength
(HWP@400 nm) adapted the polarization of the reference
beam to the direction of the polarizer. Figure 2(b) illustrates
our polarization detection scheme. The polarization of the
generated SH signal is a function of both the illuminating
fundamental wave and the sample’s nonlinear tensor. To re-
solve the tensor elements, Eq. (5) can be adopted; i.e., we
illuminated the sample with three linearly polarized lasers

(
⇀

E ill
1 ,

⇀

E ill
2 , and

⇀

E ill
3 ) sequentially and measured the complex

field of the SH signal in both the x and y axes. The overall
signal processing is illustrated in Fig. 2(c). For each polariza-
tion component, a stack of interferograms was recorded and
deconvolved. The resulting complex field times the inverse of
illumination polarization tensor allows us to obtain the sample
nonlinear tensor.

The APSF was measured experimentally using a ZnO
nanoparticle with a diameter of 95 nm (Nanostructured &
Amorphous Materials, Inc., USA), which is able to emit a
sufficient SHG signal by confining the fundamental elec-
tromagnet wave through Mie scattering [39]. With standard
optics, the diffraction image of the nanoparticle at focus is
only covered by a few pixels, which challenges the off-axis
interferometry. Previous works used a defocused image and
applied Fresnel propagation to obtain the complex field at
focus. We found that the calculation of the propagation pro-
cess may introduce noise due to, e.g., the uncertainty of the
propagation distance and/or the retrieved complex field from
the measured plane. Instead, a further 5× zoom lens (Newport
M-5×, USA) was deployed for further amplification of the
diffracted image of the ZnO nanoparticle so that there are
sufficient fringes within the Airy disk [Fig. 3(a)]. Results were
obtained with such implementation throughout the article un-
less specifically noted. Further amplification may reduce the
effective field of view (FOV) (in our case only 20% of the
origin FOV); however, since the SHG images at present are
about 20 µm limited by the focus of the illumination con-
denser, the reduced FOV is still large enough to cover the
full image. Note that even in scanning interferometric second-
harmonic-generation microscopy, where the power density is
sufficient high, a small effective FOV may occur due to a
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FIG. 3. Characterization of the system APSF and complex de-
convolution of ZnO nanoparticle phantom. (a) Off-axis hologram of
ZnO particle at focus. (b), (c) Recovered amplitudes in the xy and
xz planes, respectively. (d), (h) Recovered phases in the xy and xz
planes, respectively. (e) Spatial spectrum of the hologram in (a). (f)
Spatial spectrum of the complex field of ZnO nanoparticle that is
isolated and shifted from (e). (g) Spatial spectrum in kx-kz direction.
(i), (j) 3D illustrations of nanoparticle suspension before and after
complex deconvolution, respectively. (k1,k3) are xy and xz sections
of the nanoparticle suspension highlighted in (i). (k2,k4) are xy and
xz sections of the deconvolved nanoparticle suspension highlighted
in (j). scale bars: (a)–(d), (h) 1 µm; (e)–(g) 20 rad/ µm; (k1–k4) 1 µm.
(i), (j) 20 µm×20 µm×40 µm.

decrease of temporal alignment between the reference and
sample SH signals at the noncentral area [16,38]. A stack
of off-axis interferograms was obtained by translating the
sample through focus, and each of the interferograms was
processed using a Hilbert transform based technique to form
a 3D APSF [Figs. 3(b)–3(d) and 3(h)]. The interferogram of
the Airy disk is shown in Fig. 3(a) within the dashed circle,
and upper band of its spatial spectrum [Fig. 3(e)] within the
dashed circle was isolated and moved to the origin of the
spatial frequency domain to complete analytic signal gener-
ation. The amplitudes at the focus in the xy and xz planes
are shown in Figs. 3(b) and 3(c), in which the first min-
ima give the resolution of 432 and 2580 nm in lateral and
axial directions, respectively. They are slightly larger than
theoretical predictions, due to the observable [Figs. 3(c) and
3(h)] existence of spherical aberration. On the other hand,
the supported spectral range along the lateral and the axial
directions was measured as 20.97 and 5.31 rad/µm, which is
in good agreement with theoretical values of our objective
with NA = 0.75 (lateral: 2k400nm sin(0.75) = 21.4 rad/µm
and axial: k400nm{1− cos[sin−1(0.75)]} = 5.32 rad/µm). This
shows that the CTF possesses a sharp edge at the cutoff
frequency and is different from the intensity-based optical
transfer function (OTF), in which the values decrease from

FIG. 4. Complex deconvolution results of rat muscle tissue. (a)
Off-axis hologram. (b) Spatial spectrum of the complex field of the
tissue that is isolated from the spatial spectrum of (a). (c), (d) Recon-
structed amplitude and phase. (e), (f) 3D illustrations of the origin
and complex deconvolved tissue. (g1,g3) are xy and xz sections of the
muscle tissue highlighted in (e). (g2,g4) are xy and xz sections of the
deconvolved muscle tissue highlighted in (f). (h) Intensity profiles
along the dashed line in (g1,g2) (upper) and (g3,g4) (bottom). The
blue curves correspond to the profiles of the original image, and the
pink curves correspond to deconvoluted profiles. Scale bars: (a), (c),
(d) and (g1–g4) 5 µm; (b) 2 rad/µm.

the center to the edge [40]. Hence, the inverse filtering for the
CTF deconvolution is expected to be less sensitive to noise
compared with the OTF deconvolution. In addition, the 3D
APSFs measured at 0 ° and 90 ° (with respect to the x axis)
polarization show no significant difference, thus verifying the
rationality of the scalar form of h in Eq. (6).

To test the performance of the complex deconvolution, we
used a 3D uniformly distributed sample (20 µm in thickness)
of ZnO nanoparticles. The interferograms were obtained by
recording the off-axis holograms at different depths by trans-
lating the objective with steps of 424 nm. Figures 3(i) and
3(j) demonstrate the 3D rendering of the ZnO stack of the
directly recorded and complex deconvolved results, respec-
tively. Cross section views in the xy and xz planes demonstrate
that the halo pattern was significantly reduced in both cross
sections. The profile plots show that the full width at half max-
imum (FWHM) has improved from 545 to 420 nm and from
2407 to 1542 nm along the lateral and the axial directions,
respectively (Fig. 8).

The Jones tensor of the rat muscle tissue slice was mea-
sured following the procedure illustrated in Fig. 2(c) to
implement the HGM WD PCF scheme. Figure 4(a) shows
one of the interferograms, in which the sarcomere bands are
modulated by the interference fringes. The periods of the sar-
comere were reflected by two discrete spectral peaks around
the frequencies of ±4.8 rad/µm, corresponding to a period of
1.3 µm, which is in accordance with previous results [41]. The
phase map of the muscle tissue [Fig. 4(d)] shows an interest-
ing pattern where the phase changes dramatically along the
direction perpendicular to the sarcomeres, while remaining
relatively steady along the sarcomeres. A similar observation
has been reported in the tendon fibril using point scanning
based interferometric pSHG [42]. The obtained 3D complex
field was deconvolved using the 3D APSF measured with the
ZnO particle, and the result is shown in Figs. 4(e)–4(h).
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FIG. 5. Jones tensor measurement result. (a1–a6) interferograms
with different polarization combinations of the fundamental (ω0) and
the SHG (2ω0) waves [pω0 , p2ω0 ]: (a1) [0◦, 0◦]; (a2) [0◦, 90◦]; (a3)
[45◦, 0◦]; (a4) [45◦, 90◦], where p stands for the linear polarization
direction with respect to the x axis; (a5) [90◦, 0◦]; (a6) [90◦, 90◦].
(b1–b6) and (c1–c6) Reconstructed amplitudes and phases corre-
sponding to the polarization combinations of the fundamental and
the SHG waves the same as (a1–a6), respectively. (d1–d6) Measured
Jones tensor elements for Jxxx , Jxyy, Jxxy, Jyxx , Jyyy, and Jyxy, respec-
tively. (e) Calculated angle map of symmetrical axis orientation. (f)
Measured symmetrical axis orientation of myosin. (g) Zoomed-in
view within the highlighted area in (f). Scale bars: (a)–(f) 5 µm; (g)
1 µm.

The Jones tensor measurement result of the rat muscle
tissue is shown in Fig. 5. Interferograms with different po-
larizations of both illuminating fundamental wave and the
SHG wave were first captured. In the experiment, linearly
polarized light with 0 °, 45 °, and 90 ° with respect to the x axis

were chosen for the illuminating polarizations. Therefore, an
invertible excitation matrix in Eq. (5) was selected as

E
ill

3×3(
⇀

r )=
⎡
⎣1 0.5 0

0 0.5 1
0 0.5 0

⎤
⎦E ill

0 (
⇀

r ), (9)

where E ill
0 (

⇀

r ) is the amplitude of the excitation wave, which
was measured prior to the measurement (Fig. 8). Mean-
while, the SHG waves polarized in the x and y directions are
measured as shown in Figs. 5(a1)–5(a6). The corresponding
complex fields were retrieved from these interferograms. Hav-
ing the complex fields in hand, we then performed complex
deconvolution to them as shown in Figs. 5(b1)–5(b6) and
5(c1)–5(c6) for the amplitudes and phases, respectively. As
can be seen, both amplitude and phase change with polariza-
tion state. A Jones matrix was obtained by applying Eq. (5)
to the measured complex fields with different polarizations.
The amplitudes of each Jones matrix elements are shown in
Figs. 5(d1)–5(d6).

With the help of complex field measurement, we have
obtained the SHG tensor elements in the laboratorial refer-
ence frame. It is more interesting, and possible if the relative
orientation between the two reference frames is known, to
reconstruct the unique sample-related tensor in the so-called
“local frame.” A general description of such operation can be
found in Ref. [43]. For the accessible xy plane polarizations,
only tensor elements within these two directions can be ob-
tained. In our case, this will not induce any constraint, because
under the sample preparation procedure, the fibrous myosin
forming the thin muscle tissue can be well-approximated as
uniaxial structure that is arranged within the image plane.
During sample preparation, the muscle fibers were carefully
adjusted to make sure that they are parallel to the top surface
of the container. Therefore, we could calculate the axial ori-
entation based on the Jones tensor we obtained and evaluate
the rationality of the tensor to test our measurement strategy.
Assume the azimuthal angle is ψ with respect to the x axis
[cf. Fig. 2(b)], the Jones tensor under the laboratory frame is
connected to the local frame by the following transformation
equation [43]:

⇀

χLab ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χxxx

χxxy

χxyx

χxyy

χyxx

χyxy

χyyx

χyyy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L

∼=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

2s2c
s3 − sc2

s3 − sc2

−2s2c
−2sc2

c3 − s2c
c3 − s2c

2sc2

s2c
−sc2

−sc2

c3

s3

−s2c
−s2c
sc2

c3

sc2

sc2

sc2

sc2

s2c
s2c
s3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎣

χXY Z

χYY Z

χZYY

χZZZ

⎤
⎥⎥⎦

LO

, (10)

where the indices x, y, and z in lowercase denote the coor-
dinate in the laboratory fframeand in uppercase denote the
coordinate in the local frame, in which the symmetry axis
is along the Z axis. The shorthand notations s and c rep-
resent sin φ and cos φ, respectively. Obviously, χxxy = χxyx;

therefore,
⇀

χLab consists of six independent elements as in
Eqs. (2)–(4). The azimuthal angle ψ can be obtained as

ψ = tan−1

(
χyxx + χyyy

χxxx + χxyy

)
. (11)
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FIG. 6. Three-dimensional reconstruction result and polarization
measurement of a muscle tissue section of rat (20 µm in thick-
ness). (a) Overlay between the orientation vectors and intensity. (b)
Variation of polarization direction at different depths. Each column
corresponds to the locations with different markers. The color map
indicates the value of the orientation angle of the symmetrical axis.
Scale bars: 10 µm.

Figure 5(f) shows the obtained axis orientation and
Fig. 5(g) shows the zoomed-in view within the highlighted
area. The obtained molecular orientations show that the sym-
metrical axes are, in general, perpendicular to the direction
of myosin which agrees well with a previous report [17,19].
Figure 6 shows the orientation vectors in 3D, in which
the polarization variation along with the depth is shown in
Fig. 6(b). To reconstruct the 3D volume image, the Jones
tensor in each layer was obtained from the complex fields
in different polarizations. It shows that the orientation of the
symmetrical axes changes slightly, which may be due to fibril
misalignment.

At the present configuration, the time for recording each
image is about 0.01 s with a field of view of 20.8 µm
(128×128 pixels), mainly limited by the excitation power
density resulting from wide-field illumination. For the same
data throughput using pixel scanning, 0.16 s is required for a
pixel dwell time of 10 µs.

IV. CONCLUSION

In conclusion, we have demonstrated a pSHGM WD
PCF scheme to measure a second-order nonlinear polar-
ization tensor. We formulated the second harmonic gen-
eration in weakly scattering inhomogeneous media, under
first-order Born approximation. The proposed method is
based on wide-field detection, which can excite and de-
tect all harmonophores in parallel within the imaging
field of view, thus greatly improving the imaging speed.
The ability of complex field detection also allows us to
increase lateral and axial resolution using complex de-
convolution. Using the pSHGM WD PCF measurement
scheme, we presented 3D tensor reconstruction of rat mus-

cle tissue. The orientation information of the symmetric
axis of the myosin molecule was obtained via the recon-
structed tensor, rather than based on the cylinder symme-
try assumption. Given the property of wide complex-field
imaging and the similarity between SHG and linear scat-
tering in a weakly scattering medium, we believe that this
work provides important information on developing a com-
puted tomographic method similar to optical diffraction
tomography.
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APPENDIX A: SAMPLE PREPARATION

A monolayer ZnO nanoparticle was prepared for measur-
ing the systematic APSF. We dissolved 10 mg ZnO in 10
ml isopropanol, then sonicated for 10 min as the standard
solution, and then diluted to 10%, 1%, and 0.1%. For each
concentration of solution, we dropped 10 µl onto the glass
slide and put the slide into a centrifuge machine to spread
uniformly. The slides were baked at 80 ◦C overnight to fix the
particles. The 3D ZnO stack was prepared as follows: 10 mg
ZnO was dissolved in 10 ml of PDMS precursor, vibrated for
10 min as the standard solution, and then diluted to 10%, 1%,
and 0.1%. They were then dispersed in PDMS and dropped on
the glass for 1000 rpm spin coating. The samples were baked
at 80 ◦C overnight for fixing.

In the research reported here, all muscle samples were
from the legs of 3-month-old mice (C57/Bl6), which were
euthanized, and their legs were harvested. Fifteen minutes
prior to euthanasia, animals were given a 0.5 ml subcutaneous
injection of 1:1000 heparin. Inhalation of 5% isoflurane was
used to the animals to induce general anesthesia and 2.5%
isoflurane was maintained during euthanasia. After euthanasia
on mice, we took the leg muscles and immediately rinsed
with PBS buffer to remove traces of hair. The harvested mus-
cle tissue was embedded into an optimal cutting temperature
compound and the orientation was carefully adjusted to make
sure that the muscle fibers were parallel to the top surface
of the container. This made most of the fibers within the
plane perpendicular to the illumination direction during the
following experiments. After freezing at −20 °C for 24 h, the
sample was cut into slices with thicknesses of 5, 10, 20, and
50 µm using a frozen section machine (Leica CM3050S/Leica
CM1850). The prepared slices were preserved at −80 °C be-
fore imaging experiments with our polarization dependent
SHG microscope. All animal-related experiments were imple-
mented according to the guidance of the Medical Department
of Shenzhen University.
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APPENDIX B: SECOND HARMONIC GENERATION
AND PROPAGATION IN WEAKLY SCATTERING

INHOMOGENEOUS MEDIA

We derive the electromagnetic wave propagation under
first-order Born approximation within an inhomogeneous
nonlinear medium in this section. The governing vectorial
wave equation within medium can be expressed as

∇2
⇀

E (
⇀

r, t ) − 1

c2

∂2
⇀

E (
⇀

r, t )

∂t2
= μ0

∂2
⇀

P(
⇀

r, t )

∂t2
, (B1)

where
⇀

E is the overall electric field and
⇀

P is induced polar-

ization. Considering second-order nonlinearity,
⇀

P(
⇀

r, t ) can be
expanded as
⇀

P(
⇀

r, t ) = ε0χ
(1)

(
⇀

r ) · ⇀

E (
⇀

r, t ) + ε0χ
(2)

(
⇀

r ) : [
⇀

E (
⇀

r, t )
⇀

E (
⇀

r, t )],

(B2)

where the operator “:” denotes a third-order tensor product to

the dyadic
⇀

E (
⇀

r, t )
⇀

E (
⇀

r, t ). Substituting Eq. (B2) in Eq. (B1)
and taking the Fourier transform with respect to t , we obtain
the nonlinear Helmholtz equation as

∇2
⇀

E (
⇀

r, ω) + k2(ω)n
2
(

⇀

r, ω) · ⇀

E (
⇀

r, ω)

= −ω2

c2
χ

(2)
(

⇀

r ) : [
⇀

E (
⇀

r, ω)
⇀

E (
⇀

r, ω)], (B3)

wherein k ω
c is the wave number in vacuum and n

2
(

⇀

r, ω) =√
1 + χ

(1)
(

⇀

r, ω) denotes the conventional refractive index
(a second-order tensor in general). Under the excitation of
a monochromatic wave and considering second-order non-
linear effect, the electric field within the medium can be
decomposed into the fundamental and the second harmonic
signals as
⇀

E (
⇀

r, ω) = Aω0 (
⇀

r )δ(ω − ω0)êω0 + A2ω0 (
⇀

r )δ(ω − 2ω0)ê2ω0 ,

(B4)

where Aω0 (
⇀

r ) and A2ω0 (
⇀

r ) are the complex fields of the fun-
damental and the second harmonic (SH) signals, respectively;
êω0 and ê2ω0 are the unit vectors of the polarizations for the
fundamental and the SH signals; δ denotes the Dirac function.
It should be noticed that due to anisotropy of the second-
order nonlinear susceptibility tensor, the fundamental and the
SH signal would not always oscillate in the same direction
(êω0 /‖ ê2ω0 ). By substituting Eq. (B4) into Eq. (B3) and sepa-
rating into two equations that govern the fundamental and SH,
respectively, we have

∇2
⇀

Eω0 (
⇀

r ) + k2
1n

2
1(

⇀

r ) · ⇀

Eω0 (
⇀

r ) = 0, (B5)

and

∇2
⇀

E2ω0 (
⇀

r ) + k2
2n

2
2(

⇀

r ) · ⇀

E2ω0 (
⇀

r ) = −k2
2

[
χ

(2)
(

⇀

r ) :
⇀

Eω0

⇀

Eω0

]
,

(B6)

where n1 and n2 are the spatially varying refractive indices of
the fundamental and SH waves, and k1 and k2 are the wave

numbers of the fundamental and the SH signal in vacuum,
respectively. It shows that the driving term in the right-hand
side of Eq. (B6) for the second harmonic contains only the
fundamental wave (including the amplitude and its polariza-
tion direction), meaning that it is the fundamental wave that
generates the SH signal. In general, both the fundamental and
the SH waves in Eqs. (B5) and (B6) include both the free
propagating and the scattered fields, which can be written as
⇀

Eω0 = ⇀

E
ill

ω0
+ ⇀

Eω0
scattered and

⇀

E2ω0 = ⇀

ESHG + ⇀

E2ω0
scattered. Under

first-order Born approximation, which satisfies well for weak
scattering media like thin biological tissues [44], the scattered
waves can be neglected compared to the unscattered wave. For

the fundamental wave, we insert
⇀

Eω0 = ⇀

Eω0
ill + ⇀

Eω0
scattered into

the Eq. (B5) wave and obtain

∇2
⇀

Eω0
scattered(

⇀

r ) + k2
1 n̄2

1 · ⇀

Eω0
scattered(

⇀

r ) = −k2
1�n

2
1(

⇀

r ) · ⇀

Eω0 ,

(B7)

where �n
2
1(

⇀

r ) = n
2
1(

⇀

r ) − n̄2
1 and −k2

1�n
2
1(

⇀

r ) is defined as the

tensorial scattering potential [45], and n̄1 =
√

n
2
1(

⇀

r, ω0)⇀
r

is
the spatially averaged refractive index at the fundamental
wavelength. Note that during the derivation to Eq. (A7), the

relation ∇2
⇀

Eω0
ill (

⇀

r ) + k2
1 n̄2

1

⇀

Eω0
ill (

⇀

r ) = 0 has been used. The
⇀

Eω0

term denotes the overall fundamental field including both
the illumination and the scattered wave. Under first-order
Born approximation, the

⇀

Eω0 can be approximated as the

unscattered part of the fundamental wave
⇀

Eω0
ill. Therefore, the

linear structure thus can be solved by conventional optical
diffraction tomography [46]. With a similar approach, the gov-
erning equation for the unscattered SHG wave can be written
from Eq. (B6) as

∇2
⇀

ESHG(
⇀

r ) + k2
2 n̄2

2 · ⇀

ESHG(
⇀

r ) ∼= −k2
2

[
χ

(2)
(

⇀

r ) :
⇀

Eω0
ill

⇀

Eω0
ill],

(B8)

where n̄2 =
√

n
2
2(

⇀

r, 2ω0)⇀
r

denotes the spatially averaged re-
fractive index (second tensor in general) at the SH frequency.
It is easy to find the similarity between Eqs. (B8) and (B7)
and therefore solve Eq. (B8) using a similar approach. The
key difference between the two equations is that Eq. (B7) can
be treated as, in most cases, a scalar equation, while Eq. (B8)
should consider polarization relations induced by the tensor

FIG. 7. Measured and simulated results of the illumination field.
(a), (b) measured intensity distributions in axial and lateral planes.
(c) Simulated intensity distribution in the axial plane. (d) Simulated
phase map in the axial plane. Scale bar: (a)–(d) 10 µm; (e) 5 µm.
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FIG. 8. Complex deconvolution result of ZnO sample. (a)–(d)
are the same as Figs. 3(k1)–3(k4) in the main text. (e), (f) show the
corresponding profiles along the dashed lines. Scale bars: (k1–k4) 1
µm.

calculation. Note that if χ
(2)

is anisotropic, the refractive index
is very likely to be anisotropic, which means that the driving

force for SHG
⇀

Eω0
ill may not be parallel to the incident wave.

APPENDIX C: ILLUMINATION BEAM
CHARACTERIZATION

The illumination beam of the microscopy system for mea-
suring nonlinear polarization tensor is illustrated in Fig. 7,
which was characterized in 3D near the focus of the condenser
[cf. Fig. 2(a)].

APPENDIX D: COMPLEX DECONVOLUTION
OF ZnO NANOPARTICLES

The complex deconvolution result of ZnO nano particle is
illustrated in Fig. 8. The profile plots show that the full width
at half maximum (FWHM) has improved from 545 to 420 nm
and from 351 nm to 1542 nm along the lateral and the axial

FIG. 9. Measured and simulated results of systematic APFS.
(a)–(c) measured intensities of PSF at different depths. (d) Measured
phase distribution at z = 0. (e), (f) measured intensity and phase
distributions in the axial plane. (g)–(i) Simulated intensities of PSF
at different depths. (j) Simulated phase distribution at z = 0. (k), (i)
Simulated intensity and phase distributions in the axial plane. Scale
bars: (a)–(d) and (g)–(j) 1 µm; (e), (f), (k), (l) 2 µm.

FIG. 10. Experimental setup for measuring the complex field of
transmitted wave through biological tissues. NPBS: nonpolarized
beam splitter. SCMOS: scientific complementary metal-oxide semi-
conductor camera.

directions, respectively. Figure 9 shows the measured and
simulated results of systematic APFS. The consistent results
between the measured and the simulated show the ability of
complex field measurement of our microscopy system.

APPENDIX E: MEASURING THE OPTICAL FIELD OF
TRANSMITTED LIGHT THROUGH THIN TISSUES

A typical setup of off-axis interferometry is depicted in
Fig. 10. A continuous wave (cw) laser with a wavelength of
721 nm (MRL-III-650L, Changchun New Industry) was used
for the imaging Mach-Zehnder interferometer. The laser was
first steered to a nonpolarized beam splitter (NPBS), after
which the beam was separated to perform off-axis interferom-
etry. The sample was placed on a three-axis translation stage
for wide-field illumination. An objective (Daheng Optics,
GCO-213 40×, NA = 0.60) imaged the sample to a scientific
complementary metal-oxide semiconductor (sCMOS) cam-
era, which was positioned at the imaging plane of the objective
where a magnified replica of the sample field was formed. The
acquisition rate of the sCMOS that we used (PCO.Panda.4.2,
Germany) is 48 frames/s when acquiring at the full resolution
of 2048×2048 pixels. To produce a clean reference beam, a
100 µm pinhole was placed within the reference path at the
common focus of a pair of lenses performing spatial filtering.
Finally, the reference field was slightly tilted relative to the
sample beam and interfered with the sample beam to form
uniform phase modulation fringes in sCMOS. For complex
field measurement of the transmitted wave, a standard algo-
rithm of off-axis holography was adopted to reconstruct the
amplitude and phase. Specifically, the camera recorded holo-
grams and two-dimensional Fourier transform was performed
to the holograms to obtain their spatial spectra. The upper
band of the spectra was filtered out and was moved to the
coordinate origin to remove the phase ramp of modulation.
By performing inverse Fourier transform to the moved, single-
banded spectra, complex fields of the sample were obtained.
The background complex field was subtracted by recording
the complex field without the sample.
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