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Quantum oscillators in Gaussian states are often characterized by average occupation numbers that refer to
a basis of eigenstates of the noninteracting oscillator Hamiltonian. We argue that quantum state purity is a
more appropriate characteristic of such states, which can be applied to oscillators of any dimensionality. For
a one-dimensional oscillator, the state purity is directly related to a thermal occupation number defined with
respect to the number state basis in which the oscillator’s quantum state is thermal. Thus, it naturally introduces
a more versatile definition of an average occupation number. We study optomechanical sideband cooling of
one- and two-dimensional mechanical oscillators in particular, and derive exact analytical expressions for the
maximal mechanical state purity achievable in the quantum backaction limit. In the case of a one-dimensional
oscillator, we show that the thermal occupation number related to purity can be well approximated by the average
phonon number in the weak-coupling regime, but that the two differ in the regime of ultrastrong optomechanical
coupling or in cases where the oscillator’s resonance frequency is strongly renormalized.
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I. INTRODUCTION

The quantum-mechanical nature of mechanical oscillators
has been probed in a wide variety of experiments, ranging
from the microscopic scale with the motion of trapped ions
[1] to the meso- or macroscopic scale with, e.g., flexural
modes of silicon nitride [2,3] or aluminum [4] membranes,
bulk acoustic-wave resonators in solids [5,6] or liquids [7], or
the motion of optically levitated nanoparticles [8–12].

In the absence of nonlinearities, i.e., when oscillators are
limited to Gaussian states, genuine signatures of nonclassi-
cality are lacking. It is then common to assess the quantum
nature of the oscillator quantitatively. In particular, in cool-
ing experiments where the goal is to remove energy from a
one-dimensional (1D) harmonic mechanical oscillator, either
passively through interaction with a cold reservoir or through
active feedback, it is customary to characterize the oscillator
by its average phonon number. This is the average number
of excitations in the basis of eigenstates of the isolated har-
monic oscillator Hamiltonian, which we will refer to as the
phonon basis, and is defined with reference to the oscillator’s
bare resonance frequency. A focus on achieving the lowest
possible average phonon number may then suggest that the
lower the number, the “more quantum” the oscillator is.

The reliance on average phonon number as a measure
of quantumness of an oscillator is, however, problematic
for a number of reasons. One reason is that if the cooling
mechanism affects position and momentum fluctuations dif-
ferently, the representation of the state of the oscillator in

the phonon basis may not be thermal. Characterizing the
state by its average phonon number means, e.g., that the
squeezed vacuum state will be deemed “less quantum” than
the ground state even though it is arguably “more quantum” in
the particular sense that a true probability distribution of the
Glauber-Sudarshan type does not exist [13]. Another reason
is that the mechanical system might bear little resemblance
to a harmonic oscillator at the bare resonance frequency. The
interactions may have caused the oscillator to hybridize with
other degrees of freedom such that the mechanical system can
no longer be viewed as a simple harmonic oscillator at all
and that its spectral weight is distributed at frequencies far
from the bare resonance frequency of the isolated system. A
third problem with the average phonon number is that it is not
obvious how to generalize it in order to define a single number
for characterizing higher-dimensional mechanical oscillators.

In this paper, we argue that for quantifying the quantum
character of mechanical oscillators in Gaussian states, quan-
tum state purity

μ = Tr(ρ̂2), (1)

where ρ̂ is the density matrix representing the state, is a more
appropriate measure than average phonon number. For any
oscillator dimensionality, the purity of a Gaussian state can be
calculated from expectation values of quadratic functions of
position and momentum fluctuations without having to refer
to resonance frequencies associated with a confining potential.
Furthermore, we show that for one-dimensional oscillators in
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Gaussian states, the concept of purity leads to a natural defi-
nition of a thermal occupation number which fully determines
how much the purity deviates from unity. This thermal occu-
pation number is simply the average number of excitations in
the number state basis in which the state ρ̂ is thermal, which
always exists. It generally differs from the average phonon
number but coincides with it for a harmonic oscillator at the
bare resonance frequency in a thermal state.

While these general considerations can apply to a variety
of systems, we study optomechanical sideband cooling in par-
ticular in this paper. We start by modeling a two-dimensional
(2D) oscillator coupled linearly to a single cavity mode. By
the introduction of bright and dark mechanical modes, we
show under which special circumstances the problem reduces
to the canonical optomechanical system of a single mechan-
ical mode coupled to a single cavity mode. This special case
is studied first, and the theory then applies to a wide variety
of experimental realizations of cavity optomechanics [14].
We subsequently proceed to the setup where the cavity mode
couples to the full two-dimensional motion of the mechanical
system, with particular relevance to recent experiments with
levitated nanoparticles [11,12].

In optomechanics, the thermal occupation number asso-
ciated with mechanical state purity has, to our knowledge,
previously only been discussed in the context of mechani-
cal squeezing [15]. Here, we derive the thermal occupation
number for optomechanical sideband cooling of a one-
dimensional oscillator—a case for which it was recently
measured in an experiment [11]. We first show that it matches
the average phonon number in the regime of weak optome-
chanical coupling, as long as the phonon number is defined
according to the effective resonance frequency which includes
a shift due to the optical spring effect. We then show that
in the regime of ultrastrong optomechanical coupling [11,16–
18], where the (laser-drive enhanced) coupling rate becomes
comparable to the bare oscillator resonance frequency, the
thermal occupation number no longer matches the phonon
number. For the problem with a two-dimensional oscillator,
we calculate the purity of the oscillator’s state and show under
which circumstances it can come close to unity.

For optomechanical sideband cooling, the theoretical upper
limit for the mechanical state purity can be determined by
ignoring all noise sources except the electromagnetic vacuum
noise entering the cavity mode. This is the so-called quantum
backaction limit. We present exact analytical expressions for
the purity in this limit, both for one- and two-dimensional
oscillators.

The paper is organized as follows. In Sec. II, we show
how quantum state purity relates to observable expectation
values for one- and two-dimensional oscillators in Gaussian
states, and we define the related thermal occupation number
in the one-dimensional case. We define the optomechanical
model in Sec. III. In Secs. IV and V, we calculate the purity
for optomechanical systems with one- and two-dimensional
oscillators, respectively, compare with the standard average
phonon number, and present analytical expressions for the up-
per limits of purity. We conclude in Sec. VI. For convenience,
an overview of the symbols used in the paper is found in the
Appendix.

II. PURITY AND THERMAL OCCUPATION OF
OSCILLATORS IN GAUSSIAN STATES

In this section, we present how quantum state purity of
1D and 2D oscillators in Gaussian states can be expressed
in terms of observable expectation values of positions and
momenta. We also discuss how the state purity measure leads
to a natural definition of average thermal occupation numbers
in the case of Gaussian states.

A. One-dimensional oscillator

Let us consider a general one-dimensional oscillator with
position and momentum operators x̂ and p̂ satisfying the
canonical commutation relation

[x̂, p̂] = ih̄. (2)

The system’s quantum state ρ̂ is assumed to be Gaussian,
meaning that the corresponding Wigner quasiprobability dis-
tribution is a Gaussian. The state can then always be expressed
as [19,20]

ρ̂ =
∞∑

n=0

n̄n

(n̄ + 1)n+1
|n〉〈n|, (3)

i.e., there always exists a number state basis in which ρ̂ is
a thermal state. We define associated bosonic creation and
annihilation operators b̂† and b̂, where [b̂, b̂†] = 1 and b̂|n〉 =√

n |n − 1〉. It follows that

n̄ = Tr(b̂†b̂ρ̂). (4)

Since ρ̂ is diagonal in the number state basis |n〉, we can
interpret it as a classical probabilistic mixture of states with
differing excitation numbers n or, in a particle interpretation,
differing number of particles. The number n̄ is then interpreted
as the average number of excitations or, equivalently, the
average particle number.

The purity of the state ρ̂ straightforwardly follows from the
orthonormality of the basis states |n〉, giving

μ = 1

2n̄ + 1
. (5)

The limit of a pure state ρ̂ thus corresponds to n̄ → 0, i.e.,
when ρ̂ = |0〉〈0|.

We now define relations between the creation and anni-
hilation operators b̂† and b̂ and the position and momentum
operators by

x̂ = x̄ + xZPF(b̂ + b̂†), (6)

p̂ = p̄ + ipZPF(e−iθ b̂† − eiθ b̂). (7)

The parameters x̄ and p̄ must then satisfy x̄ = 〈x̂〉 and p̄ = 〈p̂〉.
The remaining four parameters xZPF, pZPF, n̄, and θ must be
chosen so as to satisfy the commutation relation (2) and give
correct values for the three distinct elements of the covariance
matrix, 〈�x̂2〉, 〈� p̂2〉, and 〈{�x̂,�p̂}〉/2 (which completely
specifies a Gaussian state), when defining

�ô = ô − 〈ô〉. (8)
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From this, it follows that the average thermal occupation num-
ber, as defined by Eq. (3), is

2n̄ + 1 = 1

h̄

√
4〈�x̂2〉〈�p̂2〉 − 〈{�x̂,�p̂}〉2. (9)

The purity of the state ρ̂ in Eq. (5) is in other words inversely
proportional to the square root of the determinant of the co-
variance matrix [20]. Equation (9) thus allows for obtaining
the thermal occupation number, and thereby the purity, solely
from observations of position and momentum fluctuations. We
note that beyond the paradigm of Gaussian states, a quantity
n̄ defined according to Eq. (9) is a measure of deviation from
a minimal uncertainty state [11].

Furthermore, one finds that θ , xZPF, and pZPF must be

sin θ = 〈{�x̂,�p̂}〉
2
√

〈�x̂2〉〈�p̂2〉 , (10)

x2
ZPF = h̄〈�x̂2〉√

4〈�x̂2〉〈�p̂2〉 − 〈{�x̂,�p̂}〉2
, (11)

and

p2
ZPF = h̄〈�p̂2〉√

4〈�x̂2〉〈�p̂2〉 − 〈{�x̂,�p̂}〉2
. (12)

We note that since 〈�x̂2〉 = x2
ZPF(2n̄ + 1) [〈� p̂2〉 =

p2
ZPF(2n̄ + 1)], one can think of the parameter xZPF (pZPF) as

the size of the zero-point fluctuations in position (momentum)
in the state |0〉〈0|, i.e., the ground state of the basis in which
ρ̂ is a thermal state.

The above discussion shows that one can always consider
a one-dimensional system whose reduced state ρ̂ is Gaussian
as being in a probabilistic mixture of pure states |n〉. This is
true even in the presence of interactions with other systems.
From the relations (6) and (7), one finds that the position space
representations of the basis states |n〉 are �n(x) = 〈x|n〉 =
ψn(x − x̄)eip̄(x−x̄)/h̄, where

ψn(x) = 1√
2nn!

( |M�|
π h̄

)1/4

Hn

(√
Re M�

h̄
x

)
e− M�

2h̄ x2
, (13)

having defined

M� = e−iθ pZPF

xZPF
, (14)

and where Hn are the Hermite polynomials. The wave
functions ψn, sometimes referred to as generalized harmonic-
oscillator states in the literature [21,22], have the form of
the standard energy eigenfunctions for an isolated harmonic
oscillator with mass M and frequency �/(2π ). However, M�

is here a complex parameter defined by the entries of the
covariance matrix.

Finally, we note that when transforming to the phonon
basis, the pure state |0〉〈0| defined above will correspond to
either the vacuum, a coherent state, a squeezed vacuum state,
or a squeezed coherent state. The reason, as will be shown
below [see Eq. (59)], is that the transformation can be decom-
posed into squeezing and displacement transformations.

B. Two-dimensional oscillator

We now consider a two-dimensional oscillator whose po-
sition and momentum operators have components (x̂, ŷ) and
( p̂x, p̂y), respectively, satisfying

[x̂, p̂x] = [ŷ, p̂y] = ih̄, (15)[
x̂, p̂y

] = [ŷ, p̂x] = 0. (16)

If the oscillator is in a Gaussian state, it can be written as
a tensor product of one-mode thermal states subjected to a
unitary transformation [23]. This means that we may write

ρ̂ =
∞∑

m=0

∞∑
n=0

m̄mn̄n

(m̄ + 1)m+1(n̄ + 1)n+1
|�m,n〉〈�m,n| (17)

where |�m,n〉 is an orthonormal basis for the two-mode sys-
tem, i.e., 〈�m,n|�m′,n′ 〉 = δm,m′δn,n′ , and m̄ and n̄ are thermal
occupation numbers. In this case, the purity of the state ρ̂ can
be expressed as

μ2D = 1

(2m̄ + 1)(2n̄ + 1)
. (18)

The purity is again proportional to the inverse square root
of the covariance matrix [23], just as in the one-dimensional
case. For simplicity, we will now assume

〈{�x̂,�p̂x}〉 = 〈{�ŷ,�p̂y}〉 = 0 (19)

and

〈�ŷ� p̂x〉 = −〈�x̂�p̂y〉, (20)

which are satisfied in the model we will study below. This
gives the relation

μ2D = (h̄/2)2√
AxxApp − AxpBxp + B2

xp

(21)

between state purity and the (in principle) observable expec-
tation values of position and momentum fluctuations, where
we have defined

Axx = 〈�x̂2〉〈�ŷ2〉 − 〈�x̂�ŷ〉2, (22)

App = 〈�p̂2
x〉〈�p̂2

y〉 − 〈� p̂x�p̂y〉2, (23)

Axp = 〈�x̂2〉〈�p̂2
y

〉 + 〈�ŷ2〉〈� p̂2
x

〉 − 2〈�x̂�ŷ〉〈�p̂x�p̂y〉,
(24)

Bxp = 〈�x̂� p̂y〉2. (25)

We note that when (19) and (20) are fulfilled for one choice
of orthogonal coordinates x̂ and ŷ, they are also valid for any
other choice of orthogonal coordinates.

III. MODEL

Consider now a two-dimensional mechanical oscillator
with mass m whose motion is coupled to a single cavity
mode’s field fluctuations. The oscillator’s position operator
has components x̂ and ŷ, with respective canonically conjugate
momentum operators p̂x and p̂y. We choose the x and y axis
as the principal axes of the harmonic trap which defines the
oscillator, with ωx/(2π ) and ωy/(2π ) the associated reso-
nance frequencies.
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x
y
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φ

FIG. 1. Setup. The axes (x and y) are the principal axes of
the harmonic potential defining the two-dimensional mechanical
oscillator. An alternative coordinate system with orthogonal axes
(xb and xd ) is also shown. Only the motion along the xb axis, i.e.,
the cavity axis, couples directly to the cavity mode. For this reason,
we refer to xb as the bright mode direction and xd as the dark mode
direction.

The model we study can apply to two different scenarios:
(A) a nanoparticle levitated by an optical tweezer and coupled
to the cavity mode by coherent scattering [24–27] and (B) a
two-dimensional oscillator, either clamped [28] or levitated
[29], whose coupling to the cavity mode comes about due to
direct laser driving of the cavity mode. In both scenarios, we
assume that the cavity mode only couples to the component of
motion along the cavity axis. This axis is rotated by the angle
φ from the x axis, such that the cavity mode couples to the
linear combination

x̂b = cos φ x̂ − sin φ ŷ. (26)

For this reason, it will be convenient below to express the
model in terms of a bright mode with associated position
operator x̂b and an orthogonal dark mode, which does not
directly couple to the cavity mode, with position operator

x̂d = sin φ x̂ + cos φ ŷ. (27)

We define canonically conjugate momentum operators p̂b

and p̂d for the bright and dark modes accordingly. The two
orthogonal coordinate systems (x and y) and (xb and xd ) are
illustrated in Fig. 1.

The system is described by the Hamiltonian

H = p̂2
x

2m
+ 1

2
mω2

x x̂2 + p̂2
y

2m
+ 1

2
mω2

y ŷ2 + h̄�â†â

+ h̄λo(cos φ x̂ − sin φ ŷ)(â + â†). (28)

In the levitated nanoparticle scenario (A), the quantity
−�/(2π ) is the detuning between the optical tweezer fre-
quency and the resonance frequency of the cavity mode ωc,
and â is the photon annihilation operator for the cavity mode
[24,25]. In the alternative scenario with direct cavity driving
(B), the cavity mode is coherently driven at a frequency de-
tuned by −�/(2π ) from its resonance frequency ωc, in which
case â is the displaced photon annihilation operator (see, e.g.,
[14]) describing fluctuations relative to a coherent state for the
cavity mode. The interaction between mechanical and cavity
fluctuations, which scales with the amplitude of the tweezer
field in scenario (A) or with the coherent drive amplitude
in scenario (B), is quantified by a parameter λo which we
define positive without loss of generality. For the levitated
nanoparticle setup (A), we note that λo ∝ cos φ when y is the

direction of linear polarization of the optical tweezer [24,25],
but for a fixed φ 	= π/2, we may view it simply as a constant
in the following.

We now move to a description in terms of quantum
Langevin equations in order to include coupling to the me-
chanical and cavity modes’ external baths [30,31]. We will
assume that the motions in the x and y directions are subject
to independent Brownian quantum noise. This gives the equa-
tions [31]

˙̂x = p̂x

m
, (29)

˙̂px = −γx p̂x − mω2
x x̂ + N̂x − h̄λo cos φ(â + â†), (30)

˙̂y = p̂y

m
, (31)

˙̂py = −γy p̂y − mω2
y ŷ + N̂y + h̄λo sin φ(â + â†) (32)

describing the mechanical oscillator. We have introduced γx

and γy as the bare energy decay rates of the mechanical modes.
Defining the Fourier transformation according to

f (†)[ω] =
∫ ∞

−∞
dt eiωt f (†)(t ), (33)

the Gaussian mechanical Brownian noise operators N̂x and N̂y

are uncorrelated and both satisfy the relation [31]

〈N̂j[ω]N̂ j[ω
′]〉 = h̄mγ jω

[
coth

(
h̄ω

2kBT

)
+ 1

]
2πδ(ω + ω′),

(34)

where kB is the Boltzmann constant and T is the tempera-
ture. For the levitated nanoparticle scenario (A), we note that
this noise model can describe the regime where scattering
off background gas molecules is the dominant noise source
[32,33]. In the regime where recoil from dipole scattering of
tweezer photons is the dominant mechanical noise source, the
noise model would need some modification [34]. However, we
emphasize that the exact form of the oscillator’s noise model
is not important for the main results presented in this paper.

Going to a description in terms of bright and dark modes,
we find

˙̂xb = p̂b

m
, (35)

˙̂pb = − γb p̂b − ηm p̂d − mω2
bx̂b − mω̄mδmx̂d

+ N̂b − h̄λo(â + â†), (36)

˙̂xd = p̂d

m
, (37)

˙̂pd = −γd p̂d − ηm p̂b − mω2
d x̂d − mω̄mδmx̂b + N̂d (38)

where we have defined bright and dark mode resonance fre-
quencies and decay rates

ω2
b = cos2 φ ω2

x + sin2 φ ω2
y , (39)

ω2
d = sin2 φ ω2

x + cos2 φ ω2
y , (40)

γb = cos2 φ γx + sin2 φ γy, (41)

γd = sin2 φ γx + cos2 φ γy, (42)
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the average mechanical resonance frequency

ω̄m = 1

2
(ωx + ωy), (43)

and where

δm = (ωx − ωy) sin 2φ, (44)

ηm = 1

2
(γx − γy) sin 2φ (45)

are parameters quantifying the coupling between the bright
and dark modes. We have also defined the noise operators

N̂b = cos φ N̂x − sin φ N̂y, (46)

N̂d = sin φ N̂x + cos φ N̂y. (47)

Finally, we have the equation of motion for the cavity mode:

˙̂a = −
(κ

2
+ i�

)
â − iλox̂b + √

κ ξ̂ . (48)

Here, κ denotes the bare energy decay rate due to coupling
to the cavity mode’s bath and we will assume κ 
 γx, γy

throughout this paper. Assuming h̄ωc 
 kBT , the Gaussian
operator ξ̂ represents electromagnetic vacuum noise driving
the cavity mode and satisfies

〈ξ̂ [ω]ξ̂ †[ω′]〉 = 2πδ(ω + ω′), (49)

〈ξ̂ †[ω]ξ̂ [ω′]〉 = 〈ξ̂ [ω]ξ̂ [ω′]〉 = 0. (50)

We observe in Eq. (38) that while the dark mechanical
mode does not couple directly to the cavity mode, it does
couple to the bright mechanical mode when δm 	= 0. This is
the case when both ωy 	= ωx, i.e., the harmonic trap is not
rotationally symmetric, and φ 	= 0, π/2, i.e., the cavity axis
is not aligned with one of the principal axes of the trap.
Additionally, we observe that the bright and dark modes can
also be dissipatively coupled, quantified by the decay rate
ηm, and that the two modes in general couple to correlated
baths. In the special case γx = γy, we get ηm = 0 and that N̂b

and N̂d are uncorrelated. We note that the latter would not be
true if the noise model were modified to describe recoil from
asymmetric dipole scattering.

In Sec. IV, we will study the special case where δm = 0
and where we can ignore the dissipative coupling ηm. In this
case, the dark mode is truly dark, i.e., it does not couple
to any of the other modes. The cavity mode and the bright
mode then form a standard optomechanical system (with a 1D
mechanical oscillator). In Sec. V, we will consider the case
where δm 	= 0 and where the cavity mode effectively couples
to the full 2D motion of the oscillator.

IV. PURITY OF A 1D OSCILLATOR COUPLED TO AN
OPTICAL CAVITY MODE

In this section, we consider δm = 0, i.e., either that the
harmonic trap is spherically symmetric (ωx = ωy) or that one
of the principal axes of the trap is lined up with the optical
cavity axis (sin 2φ = 0). With this assumption, there is no
conservative interaction between the bright and dark mechani-
cal modes. We also neglect the potential dissipative interaction

between the mechanical modes which is exact for sin 2φ = 0
or γx = γy in our model, but will generally also be a good
approximation when the bright mode dissipation is dominated
by its coupling to the cavity mode.

With these assumptions, we are now left with the standard
optomechanical setup in which a single cavity mode couples
to a single mechanical mode—the bright mode. We can solve
the linear quantum Langevin equations in the frequency do-
main, which gives

x̂b[ω] = Rb(ω)N̂b,eff [ω] (51)

for the position operator of the bright mode, where we have
defined a response function

Rb(ω) = 1

−imωγb + m
(
ω2

b − ω2
) − ih̄λ2

o[χc(ω) − χ∗
c (−ω)]

(52)

and an effective noise operator

N̂b,eff [ω] = N̂b[ω] − √
κ h̄λo{χc(ω)ξ̂ [ω] + χ∗

c (−ω)ξ̂ †[ω]}
(53)

in terms of the bare cavity susceptibility

χc(ω) = 1

κ/2 − i(ω − �)
. (54)

In the following, we will be calculating the thermal occu-
pation number n̄b defined in the basis in which the reduced
mechanical density matrix is thermal, given by (9). We will
also compare this to the standard average phonon number n̄b,0,
i.e., the average occupation number in the basis of eigenstates
of the isolated oscillator Hamiltonian

Ĥb,0 = p̂2
b

2m
+ 1

2
mω2

bx̂2
b . (55)

By defining the standard phonon annihilation operator

b̂0 = 1

2

(
x̂b

xZPF,b,0
+ i

p̂b

pZPF,b,0

)
, (56)

where

xZPF,b,0 =
√

h̄

2mωb
, pZPF,b,0 =

√
h̄mωb

2
(57)

are the magnitudes of position and momentum fluctuations in
the ground state of the Hamiltonian (55), the average phonon
number n̄b,0 = 〈b̂†

0b̂0〉 can be calculated from

2n̄b,0 + 1 = 1

2

( 〈
x̂2

b

〉
x2

ZPF,b,0

+
〈
p̂2

b

〉
p2

ZPF,b,0

)
. (58)

The annihilation operator b̂ defined in Sec. II is related to
the phonon operator b̂0 defined in (56) by

b̂ = ν+(b̂0 − b̄0) + ν−(b̂†
0 − b̄∗

0) (59)

where

b̄0 = 1

2

( 〈x̂b〉
xZPF,b,0

+ i
〈p̂b〉

pZPF,b,0

)
(60)
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and the coefficients ν± are defined as

ν± = 1

1 + e2iθ

(
xZPF,b,0

xZPF,b
± eiθ pZPF,b,0

pZPF,b

)
. (61)

Throughout this section, we will use that 〈x̂b〉 = 〈p̂b〉 = 0 in
the model defined in Sec. III, such that �x̂b = x̂b and � p̂b =
p̂b, in which case b̄0 = 0 and (59) reduces to a Bogoliubov
transformation. Finally, we note that our model also gives
〈{x̂b, p̂b}〉 = 0, such that θ = 0.

A. Weak optomechanical coupling

Let us first consider the weak-coupling limit where the
effective mechanical decay rate γ̃b, to be defined below, is
much smaller than the cavity linewidth κ . In this limit, the me-
chanical mode still behaves as a harmonic oscillator in thermal
equilibrium, but with a renormalized resonance frequency ω̃b

and a renormalized linewidth γ̃b. Assuming γ̃b � ω̃b, we may
approximate the response function by

Rb(ω) = i sgn(ω)

2mω̃b[γ̃b/2 − i sgn(ω)(|ω| − ω̃b)]
(62)

when implicitly defining the effective mechanical resonance
frequency ω̃b according to

ω̃2
b = ω2

b + h̄λ2
o

m
Im[χc(ω̃b) − χ∗

c (−ω̃b)], (63)

showing that ω̃b is shifted from its bare value ωb due to the
optical spring effect, and the effective linewidth

γ̃b = γb + h̄λ2
o

mω̃b
Re[χc(ω̃b) − χ∗

c (−ω̃b)]. (64)

This limit leads to a simplified expression for the position
spectral density

Sxbxb (ω) =
∫ ∞

−∞

dω′

2π
〈x̂b[ω]x̂b[ω′]〉, (65)

whose integral over all frequencies gives the position variance
〈x̂2

b〉. Since Sxbxb (ω) is appreciably nonzero only in narrow re-
gions around ω = ±ω̃b, we may approximate ω ≈ ±ω̃b when
using Eqs. (34) and (54) to find a simplified expression for
Sxbxb (ω). The spectral density then consists of two Lorentzians
of width γ̃b centered at ω = ±ω̃b, whose frequency integral
gives

〈
x̂2

b

〉 = h̄

2mω̃b

(
2
γbnB(ω̃b) + κ h̄λ2

o|χc(−ω̃b)|2/(2mω̃b)

γ̃b
+ 1

)

(66)

with

nB(ω) = (eh̄ω/(kBT ) − 1)−1 (67)

being the Planck distribution. The variance of the bright
mode’s momentum can also be calculated from the spectral
density, giving

〈
p̂2

b

〉 =
∫

dω

2π
m2ω2Sxbxb (ω) ≈ m2ω̃2

b

〈
x̂2

b

〉
(68)

when exploiting again that the spectral density Sxbxb (ω) is
narrowly peaked at ±ω̃b.

From Eq. (11), this leads to the approximate relation

xZPF,b =
√

h̄

2mω̃b
(69)

and pZPF,b = h̄/(2xZPF,b), which are indeed the position and
momentum zero-point fluctuations for an isolated harmonic
oscillator at resonance frequency ω̃b in the ground state. Fur-
thermore, Eq. (9) gives

n̄b = γbnB(ω̃b) + κλ2
ox2

ZPF,b|χc(−ω̃b)|2
γ̃b

(70)

for the bright mode’s thermal occupation number. This
matches the well-known result for the oscillator’s average
phonon number from the standard theory of optomechanics
[35,36], except that the zero-point motion xZPF,b, as well as
the arguments of the bath occupation number (67) and the
cavity susceptibility (54), is defined in terms of the oscillator’s
effective resonance frequency.

Equations (69) and (70) are our first results. They show
that the purity μb = 1/(2n̄b + 1) is directly related to the av-
erage phonon number in the weak-coupling regime, but only
when defined in terms of the oscillator’s effective resonance
frequency. For small optical spring shifts |ω̃b − ωb| � ωb, the
error made by replacing ω̃b → ωb in (70) is small. However,
when the optical spring shift becomes comparable to or even
larger than the bare frequency, e.g., as in more advanced ex-
perimental setups [37,38], the phonon number must be defined
in terms of the effective frequency in order to reliably quantify
state purity.

B. Strong and ultrastrong optomechanical coupling

Let us now consider the strong-coupling limit in which
the mechanical and cavity modes hybridize into resolvable
normal modes [39], sometimes referred to as polariton modes
[18,40] in analogy with solid-state systems featuring strong
light-matter interaction. We start by writing the mechanical
response function in the form

Rb(ω) = χ−1
c (ω)χ−1 ∗

c (−ω)

m(ω − z−)(ω + z∗−)(ω − z+)(ω + z∗+)
, (71)

and we express the poles

z± ≡ ω± − i
κ±
2

(72)

in terms of normal-mode frequencies ω± and linewidths κ±.
For simplicity, we assume � = ωb in this subsection.

We also assume that the normal modes are well separated
in frequency, meaning κ± � ω+ − ω−, and that the lower-
frequency normal mode is a high-Q oscillator, i.e., κ− � ω−.
One can then write down approximate expressions for the
normal-mode resonance frequencies

ω± = ωb

√
1 ± 2Go

ωb
(73)

where

Go = λoxZPF,b,0 (74)

is the standard definition of the enhanced optomechanical
coupling rate [14]. To reach (73), we have neglected relative

013502-6



QUANTUM STATE PURITY VERSUS AVERAGE PHONON … PHYSICAL REVIEW A 107, 013502 (2023)

corrections of order (κ/Go)2, (κ/ωb)2 in line with the strong-
coupling assumption. For the normal-mode linewidths, we get

κ± = κ

2
(75)

in the limit γb/κ → 0.
With the above assumptions, the solution (51) gives ap-

proximately〈
x̂2

b

〉 = x2
ZPF,−(2n̄− + 1) + x2

ZPF,+(2n̄+ + 1) (76)

when defining [40]

n̄± = γbnB(ω±)/2 + κ (ω± − ωb)2/(8ωbω±)

κ±
(77)

and

xZPF,± =
√

h̄

4mω±
. (78)

The result (76) can be interpreted as the mechanical fluctu-
ations originating from the two normal modes, with average
polariton occupation numbers n̄± and where xZPF,± are the
mechanical fluctuations when n± = 0. [41]. Similarly, the
variance of the oscillator momentum becomes〈

p̂2
b

〉 = p2
ZPF,−(2n̄− + 1) + p2

ZPF,+(2n̄+ + 1) (79)

with

pZPF,± =
√

h̄mω±
4

. (80)

The thermal occupation number for the bright mode de-
fined by Eq. (9) can now be written

2n̄b + 1 =1

2

[
(2n̄− + 1)2 + (2n̄+ + 1)2

+ 2ω2
b

ω+ω−
(2n̄− + 1)(2n̄+ + 1)

]1/2
. (81)

We note that for strong but not ultrastrong coupling, mean-
ing κ � Go � ωb, we have the approximation n̄b = (n̄− +
n̄+)/2, i.e., the average of the normal-mode occupation
numbers.

In the strong-coupling regime we have considered in this
subsection, the bright mode position spectral density, which
is accessible by heterodyne photodetection of the cavity out-
put field, consists of four well-separated Lorentzian peaks
at frequencies ±ω±. The average normal-mode occupation
numbers n̄± can thereby be accessed from the asymmetries of
the peak heights at positive and negative frequencies, similarly
to how mechanical occupation numbers can be determined
in weakly coupled optomechanical systems [2,3,42–44]. This
method of finding n± from the peak height ratios means that
the thermal occupation number n̄b in Eq. (81) can be deter-
mined without having to integrate the spectral density over all
frequencies. This also alleviates the need for calibrating the
detector signal to oscillator position, since the sideband peak
height ratios are gain independent as long as the gain is the
same at all sideband frequencies.

It is worth comparing the thermal occupation number in
(81) to the average occupation number n̄b,0 defined in Eq. (58).
In the strong-coupling regime discussed above and for � =

ωb, we find

2n̄b,0 + 1 = 1

4

∑
σ=±

ω2
b + ω2

σ

ωbωσ

(2n̄σ + 1). (82)

For Go � ωb, such that |ωb − ω±| � ωb, n̄b and n̄b,0 are ap-
proximately equal. However, as is clear from Eqs. (81) and
(82), and will be shown graphically below, they differ signif-
icantly in the ultrastrong-coupling regime Go ∼ ωb where the
concepts of purity and average phonon number are not closely
related.

C. Exact results in the quantum backaction limit

After having explored the regimes of weak and strong
coupling, we now wish to derive an expression for the average
thermal occupation number n̄b, and thus the quantum state
purity μb, for arbitrary optomechanical coupling rate Go and
detuning � > 0. To avoid unwieldy expressions, however,
we will consider the limit where the motion of the oscillator
is dominated by electromagnetic vacuum noise due to its
coupling to the cavity mode (as opposed to the noise from
its own bath), i.e., the quantum backaction limit [35,36]. In
other words, we will calculate the minimal n̄b achievable by
optomechanical cooling for a general coupling rate Go. This
is relevant in the regime where

γbkBT

h̄ωb
� min

(
G2

o

κ
, κ

)
, (83)

which is a well-known requirement for ground-state cooling
of the mechanical mode [35,36].

From the presence of nB(ω−) in the normal-mode oc-
cupancy n̄− [see Eq. (77)], one might worry that in the
strong-coupling regime, the temperature T should be com-
pared to the lower normal-mode frequency ω−, not ωb as
in (83). However, one should note that the second term in
the numerator of (77), originating from the electromagnetic
vacuum noise ξ̂ , also scales inversely with ω−. Thus, even in
the ultrastrong-coupling regime where ω− � ωb, the motion
is dominated by the electromagnetic vacuum noise (i.e., radi-
ation pressure shot noise) as long as (83) is satisfied.

Starting from the equations of motion in the time domain
(see Sec. III) and setting γb = 0 to explore the quantum back-
action limit, we derive the steady-state expectation values〈

x̂2
b

〉 = h̄

4m�

(
1 + (κ/2)2 + �2

ω2
b − 2g2

o

)
, (84)

〈
p̂2

b

〉 = h̄m
[
(κ/2)2 + �2 + ω2

b

]
4�

, (85)

and 〈{x̂b, p̂b}〉 = 0, when defining

g2
o = h̄λ2

o�

m[(κ/2)2 + �2]
= 2G2

o�ωb

(κ/2)2 + �2
. (86)

These expectation values can then be used to calcu-
late the thermal occupation number n̄b according to (9),
giving

2n̄b + 1=
√[

(κ/2)2 + �2 + ω2
b − 2g2

o

][
(κ/2)2 + �2 + ω2

b

]
4�2

(
ω2

b − 2g2
o

) ,

(87)
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FIG. 2. Thermal occupation number n̄b from (87) (solid, blue
line) and average phonon number n̄b,0 from (58) (dashed, green line)
as a function of coupling rate Go in the quantum backaction limit
where we have set γb = 0. We have chosen � = ωb and κ/ωb = 0.2.
We also plot the approximate strong-coupling result for n̄b from (81)
(dash-dotted, orange line).

and thereby the purity (5) in the quantum backaction limit. It
is straightforward to verify that in the weak-coupling regime
go � ωb, this reproduces the well-known result

lim
Go→0

n̄b = (κ/2)2 + (� − ωb)2

4ωb�
, (88)

for the minimal average phonon number [35,36]. It is clear
from (87) that this is the minimal n̄b achievable in this setup.
We also note that expanding Eq. (87) to second order in go

gives agreement with previously reported results [39] for the
minimal average phonon number valid in the strong-coupling,
but not ultrastrong-coupling, limit.

In Fig. 2, we plot n̄b as given by the exact expression (87)
in the strong-coupling regime Go > κ when choosing � = ωb

and κ/ωb = 0.2. We also plot the approximate result for n̄b

given by (81), which is valid in the strong-coupling regime
and for lower normal-mode frequency ω− 
 κ . Finally, we
plot the average phonon number n̄b,0 from inserting Eqs. (84)
and (85) into the definition (58). While n̄b and n̄b,0 coincide
for small values of coupling strength Go, they differ in the
ultrastrong-coupling regime where Go is comparable to the
bare resonance frequency ωb. The thermal occupation number
n̄b is significantly smaller than the average phonon number
n̄b,0, which tells us that the average phonon number is not a
good indicator of the purity of the quantum state of the me-
chanical mode, i.e., that the state is nonthermal in the phonon
basis. We also observe that the approximate strong-coupling
result for n̄b matches the exact result well, except for values of
Go close to ωb/2 where the assumption ω− 
 κ breaks down
since ω− → 0.

We can also calculate the parameter M�, defined by
Eq. (14), which enters the position space eigenstates (13)
in the probabilistic mixture representation of the mechanical
mode’s Gaussian state, giving

M� = m

√[
(κ/2)2 + �2 + ω2

b

](
ω2

b − 2g2
o

)
[
(κ/2)2 + �2 + ω2

b − 2g2
o

] . (89)

This reduces to mωb for Go = 0, as expected. In the weak-
coupling limit Go � κ , we find that M� ≈ mω̃b in the limit
when the frequency shift |ω̃b − ωb| due to the optical spring
far exceeds the mechanical linewidth γ̃b, which is the case
when κ 
 ωb. However, note that for general κ/ωb, there are
additional, small corrections to M� of order mγ̃b which were
neglected in Eqs. (68) and (69).

V. PURITY OF A 2D OSCILLATOR COUPLED TO AN
OPTICAL CAVITY MODE

We now move on to consider the model defined in
Sec. III for δm 	= 0, i.e., the situation where the cavity
mode effectively couples to the full, two-dimensional mo-
tion of the oscillator. For convenience, we introduce the
rate

Gm = ω̄mδm

2
√

ωbωd
(90)

which is a measure of the coupling between the bright and
dark mechanical modes. We note that the model is defined
such that 〈x̂b〉 = 〈p̂b〉 = 〈x̂d〉 = 〈p̂d〉 = 0.

To determine the purity of the quantum state of the two-
dimensional oscillator from Eq. (21), one would need to
measure not only the bright mode’s position fluctuations x̂b,
but also the dark mode’s fluctuations x̂d . While the bright
mode is directly accessible through photodetection of the cav-
ity output field, the dark mode is (per definition) not. However,
the fluctuations of the dark mode are in principle accessi-
ble through detection of light scattered orthogonally to the
cavity axis.

A. Rotating wave approximation

To gain insight, we will start by applying the rotating wave
approximation, which means that we exclude ultrastrong cou-
pling and consider the resolved sideband limit κ/ωb → 0. To
simplify, we specialize to isotropic friction, i.e., γx = γy, and
thus set ηm = 0. In terms of the standard phonon annihilation
operator b̂0 for the bright mode, defined in Eq. (56), and the
phonon annihilation operator d̂0 for the dark mode, defined
similarly, the equations of motion then become

˙̂a = −
(κ

2
+ i�

)
â − iGob̂0 + √

κ ξ̂ , (91)

˙̂b0 = −
(γb

2
+ iωb

)
b̂0 − iGoâ − iGmd̂0 + √

γb ζ̂b, (92)

˙̂d0 = −
(γd

2
+ iωd

)
d̂0 − iGmb̂0 + √

γd ζ̂d , (93)

where

〈ζ̂ †
i (t )ζ̂ j (t

′)〉 = nB(ωi)δi jδ(t − t ′), (94)

〈ζ̂i(t )ζ̂ †
j (t ′)〉 = [nB(ωi ) + 1]δi jδ(t − t ′). (95)

To simplify further, we will also consider a rotation angle of
φ = π/4 for the harmonic trap (see Fig. 1), giving ωd = ωb,
and a laser detuning � = ωb, such that all three modes are
resonant. The rotating wave approximation is then tantamount
to the assumptions κ, Go, Gm � ωb. Note that φ = π/4 also
gives γb = γd , and that we define γtot = γb + γd = 2γb.
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FIG. 3. Density plot of the state purity μ2D for the two-
dimensional oscillator as a function of the optomechanical coupling
rate Go and the mechanical coupling rate Gm in the special cases γx =
γy and φ = π/4, and with the assumptions κ, Go, Gm � ωb. We have
used the parameters γtot/κ = 1.0 × 10−9, and γtotnB(ωb)/κ = 0.05.
The dashed white line is given by Go/Gm = √

2, which is the cou-
pling ratio that maximizes purity given our assumptions.

Finally, we consider the regime of large optomechanical
cooperativity

Co = 4G2
o

κγtot

 1, (96)

which is the regime we primarily are interested in, and we
assume G2

o 
 G2
mγtot/κ .

With the above simplifications, the inverse purity of the
mechanical oscillator’s quantum state becomes

μ−1
2D = (2n̄b,0 + 1)(2n̄d,0 + 1) − 4|〈b̂†

0d̂0〉|2 (97)

according to Eq. (21), where n̄b,0 = 〈b̂†
0b̂0〉, n̄d,0 = 〈d̂†

0 d̂0〉,
and we have used that Re〈b̂†

0d̂0〉 = 0 when � = ωb = ωd .
In Fig. 3, we plot the purity versus the two coupling rates
Go and Gm found from solving the equations of motion above
with the stated assumptions, where we have used parameters
inspired by the levitated nanoparticle setup [11,12].

In order for the dark mode to be cooled to a degree compa-
rable to the bright mode, it is clear that the rate of coupling
between the mechanical modes Gm must be comparable to
the optomechanical coupling rate Go. Assuming also G2

m 

G2

oγd/κ and n̄b,0, n̄d,0 � 1, we find that the purity is maxi-
mized when

G2
m = G2

o

2
(98)

with our assumptions, in which case its inverse can be approx-
imated by

μ−1
2D ≈ 1 + 2(n̄b,0 + n̄d,0) = 1 + 4nB(ωb)

(
1

Co
+ γtot

κ

)
.

(99)

We observe that a high purity, i.e., μ2D close to unity, requires
γtotnB(ωb) � κ , as usual for optomechanical ground-state
cooling [35,36]. In the weak-coupling regime Go � κ , it ad-
ditionally requires a cooperativity Co 
 nB(ωb).

FIG. 4. Pure state deviation 1 − μ2D of the two-dimensional me-
chanical oscillator, and 1 − μbμd given by the purities of the reduced
states of the one-dimensional bright and dark modes, vs optomechan-
ical coupling strength. We have used � = ωd = ωb, κ/ωb = 0.2, and
Go/Gm = √

2, and assumed that we are in the quantum backaction
limit.

B. Exact results in the quantum backaction limit

While the rotating wave approximation applied in Sec. V A
works well both in the weak- and strong-coupling regime,
it fails in the ultrastrong-coupling regime where the cou-
pling rates Go and Gm are comparable to the frequencies
ωb, ωd , and �. While solving the general problem exactly
gives unwieldy expressions, we again find an exact expression
for the state purity in the quantum backaction limit, i.e., when
assuming that the 2D mechanical motion is dominated by its
coupling to the cavity mode and thus ignoring the mechanical
baths.

Solving the equations of motion in Sec. III when setting
γx = γy = 0, such that γb = γd = ηm = 0, gives 〈{x̂b, p̂b}〉 =
〈{x̂d , p̂d}〉 = 〈x̂b p̂d〉 = 〈x̂d p̂b〉 = 0 and

〈
x̂2

b

〉 = h̄

4m�

(
1 + [(κ/2)2 + �2]ω2

d(
ω2

b − 2g2
o

)
ω2

d − ω̄2
mδ2

m

)
, (100)

〈
x̂2

d

〉 = h̄

4m�

(
1 + [(κ/2)2 + �2]

(
ω2

b − 2g2
o

)
(
ω2

b − 2g2
o

)
ω2

d − ω̄2
mδ2

m

)
, (101)

〈
p̂2

i

〉 = h̄m
[
(κ/2)2 + �2 + ω2

i

]
4�

, i = b, d, (102)

〈x̂bx̂d〉 = −
(

h̄

4m�

)
[(κ/2)2 + �2]ω̄mδm(
ω2

b − 2g2
o

)
ω2

d − ω̄2
mδ2

m

, (103)

〈p̂b p̂d〉 = h̄mω̄mδm

4�
. (104)

These expressions provide an analytical result for the quantum
backaction limit of the purity when inserted into Eq. (21). One
should note that the exact purity μ2D for the two-dimensional
oscillator’s state in general differs from the product of the
separate state purities of the 1D bright and dark modes
given by

μbμd = h̄2

4
√〈

x̂2
b

〉〈
p̂2

b

〉〈
x̂2

d

〉〈
p̂2

d

〉 . (105)

In Fig. 4, we compare the purity μ2D of the 2D mechanical
state to the product μbμd . We observe that they differ in
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the ultrastrong-coupling regime, indicating that the bright and
dark modes are correlated. This shows that, in general, the
complete characterization of a 2D oscillator cannot be limited
to the occupation numbers along two orthogonal axes.

VI. CONCLUSION

In this paper, we have argued that the thermal occupation
number n̄ of a one-dimensional oscillator in a Gaussian state
should be defined with respect to the Fock basis in which
the oscillator’s quantum state is thermal. This has several
advantages compared to the standard average phonon number.
First, it can be calculated from observable expectation values
of position and momentum fluctuations without having to re-
fer to the oscillator’s confining potential. Second, it is directly
related to state purity for all Gaussian states. In particular, for
states that are squeezed thermal states in the phonon basis, it
equals the number of Bogoliubons that measures the deviation
from the squeezed vacuum [15]. Finally, it is also a meaningful
quantity for non-Gaussian states, since, if viewing Eq. (9)
as a definition, n̄ is a measure of deviation from a minimal
uncertainty state.

We studied optomechanical sideband cooling of a one-
dimensional mechanical oscillator and showed that the
deviation between the thermal occupation number we defined
and the standard phonon number is most pronounced in the
regime of ultrastrong coupling, i.e., where the optomechanical
coupling rate is comparable to the bare mechanical resonance
frequency, or when the oscillator’s resonance frequency is
strongly renormalized. However, since average phonon num-
bers in experiments are sometimes reported to the percent
level accuracy, even small deviations between the two oc-

cupation numbers are noteworthy. We also derived an exact
analytical expression for the minimal thermal occupation
number achievable with sideband cooling for arbitrary cou-
pling strength.

We have also argued that for higher-dimensional oscillators
in Gaussian states, the use of quantum state purity to quantify
the quantum character of the state is preferable to average
phonon numbers along arbitrary directions. For Gaussian
states, the purity is inversely proportional to the square root
of the determinant of the covariance matrix and thus directly
accessible through measurements of quadratic expectation
values of positions and momenta. We considered sideband
cooling in cavity optomechanics with two-dimensional me-
chanical oscillators, relevant to experiments with levitated
nanoparticles, and derived an exact analytical expression for
the maximal purity achievable in this setup. Finally, we note
that an alternative quantifier of mixedness could be von
Neumann entropy, which may provide a richer characteri-
zation scheme in the two-dimensional case as it then also
depends on a second invariant of the covariance matrix in
addition to the determinant [23].
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APPENDIX: OVERVIEW OF SYMBOLS

The Table I in the Appendix provides a description of the
symbols used in this paper.

TABLE I. Overview of symbols used in the paper.

Symbol Description Relevant equations

x̂ and ŷ Components of the position operator along the principal axes of the harmonic trap
p̂x and p̂y Canonical conjugate momentum operators of x̂ and ŷ
x̂b and x̂d Bright and dark mode position operator (26) and (27)
p̂b and p̂d Canonical conjugate momentum operators of x̂b and x̂d

â Photon annihilation operator
�ô Fluctuation of operator ô (8)
m Mass of the mechanical oscillator
φ Angle between principal axis and cavity axis
ωx and ωy Eigenfrequencies along the principal axes of the harmonic trap
ωb and ωd Eigenfrequencies of the uncoupled bright and dark modes (39) and (40)
γb and γd Bare energy decay rate for the bright and dark modes (41) and (42)
κ Bare energy decay rate for the cavity mode
T Temperature
kB Boltzmann’s constant
h̄ Planck’s reduced constant
N̂b and N̂d Intrinsic noise operators for bright and dark modes (34), (46), and (47)
ξ̂ Electromagnetic vacuum noise driving the cavity (49) and (50)
λo Optomechanical coupling constant (with dimension frequency per length)
ω̄m Average of mechanical frequencies ωx and ωy (43)
δm Measure of conservative coupling between bright and dark modes (44)
ηm Measure of dissipative coupling between bright and dark modes (45)
Go Photon-phonon optomechanical coupling rate (74)
Gm Phonon-phonon coupling rate between mechanical modes (90)
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TABLE I. (Continued.)

Symbol Description Relevant equations

go Convenient alternative definition of the optomechanical coupling rate (86)
χc Cavity susceptibility (54)
Rb Bright mode response function (52)
Hj,0 Hamiltonian for the isolated harmonic oscillator with mass m and eigenfrequency ω j ( j = b, d) (55)
xZPF, j,0 Position fluctuations in the ground state of Hj,0 ( j = b, d) (57)
pZPF, j,0 Momentum fluctuations in the ground state of Hj,0 ( j = b, d) (57)
xZPF, j Position fluctuations in the ground state |0〉 of the basis in which ρ̂ j is thermal ( j = b, d) (6), (11), and (69)
pZPF, j Momentum fluctuations in the ground state |0〉 of the basis in which ρ̂ j is thermal ( j = b, d) (7) and (12)
θ Angle quantifying the symmetrized correlation between position and momentum (6), (7), and (10)
b̂0 and d̂0 Phonon annihilation operators for bright and dark modes (56)
b̂ and d̂ Annihilation operators for bright and dark modes for the number basis in which ρ̂b, ρ̂d are thermal (4), (6), (7), and (59)
n̄ j,0 Average phonon number ( j = b, d) (58)
n̄b Thermal occupation number in the basis in which ρ̂b is thermal (4), (9), (70), (81), and (87)
μ j Quantum state purity of the one-dimensional mode ( j = b, d) (1) and (5)
ψn Position space representation of the basis |n〉 in which ρ̂ is thermal (13)
M� Parameter entering the wave functions ψn (14)
ω̃b Effective bright mode resonance frequency in the weak-coupling regime (63)
γ̃b Effective bright mode decay rate in the weak-coupling regime (64)
Sxbxb Bright mode position spectral density (65)
ω± Normal-mode (polariton) eigenfrequencies (73)
κ± Normal-mode (polariton) decay rates (75)
n± Average polariton numbers (77)
xZPF,± Bright mode position fluctuations when n± = 0 (78)
pZPF,± Bright mode momentum fluctuations when n± = 0 (80)
μ2D Quantum state purity of the two-dimensional oscillator (21), (99), and (100)–(104)
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