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Dependence of Lévy-flight transmission on the starting point
for photons propagating in atomic vapors
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The propagation of a photon in an atomic medium can be seen as a Lévy-flight random walk where the
probability distribution P(z) for the photon step length z scales with z−(α+1), with 0 < α < 2. In atomic vapors,
previous work reported the value of α obtained from direct measurement of P(z) and also from the dependence of
transmission on sample opacity, both for Doppler and Lorentz profiles. In this work, we report the measurement
of α in a Cs cell from the scaling of transmission with starting point, i.e., the average penetration depth of the
photon in the medium before the first scattering event. We show that the parameter α depends on the size of
the system and on the probability that an atom suffers a collision before spontaneous emission. The measured α

parameter corresponds to the expectation value for P(z = L), with L the size of the system, which is consistent
with the so-called single-big-jump principle that states that a single jump rules the transport.

DOI: 10.1103/PhysRevA.107.013501

I. INTRODUCTION

Lévy flights are a kind of particle random walk with heavy-
tailed step-length distribution which favors the appearance of
large steps. The step-length distribution, i.e., the probability
density that a step has length z, is given asymptotically by a
power law P(z) ∝ z−(1+α), with α < 2. Although rare, those
large steps dominate the particle motion, resulting in a su-
perdiffusive displacement. Lévy flights are encountered in a
large variety of systems such as displacement of cells [1],
animals [2,3] and humans [4–6], economy [7,8], and, more
recently, in the spread of diseases [9] and phonons transport
in nanowires [10].

Photons propagating in inhomogeneous media is one of
such systems where Lévy flights were evidenced. Lévy flights
for photons were observed in transmission of solar light
through a cloudy sky [11,12], engineered media dubbed Lévy
glasses [13–15], and resonant atomic vapors [16–20]. Under-
standing photon transport in atomic media is important in a
range of light-scattering systems, such as refined models in
astrophysics [21,22]. In atomic vapors, a photon performs a
random walk by means of radiation trapping, i.e., successive
events of spontaneous emission of photons followed by reab-
sorption by the vapor. The frequency-dependent atom-photon
cross section implies spectral inhomogeneity with large steps
done by far-detuned emitted photons. When the photon is
absorbed, the atom stays in the excited state for a typical
time of a few nanoseconds before emitting a new photon,
which propagates for a distance z with speed c before being
reabsorbed by another atom. For vapor cell systems, whose
size is of the order of cm, the travel time z/c is much smaller
than the atomic lifetime τ , and Lévy flights are suitable to
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describe the random walk [23]. In other applications, such as
astrophysics, the travel time is not negligible and is coupled
to step lengths z of the order of km, which characterizes the
photon random walk as Lévy walks [23]. In both cases, the
photon step-length distribution is heavy tailed and the Lévy
parameter α depends on the emission and absorption spectral
profiles of the vapor [24], with α = 1 having been measured
for vapor with a Doppler spectral profile [16–18] and α =
0.5 having been measured for collisional broadened vapor
exhibiting a Lorentz spectral profile [19]. Vapors subject to
natural and Doppler broadenings are described by the Voigt
spectral profile, which presents a Doppler core and Lorentzian
wings, and these two spectral regions contribute to different
step-length scales: photons emitted in the Lorentzian wings
perform larger steps than those emitted in the Doppler core
[20].

For bounded systems, investigation relative to the escape
of the particle by one of the boundaries is a relevant problem.
Indeed, depending on the system, it may not be possible to
track the particle motion inside the boundaries, and measure-
ments relative to the particles that have escaped the system
through one boundary should be made. Examples of measur-
able quantities are the first passage time [15] and transmission
[18]. For a slab geometry, the particle transmission by the
boundaries depends on three parameters: the size of the sys-
tem, L, the typical length scale zmin, and the starting point
of the random walk, z0. The dependence of transmission on
the starting point was studied in [25] in the continuous limit
for which zmin � z0 � L, and recently extended to all ranges
of parameters [26]. Also, for finite regions, since the particle
remains inside the boundaries, the Lévy random walk was
predicted to converge to a normal distribution after a huge
number of steps [27].

In the case of photons propagating in finite media, e.g.,
atomic vapors confined to cells, previous work has explored
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the dependence of transmission on L/zmin [13,18–20], which
is proportional to the opacity, or optical depth, of the sample.
Also, this physical system introduces a cutoff in the maximum
step size of photons inside the vapor, leading to the so-called
truncated Lévy flight [27]. This step-size cutoff determines the
spectral region in the emission profile that contributes to the
random walk inside the vapor, resulting in a size-dependent α

parameter [20].
Here we explore the dependence of transmission with z0/L

for a photon in a hot vapor, contrary to the extensively studied
L/zmin dependence. We measure the photon transmission as
the starting point z0 in the multiple scattering regime, i.e., after
the photon has undergone several scattering events before
leaving the vapor. As we will show, the diffuse transmission
scales with (z0/L)α/2 [25], and we use this fact to measure
the Lévy parameter α for different sample opacities. Also,
we investigate the influence of atom-atom collisions in the
step-length distribution and in the α parameter.

This article is organized as follows: in Sec. II, we de-
scribe the experimental setup. Then, in Sec. III, we discuss
our results and compare with the theory of Lévy flight. We
also discuss the possibility of investigating the dependence of
transmission with z0/L as a way to measure the parameter
α. In Sec. IV, we measure the parameter α as a function
of atomic density or zmin/L and compare to the expectation
from radiation trapping theory. Finally, we make concluding
remarks in Sec. V.

II. EXPERIMENTAL SETUP

Our experimental setup is the same as in [20]. A laser
beam with wavelength λ = 852 nm is incident in a sealed cell
filled with cesium vapor. The coherent transmission, corre-
sponding to photons that go through the vapor ballistically,
is detected by photodetector PD1. The diffuse transmission,
corresponding to photons scattered by the vapor, is detected
by photodetector PD2.

The laser is a semiconductor laser with a grating external
cavity emitting around the Cs D2 line. More specifi-
cally, we scan the laser frequency around the 6S1/2(F =
4) → 6P3/2(F ′ = 3, 4, 5) transitions and monitor the laser
frequency with auxiliary setup including a 1.5-GHz free-
spectral-range Fabry-Perot interferometer and a saturated
absorption setup. The beam incident in the cell is linearly po-
larized, has a diameter of 1.25 mm, and its power is controlled
by a λ/2 plate associated with a Glan polarizer. The incident
beam power is ∼10 μW corresponding to I/IS = 0.5, with
IS = 1.6 mW/cm2 the saturation intensity of the correspond-
ing transition ensuring a linear interaction between the laser
and the vapor.

We use a glass cylindrical cell with radius of 1.25 cm,
length of L = 3 cm, and a side arm containing liquid cesium.
The cell and sidearm are heated by independent ovens. The
cell temperature TC regulates the vapor temperature and, con-
sequently, the Doppler width �D of the absorption profile.
The side-arm temperature regulates the vapor density and is
kept at least 20 ◦C below TC to avoid Cs condensation on
the windows. The density of the vapor is taken by fitting the
coherent transmission collected on photodetector PD1 (see
Fig. 1) by a Beer-Lambert law, TBL = e−Nσ (x)L, with N the

FIG. 1. Experimental setup: A low-power laser beam is incident
on the vapor cell; coherent transmission and diffuse transmission are
collected by photodetectors PD1 and PD2, respectively.

atomic density, x the frequency detuning, and σ the detuning-
dependent photon-vapor cross section. We have varied the
side-arm temperature from TS = 58 ◦C to TS = 140 ◦C, corre-
sponding to vapor densities from N = 1.5 × 1011 atoms/cm3

to N = 8.0 × 1013 atoms/cm3, respectively. The interaction
cross section is calculated as σ (x) = σ0

∑
i γi�i(x), with

the addition taken over the hyperfine transitions 6S1/2(F =
4) → 6P3/2(F ′ = 3, 4, 5) weighted by the relative transition’s
strength γi and σ0 = 3λ2

2π
a. �i(x) is a Voigt absorption pro-

file centered at each hyperfine transition and normalized to∫ ∞
−∞ dx�i(x) = 1, given by [28]

�i(y) = a

π3/2

∫ ∞

−∞
dv

e−v2

a2 + (y − yi − v)2 . (1)

In Eq. (1), y = x/�D is a detuning normalized by Doppler
width �D = u/λ, with u the most probable thermal velocity,
yi the normalized center detuning of transition i, and Voigt
parameter a = �/2�D the ratio between homogeneous and
Doppler widths.

A lens before photodetector PD2 collects the photons that
are scattered by the vapor in a direction with an angle θ

relative to incident laser direction z. The lens has a focal length
of 20 cm and is placed at 30 cm from the cell output window.
Measurements are made for relatively large angle θ = 15◦ to
minimize the contribution of photons that cross the vapor bal-
listically and are scattered by the output window [29]. Indeed,
far from resonance, photons are not scattered by the vapor and
a null signal would be expected in the detector PD2. However,
we observe a constant signal S0 corresponding to photons that
cross the vapor ballistically and that are scattered by the output
window. Closer to resonance, such output window contribu-
tion is modulated by vapor absorption and its detuning depen-
dence can be modeled as S(x) = S0TBL(x). The diffuse trans-
mission TDiff spectra that will be discussed in this article are
obtained by subtracting the output window contribution S(x)
to the photodetector signal [20]. In our setup, S0 is of the same
order of magnitude as the resulting diffuse transmission TDiff .

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. General comments on TDiff spectrum

In Fig. 2(a), we show an example of the obtained diffuse
transmission (TDiff ) as a function of incident laser detuning. In
Fig. 2, we show the diffuse transmission in red and blue lines,
together with theoretical curves that will be discussed later.
We plot TDiff in different colors for blue and red detuning to
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FIG. 2. Measured diffuse transmission (a) as a function of inci-
dent laser detuning and (b) as a function of z̄0/L, for a density of N =
1.5 × 1011 atoms/cm3 corresponding to zmin/L = 0.04 and a Voigt
parameter a = 0.01. Blue and red solid lines emphasize different
contributions from blue- and red-detuning incident laser frequency
relative to the frequency of the maximum absorption coefficient. The
black dashed line corresponds to the theory of Eq. (2).

emphasize the spectrum asymmetry. From now on, detuning
x = 0 is taken at the frequency corresponding to the maximum
of the absorption coefficient, ∼70 MHz, to the red side of the
6S1/2(F = 4) → 6P3/2(F ′ = 5) transition.

Different incident photon detuning implies changing the
penetration depth of the photons. With this in mind, we can
transform the abscissa of Fig. 2(a) into a mean starting point
of the random walk, z̄0, by taking z̄0 = 1

Nσ (x) as the penetration
depth of the photons at detuning x. In Fig. 2(b), we plot TDiff

as a function of z̄0
L in log-log scales and observe a power-law

dependence in the limit z̄0
L � 1. A departure from the power

law is observed around z̄0
L ∼ 10−1, with a maximum of TDiff

occurring around z̄0
L ∼ 1 for which the photons are scattered

very close to the output window.

B. Dependence of TDiff on z̄0/L: Theory

Here we measure the diffuse transmission of photons
through the window opposite to its incidence. The photons

perform a Lévy flight inside the vapor [16,18–20,24] with
step-length distribution decaying asymptotically as P(z) ∼
1/z1+α , with α the Lévy stability parameter. The axis of the
incident laser beam is denoted by z with the entrance window
at z = 0. Three parameters are relevant in the analysis of the
transmission: (i) the sample size L corresponding to the cell
thickness of L = 3 cm; (ii) the minimum step length of the
random walk, which we associate to the mean absorption
length of the photon at line center zmin = 1

Nσ (0) ; and (iii)

the starting point of the random walk z0 = z̄0 = 1
Nσ (x) , which

depends on incident photon detuning.
The case for which zmin < z0 < L is known in the literature

as the continuous limit [26] and the diffuse transmission is
given by [25,30,31]

TD =
(

z0

L

)α/2 F
(

α
2 , 1 − α

2 , α
2 + 1, z0

L

)
α
2 B

(
α
2 , α

2

) , (2)

with F (a, b, c, d ) the hypergeometric function and B(a, b) the
Euler B function.

In the limit z0/L � 1, Eq. (2) approaches a power-law
dependence [25,26,30],

TD ∝
(

z0

L

)α/2

. (3)

Our measurements of TDiff for low z0/L are consistent with
Eq. (3), exhibiting a power law. In principle, we can measure
the Lévy parameter α by fitting the dependence of TDiff with
z0/L by Eq. (3) and this is one of the aims of this work.

C. Diffuse transmission spectra

Before proceeding to a systematic fit of experimental
curves by Eq. (3), we will discuss the whole diffuse trans-
mission spectrum. Note that the theoretical model of Eq. (2),
shown as a black dashed line in Figs. 2(a) and 2(b), does
not fit well with the measured spectra for z0/L ∼ 1. Also, the
theoretical transmission of Eq. (2) only depends on z0/L and
does not depend on whether the incident photon is blue or red
detuned, as in the experimental spectrum.

a. Starting point z0 is not well defined. For the laser inci-
dent in the vapor, the starting z0 is not well defined. Instead,
we have a probability distribution P(z0)dz0 that the incident
photon is absorbed at distance between z0 and z0 + dz0 from
the entrance window,

P(x, z0) = Nσ (x)e−Nσ (x)z0 . (4)

The diffuse transmission can now be calculated weighting
Eq. (2) by P(z0),

TD(x) =
∫ L

0
dz0P(x, z0)TD(z0). (5)

The diffuse transmission calculated using Eq. (5) is shown
in Fig. 3(a) as a black dash-dotted line. Note that it qualita-
tively approaches the experimental spectra by the appearance
of a maximum around z0/L ∼ 1. Equation (5) now takes into
account that only a percentage, 1 − e−NσL, of the photons is
absorbed and scattered by the vapor. The maximum of TDiff is
a competition between the photon being scattered closer to the
output window (larger z0), thus increasing the detected signal,
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FIG. 3. (a) Measured diffuse transmission compared to the
model considering one scattering contribution and multiple scatter-
ing contribution. The blue and red solid lines are the experimental
diffuse transmission for incident blue and red detuning, respec-
tively. Atomic density is N = 1.5 × 1011 atoms/cm3, corresponding
to zmin/L = 0.04, the same as for Fig. 2. The black dashed line
is the multiple scattering contribution from Eq. (5) and the green
dot-dashed line corresponds to the joint contributions of single and
multiple scattering [Eq. (7)]. (b) Multiple scattering contribution to
TD from Eq. (5) (black dashed line); single scattering contribution
from Eq. (8) (blue solid line) and coherent transmission (red dotted
line). Vertical green dotted lines mark the positions of the hyperfine
6S1/2(F = 4) → 6P3/2(F ′ = 3, 4, 5) transitions.

and a decrease of the number of photons being scattered by
the vapor for large laser detuning.

For low z0/L � 1, where the approximation of Eq. (3) is
valid,

TD(x) ∼
∫ L

0
dz0P(x, z0)

(
z0

L

)α/2

∼
(

z̄0

L

)α/2

, (6)

so z̄0 = 1/Nσ (x) is a good parameter for fitting experimental
data to obtain α at low z̄0/L.

b. Influence of first scattering event on transmission. For a
step-length distribution P(z) = α

zmin
(zmin/z)1+α [32], the prob-

ability that a photon scattered at z0 is transmitted after only
one scattering scales as ∼ zα

min
(L−z̄0 )α and can be neglected in the

continuous limit zmin � z̄0 � L. However, for photons prop-
agating in resonant vapor, the step-length distribution after
the first scattering is different from the subsequent scattering
contributions [28,33] and the transmission contribution of this
first scattering event must be considered separately. Taking
into account the contribution from the first scattering event,
the diffuse transmission can be written as

TD(x) = TD,1(x) + TD,M (x), (7)

with TD,1(x) the contribution of the photon escaping the cell
by the output window after only one scattering event, and
TD,M (x) the contribution of multiple scattered photons given
by Eq. (5). The one scattering contribution is given by

TD,1(x) =
∫ L

0
dz0Nσ (x)e−Nσ (x)z0

∫ ∞

L−z0

dzP1(z, x), (8)

were P1(z, x) is the probability distribution that a photon per-
forms a step of length z after the first scattering event that
depends on incident detuning x.

The probability that a photon emitted at a given detuning
x′ travels a distance z before being absorbed is [34,35]

P(x′, z) = Nσ (x′)e−Nσ (x′ )z. (9)

This probability distribution of step length should be
weighted by the spectral distribution of the emitted radiation
field �(x′, x),

P(z, x) =
∫ ∞

−∞
dx′�(x′, x)Nσ (x′)e−Nσ (x′ )z. (10)

In the above equation, �(x′, x) denotes the probability that
a photon is spontaneously emitted with detuning between x′
and x′ + dx′ and depends on the incident detuning x.

For a two-level atom, the emission spectrum is given by
[17]

�1(x′, x) ∝ 1

4π3

∫
dv1e−v2

1/u2 1

1 + 4(x − v1/λ)2/�2

×
∫

dv2e−v2
2/u2

p

(
x − v1/λ, x′ − 	v · n̂′

λ

)
. (11)

In Eq. (11), v1(v2) is the atom velocity component paral-
lel (perpendicular) to the incoming photon direction n̂, 	v =
(v1, v2) is the velocity vector, e−v2

i /u2
dvi is the Maxwell-

Boltzmann probability of finding an atom with velocity
component between vi and vi + dvi in direction i, and n̂′ is a
unit vector in the direction of the photon emission. p(ξ ′, ξ ) is
the frequency redistribution function in the atomic rest frame.
In the absence of collisions between atoms, the photon scatter-
ing is elastic in the atomic rest frame and p(ξ ′, ξ ) = δ(ξ ′ − ξ )
[21,28], while for frequent collisions, the frequency is redis-
tributed in the atomic rest frame and p(ξ ′, ξ ) = �

2π
1

�2/4+ξ ′2

[21,28,36]. The total homogeneous width � = �n + �C is
the sum of natural width �n and collisional broadening �C .
The emission spectrum in Eq. (11) is written for a two-
level atom. This equation can be easily extended for the D2

transition with three absorption transitions [6S1/2(F = 4) →
6P3/2(F ′ = 3, 4, 5), in our case] and the possibility of optical
pumping to 6S1/2(F = 3) [17].
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FIG. 4. (a) Measured diffuse transmission compared to the
model considering one scattering contribution and multiple scatter-
ing contribution. The blue and red solid lines are the experimental
diffuse transmission for incident blue and red detuning, respec-
tively. Atomic density is N = 2.0 × 1012 atoms/cm3 corresponding
to zmin/L = 3 × 10−3 and a Voigt parameter a = 0.01. The black
dashed line is the multiple scattering contribution from Eq. (5) and
the green dot-dashed line corresponds to the joint contributions of
single and multiple scattering [Eq. (7)]. (b) Multiple scattering con-
tribution to TD from Eq. (5) (black dashed line); single scattering
contribution from Eq. (8) (blue dotted line) and coherent transmis-
sion (red dotted line). Vertical green dotted lines mark the positions
of the hyperfine 6S1/2(F = 4) → 6P3/2(F ′ = 3, 4, 5) transitions.

In Fig. 3(a), we compare the measured diffuse transmission
TDiff (blue and red solid lines), and theoretically obtained
from Eq. (7) (green dot-dashed line) together with the con-
tribution of multiple scattering TD,M [Eq. (5), black dashed
line]. The calculated spectra reproduce well the measured
spectrum including the maxima’s positions and amplitudes. In
Fig. 3(b), we compare multiple scattering TD,M [Eq. (5), black
dashed line], single scattering (blue solid line) contributions,
and coherent transmission (red dotted line). The asymme-
try of the red- and blue-detuned maxima is related to one
scattering contribution [blue solid line in Fig. 3(b)] and the
existence of transition 6S1/2(F = 4) → 6P3/2(F ′ = 3, 4) in
the red side, while in the blue side, there is only one transition
6S1/2(F = 4) → 6P3/2(F ′ = 5) very close to x = 0.

FIG. 5. (a) Measured diffuse transmission compared to the
model considering one scattering contribution and multiple scatter-
ing contribution. The blue and red solid lines are the experimental
diffuse transmission for incident blue and red detuning, respec-
tively. Atomic density is N = 6.0 × 1013 atoms/cm3 corresponding
to zmin/L = 1 × 10−4 and a Voigt parameter a = 0.02. The black
dashed line is the multiple scattering contribution from Eq. (5) and
the green dot-dashed line corresponds to the joint contributions of
single and multiple scattering [Eq. (7)]. (b) Multiple scattering con-
tribution to TD from Eq. (5) (black dashed line); single scattering
contribution from Eq. (8) (blue dotted line) and coherent transmis-
sion (red dotted line). Vertical green dotted lines mark the positions
of the hyperfine 6S1/2(F = 4) → 6P3/2(F ′ = 3, 4, 5) transitions.

In Figs. 4 and 5, we show diffuse transmission and theoret-
ical curves for higher densities. In Fig. 4, the theory of Eq. (7),
considering the contribution of multiple and single scattering,
reproduces the experiment well, while for higher density, in
Fig. 5, the theory only fits correctly close to resonance (see
Sec. III D).

D. Measurement of α parameter

One of the aims of this work is the proposal to use diffuse
transmission as a function of z̄0/L to measure α in the multiple
scattering regime. We note that the result of Eq. (6) is valid
for z̄0/L � 1 and we will analyze the measured TDiff for the
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FIG. 6. Diffuse transmission as a function of z̄0/L for blue and
red detuning with obtained α values from fitting Eq. (6). (a) For
density N = 1.5 × 1011 atoms/cm3, corresponding to zmin/L = 4 ×
10−2. (b) For N = 6.0 × 1013 atoms/cm3, corresponding to zmin/L =
1 × 10−4.

region z̄0/L < 0.15 [37]. For this region, coherent trans-
mission is negligible (around 0.1%) and the one scattering
contribution is very low [see Fig. 3(b)]. For instance, the
region for which z̄0/L < 0.15 corresponds to the spectral
range from x = −500 to x = 270 MHz for density of N =
1.5 × 1011 atoms/cm3 shown in Fig. 3.

Diffuse transmission as a function of z̄0/L is shown in
Figs. 6(a) and 6(b), together with the obtained α values
from fitting Eq. (6). For low density [Fig. 6(a) for N =
1.5 × 1011 atoms/cm3, corresponding to zmin/L = 4 × 10−2],
we get different power laws for blue and red side detuning
with a higher value for the blue side possibly related to the
nonzero contribution of one scattering [see Fig. 3(b)].

Diffuse transmission as a function of z̄0/L for high density
(N = 6.0 × 1013 atoms/cm3, corresponding to zmin/L = 1 ×
10−4) is shown in Fig. 6(b). For higher density, a fitting range
limit for incident detuning should be considered. We fit for
the range |x − xi| < xc, with xi the detuning of a hyperfine
transition and the limit xc given by [38,39]

e−x2
c /�2

D√
π

= a�2
D

πx2
c

. (12)

FIG. 7. Lévy parameter α measured as a function of zmin/L,
corresponding to different atomic densities (in red circles) and theo-
retical estimation (in black triangles).

For |x − xi| < xc, the photon is absorbed at the line cen-
ter in the atomic rest frame and reemitted around the line
center favoring frequency redistribution. For |x − xi| > xc,
there exists a correlation between the incident and emitted
photon frequency, resulting in step-length correlations
[28,33], a situation we do not analyze here. For a = 0.02
[corresponding to Figs. 5 and 6(b)], we find xc = 2.5�D. As
the limit between the two situations is not sharp, we take,
as the limit, |x − xi| < 2�D and thus −1000 < x < 640 MHz
(with �D ≈ 285 MHz). Note that in Fig. 5(a), the region where
theory does not reproduce the experiment well corresponds
to |x − xi| > xc, for which correlations between successive
step sizes may occur that are not considered in our anal-
yses. Also, for densities equal to or above N = 6.0 × 1013

(or zmin/L < 1 × 10−4), a departure from the power law is
observed below z̄0/L ∼ 2 × 10−4 that corresponds to very low
penetration depth z̄0 < 6 μm [see Fig. 6(b)]. These low pene-
tration depths are of the order of the mean distance traveled
by atoms during excited level lifetime l̄ = uτ ∼ 7 μm and
quenching of excitation may occur by collisions of excited
atoms with window surface [40–42]. For the high density of
Fig. 6(b), Nλ3/8π3 ∼ 0.2 and collective effects may deviate
the absorption coefficient from the model used here. For high
density, we extract α fitting Eq. (6) for z̄0 > 30 μm ∼4.3l̄ to
avoid the influence of surface quenching. Note that analyzing
diffuse transmission as a function of z̄0/L allows for mea-
surement of α for each atomic density, in contrast with the
previous approach of investigating transmission as a function
of zmin/L [18–20] for which an “averaged” α is obtained from
a range of atomic densities.

The measured α parameter in the red side as a function of
zmin/L, corresponding to different atomic densities, is shown
in Fig. 7. α depends on the ratio zmin/L with α ∼ 0.5 for
low zmin/L (high opacities) and α ∼ 1.0 for high zmin/L (low
opacities) and is consistent with the expected values [20], as
will be discussed in the next section. From the photodetector
gain, we estimate that the detected diffuse transmission power
is around 20 pW (10−6 of incident power) and caution must be
made to eliminate spurious light from the experiment, which
is the main source of uncertainty in the experiment. From
repeated measurements, we estimate an uncertainty of 10% in
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the measured α values. The proposed method is robust against
uncertainties in parameters used to fit coherent transmission
for the calculation of z̄0 = 1/Nσ (x) (see discussion in the
Appendix).

IV. DISCUSSION

The theoretically expected Lévy parameter can be obtained
from the step-length probability distribution given by Eq. (10).
The vapor emission spectrum evolves with the number of
scattering events and can be calculated as [17]

�n+1(x′) =
∫ ∞

−∞
�n(x)

R(x′, x)

�(x)
dx, (13)

with �n(x′) the emission spectrum after n scattering events,
�(x) the normalized Voigt absorption profile [Eq. (1)], and
R(x′, x) is known as a redistribution function giving the joint
probability that a photon with detuning x is absorbed and a
photon with detuning x′ is emitted. Expressions for R(x′, x)
for two-level atoms and for different scenarios are given in
[21,28] and can be easily extended to multiple-level atoms fol-
lowing Ref. [17]. We consider here the so-called RII scenario
corresponding to the absence of collisions between atoms and
the RIII scenario with frequent collisions between atoms [21].
In the absence of collisions (RII ), the photon scattering is
elastic in the atomic rest frame, resulting in partial correlations
between absorbed and emitted frequency in the laboratory rest
frame. We plot, in Fig. 8(a), the evolution of emission spectra
in the RII scenario with number of scattering events. We note
that after a few scattering events (n = 10), the emitted spec-
trum �n(x′) evolves slowly and we consider it to have reached
a stationary regime. Also in Fig. 8(a), we show a normalized
Voigt absorption spectrum for two-level atoms. The Voigt ab-
sorption profile is similar to a Doppler Gaussian spectra in the
core and has Lorentzian wings. For a low number of scattering
events, the emission spectra �n(x′) approach the Doppler core
of the Voigt profile. With an increasing number of scattering
events, Lorentzian wings begins to appear. However, the fre-
quency correlation in the atomic rest frames introduces a kind
of cutoff in the emitted frequency [28,33] as the frequency
change between consecutive scattering events is of the order
of �D at maximum. For calculations of the emission spectra
of Fig. 8(a), we have considered the incident laser spectrum
as a Dirac delta function, �0 = δ(x), since eventual photons
incident in the laser spectral wings are transmitted and not
scattered by the vapor [43].

For the RIII scenario, collisions between atoms are very
frequent, randomizing the phase of atomic dipole oscilla-
tions with a mean interval τC between random phase changes
[36,44,45]. As a consequence, there is complete frequency
redistribution in the atomic rest frame with the emission
spectrum following a Lorentzian with total width � = �n +
�C , with �C = 1

2πτC
∼ 10−7 Hz cm3 × N the collisional width

[46–48]. In the laboratory frame, frequency is further redis-
tributed by the Doppler shift. We plot in Fig. 8(b) the emitted
spectra �n for the RIII scenario after n scattering events. Cal-
culations are done using the redistribution function available
in [21,28]. The emission spectrum becomes stationary after a
few scattering events, reaching the complete frequency redis-
tribution (CFR) characterized by �n(x′) = �(x′). Emission in

FIG. 8. Emission spectra �n(x′) of the vapor after n scattering
events in the (a) RII and (b) RIII scenarios for two-level atoms
with Voigt parameter a = 0.02. Calculated spectra are for n =
1, 2, 4, 6, 8, 10 in both (a) and (b). The blacked dashed line corre-
sponds to the Voigt absorption profile [Eq. (1)] for a two-level atom.

Lorentz wings is now present and may dominate the transport
if the system is big enough to accommodate such large steps
[20].

The RII and RIII scenarios are limiting cases for which
�C � �n and �C � �n, respectively. For a general situation,
the redistribution function is given by [28,38,39]

R(x′, x) = (1 − PC )RII (x′, x) + PCRIII (x′, x), (14)

with branching ratio PC = �C/(�C + �n). The same relation
of Eq. (14) is valid for step-length distributions,

P(z) = (1 − PC )PII (z) + PCPIII (z). (15)

In Fig. 9, we plot 1 + α for RII (red line), RIII (black line), and
general scenarios (blue line) obtained from step-size distribu-
tions using 1 + α = − d

d ln(z) ln[P(z)]. For the RIII scenario, we
find the result typical for step-length distribution with Voigt
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FIG. 9. Calculated 1 + α = −dln[P(z)]/d ln(z) as a function of
step size z for RII (red solid curve), RIII (black solid curve), and gen-
eral (blue dashed curve) scenarios. The vertical dotted line denotes
the cell length of L = 3 cm and the green diamond is the measured
1 + α. (a) For the atomic density of N = 2.0 × 1012 atoms/cm3,
corresponding to zmin/L = 3 × 10−3 and PC = 3 × 10−2. (b) For
the atomic density of N = 6.0 × 1012 atoms/cm3, corresponding
to zmin/L = 1 × 10−3 and PC = 10−1. (c) For the atomic density
of N = 6.0 × 1013 atoms/cm3, corresponding to zmin/L = 1 × 10−4

and PC = 5 × 10−1.

emission and absorption profile (CFR) [34] with α ∼ 1 at
small distances corresponding to a contribution of the Doppler
core of the Voigt profile and α = 0.5 for large z corresponding
to a contribution of Lorentz wings [20]. For RII , the emission
frequency cutoff results in a step-length cutoff and an increase
of the α value [28,33]. The vertical dotted line in Fig. 9
corresponds to the thickness of the sample and the triangle
symbol to the measured 1 + α from diffuse transmission. The
measured 1 + α corresponds to the value obtained from the
general step-length distribution of Eq. (15) for z = L. This
result is consistent with the single-big-jump principle that
states that the random walk is dominated by a single big jump

and that the probability of a displacement L after a number
of jumps is equal to the probability that the biggest jump
has size L [49]. Theoretical α values obtained from general
P(z) [Eq. (15)] as a function of zmin/L using the so-called
single-big-jump principle are shown in Fig. 7 in black trian-
gles and are consistent with the measured values. We stress
that for each theoretical point of Fig. 7, we have used exper-
imental parameters (density and Voigt parameters) extracted
from fitting of the coherent transmission to calculate P(z) and
thus extract the α values. Note that in principle, the emitted
spectrum �n(x′) depends on the incident detuning, but for the
detuning range analyzed, |x − xi| < xc = 2�D, the frequency
is redistributed around the line center after a few scattering
events [33]. We have checked that calculating step-size distri-
butions for |x − xi| = xc changes the expected α value by only
5%. Collisions between atoms are necessary for emission in
Lorentzian wings [see Fig. 8(b)] and measurement of α ∼ 0.5
as evidenced in Fig. 9(c) for �C ∼ �n. Collisional contribution
could influence the random walk even for �C � �n [Figs. 9(a)
and 9(b)] provided the system is large, a situation encountered
in astrophysical systems [22].

Equation (3) used to model the scaling of diffuse trans-
mission with z0/L was deduced for a one-dimensional Lévy
flight or a three-dimensional slab geometry, whereas our cell
is cylindrical with a radius smaller than the thickness (R < L).
For a cylindrical cell, we can write T ′

D = TD[1 − TL(r = R)],
with TL(r = R) the probability that the photons escapes by
the cell lateral surface. From the random walk point of view,
TL(r = R) does not depend on z0. Furthermore, TL(r = R)
does not depend on the incident frequency as long as the
incident laser is close to resonance: the emission spectrum in
the transverse direction is centered at x′ = 0 and independent
of incident detuning for x < 2.5�D [38]. We conclude that the
scaling law of Eq. (3) is still valid for the cylindrical cell used.

V. CONCLUSIONS

In conclusion, we have investigated the transmission of
photons through a hot atomic vapor in the regime of multiple
scattering. We have shown that the transmission spectra can
be interpreted using the physics of random walk. We have
confirmed the scalability of the transmission with starting
point of the random walk [25,26,30] and measured the Lévy-
flight parameter α. The starting point of the random walk was
changed by sweeping the incident laser frequency around the
D2 line, thus modifying the penetration depth in the sample.
This allows one to measure α for a given atomic density, in
contrast with the previous method [18–20] that measured an
“averaged” value for a density range. Measurement of α for a
given density permits a better understanding of the influence
of collisions between atoms for the superdiffusion. In [18,19],
the Lévy parameter α was also measured for a given atomic
density from the radial profile of diffuse transmission. How-
ever, such method requires cell thickness that is much smaller
than the diameter (L � R), a constraint that is not present in
the proposed method that can be used with cells with larger
L values. We give evidence that collisions are needed for
emission on the Lorentz wings of the Voigt profile, the spectral
region responsible for the larger steps [20,28], resulting in
α ∼ 0.5. In summary, the α parameter for photons in atomic
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FIG. 10. Examples of measured coherent transmissions (solid
lines) with fits (dashed lines) used to extract the atomic density.
N1 = 1.5 × 1011 atoms/cm3 and N2 = 6.0 × 1013 atoms/cm3.

vapor depends both on system size (zmin/L) and on the prob-
ability of collisions between atoms. Theoretical estimations
[see Figs. 9(a) and 9(b), for instance] suggest that collisions
may play an important role in photon transport, even for dilute
vapor (�C � �n), provided the system is large enough. This
can be important for the investigation of photon transport in
astrophysical samples. The measured α corresponds to the
expected value for a step of length z = L, which is consistent
with the single-big-jump principle [49].

We have observed a deviation of the experimental data
from power law (z̄0/L)α/2 for very small z̄0 (for z̄0 < 10 μm).
Further investigation will be needed to understand this result.
As already discussed, a hypothesis is that it may be due to
collisions between excited atoms and the input cell surface
[42]. Also, for high densities, it is known that atom-atom
collisions, frequency shifts, and even cooperative effects such
as the cooperative Lamb shift take place [50], impacting the
estimation of the absorption coefficient.
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APPENDIX

One important point of the proposed method is to extract
the detuning-dependent absorption coefficient from coherent
transmission to be able to plot diffuse transmission as a func-
tion of z̄0/L. In this Appendix, we discuss the robustness of
the technique for extracting the Lévy parameter α from the
scaling of diffuse transmission with z̄0/L.

First of all, we plot in Fig. 10 two examples of coherent
transmission together with fits using the procedure discussed
in Sec. II of the main text.

FIG. 11. (a) Calculated cross section for I = 0 [σ (x, 0), black
solid line] and for I = IS [σ (x, IS ), red dashed line] for N = 2.0 ×
1012 atoms/cm2 and �C = 0.03�n. (b) Ratio between the two calcu-
lated cross sections.

Although the fits are not perfect, we argue that extracting
the Lévy parameters is robust against the relevant parameters’
uncertainty.

The starting point of the random walk is calculated as
z̄0 = 1

Nσ (x) . So the scaling law can be written as (z̄0/L)α/2 =
1

Nα/2 ( 1
σ (x)L )α/2. The density enters as a multiplying factor and

does not influences the α determination.
Voigt profiles are characterized by parameter a = �/2�D

that depends both on the Doppler width, related to cell tem-
perature, and on the homogeneous width � = �n + �C , which
depends on the collisional width. For the range of densities
used in the experiment, � � �D and the cross section should
not change significantly with �C uncertainty in the spectral
range −3.2�D < x < 2�D used for obtaining α. Indeed, we
have calculated σ (x) for one of the measurement conditions
[N = 2.0 × 1012 atoms/cm2, �C = 0.03�n, corresponding to
Figs. 4 and 9(a)] and also for an increased value of �C = �n.
The change in calculated σ (x) for �C = �n was of 10% at
maximum. A similar result was obtained when we calculated
σ (x) for an increased temperature of the cell of TC = 170 ◦C
instead of the actual value of TC = 160 ◦C. This is expected
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since the Doppler width varies slowly with cell temperature,
as

√
TC .

Another parameter that may influence the σ (x) calculation
is the laser intensity. As I = 0.5IS , we have used I = 0 in
our calculations. To compare, we have calculated σ (x) for
I = IS . The calculated σ (x) for I = 0 and I = IS are shown

in Fig. 11(a) for comparison, together with the ratio between
the two σ (x) in Fig. 11(b). In the Doppler core, it is expected
that saturation diminishes the cross section by an almost con-
stant factor

√
1 + I/IS , which is confirmed in Fig. 11(b). The

maximum change of σ (x) for I = IS for the spectral range of
−3.2�D < x < 2�D is of 5%.
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