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Degenerate Rabi spectroscopy of the Floquet engineered optical lattice clock
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Simulating physics with large SU(N ) symmetry is one of the unique advantages of alkaline-earth-metal atoms.
Introducing periodical driving modes to the system may provide richer SU(N ) physics that the static one cannot
reach. However, a discussion of whether or not the driving modes will break the SU(N) symmetry is still
lacking. Here we experimentally study a Floquet engineered degenerate 87Sr optical lattice clock (OLC) by
periodically modulating the frequency of the lattice laser. With the help of Rabi spectroscopy, we find that the
atoms at different Zeeman sublevels are tuned by the same driven function. Meanwhile, our experimental results
suggest that the uniform distribution among the sublevels does not change despite the driving. Our experimental
demonstrations may pave the way for implementation of Floquet engineering on tailoring the SU(N ) physics in
the OLC system.
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I. INTRODUCTION

Alkaline-earth-metal atoms (AEAs; along with the
alkaline-earth-metal-like atom Yb), with their unique atomic
structures, have become a hot frontier in ultracold-atom
physics. The ultranarrow doubly forbidden transition between
the ground state 1S0 and the excited state 3P0 (which can
be called the two clock states) makes the AEAs ideal for
the realization of ultraprecise atomic clocks. State-of-the-art
optical lattice clocks (OLCs) using ultracold AEAs have sur-
passed the best 133Cs primary standards [1–5]. Meanwhile,
owing to the strong decoupling between the nuclear spin I
and the electronic angular momentum J = 0 of the two lowest
electronic states 1S0 and 3P0, AEAs show that the nuclear
spin is independent of both interatomic collision and trapping
potential. This property directly leads to the SU(N � 2I + 1)
symmetry emerging in AEAs [6–21]. AEAs possessing high-
dimensional symmetries with large N (e.g., 10 for 87Sr) have
been predicted to simulate high-energy lattice gauge theo-
ries [14] but also are a unique platform for investigating a
variety of many-body phases [22–25]. Recently, more and
more experiments have supported the existence of the SU(N )
symmetry [8,9,11,26–28].

On the other hand, increasing efforts have been devoted
to manipulating ultracold atoms using time-periodic modu-
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lations. Focusing on the optical lattice, the modulation can
provide an extremely clean system with high controllability in
a time-dependent fashion. This coherent manipulation of the
quantum system is known as Floquet engineering (FE) [29].
FE of ultracold atoms in an optical lattice shows high potential
for simulating and studying a wide variety of condensed-
matter systems and even some models in high-energy physics.
It has led to many successes, such as dynamic control of
the insulator-superfluid quantum phase transition [30], the
realization of the topological band structure [31–33], and the
creation of artificial gauge fields [34–37]. Thus, introducing
FE into the SU(N ) physics of AEA Fermi gases has be-
come more attractive, including renormalizing the tunneling
of the SU(N ) Hubbard model or generating the exotic SU(N )
phase [38]. However, the compatibility of FE with the SU(N )
symmetry needs to be addressed first before these impressive
prospects are pursued. For example, periodically modulat-
ing an optical lattice means adding an extra time-dependent
electromagnetic field to the system, which might enhance the
admixture between 3P0 and higher-lying P states with J �= 0
and thereby break SU(N ) symmetry [7]. Thus, it is interesting
to ask the following questions: will atoms at different sub-
levels be tuned by the same driving function, and will the
uniform distribution among sublevels be changed by periodic
driving?

In this paper, we experimentally realize a Floquet engi-
neered degenerate clock transition in a one-dimensional (1D)
87Sr OLC and also demonstrate that FE does not apparently
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FIG. 1. Floquet engineered degenerate optical lattice clock. In
the absence of magnetic field, both clock states have 10 degenerate
sublevels (denoted by different colors [11]). (a) Without driving, the
atoms follow the Boltzmann distribution in the external states. After
the π clock transitions, the atoms can hop between two clock states
without changing their Zeeman sublevels �mF = 0. (b) Under the
lattice driving pattern, the carrier peak in Rabi spectroscopy can split
into several Floquet sidebands. Each Floquet sideband corresponds
to the π clock transitions in each Floquet energy level which can still
retain the SU(N ) symmetry.

change the distribution of atoms among degenerate energy
levels with the help of Rabi spectroscopy. As shown in Fig. 1,
fermionic 87Sr has a nuclear spin of I = 9/2; therefore, both
clock states have tenfold degeneracy (2F + 1 = 10, where
F = I + J is the total atomic angular momentum) in the
absence of magnetic field, corresponding to the 10 Zeeman
sublevels from mF = −9/2 to mF = 9/2 (mF is the magnetic
quantum number of the total angular momentum). Then, all
10 degenerate sublevels can be Floquet engineered by mod-
ulating the lattice laser around the “magic” wavelength in
a nearly zero magnetic field. Under this driving pattern, the
internal dynamics of the π transition in each mF sublevel is
governed by the time-dependent Landau-Zener-Stückelberg-
Majorana Hamiltonian due to the Doppler effect [39–41].
The total clock-transition probability can be theoretically
calculated based on the resolved Floquet sideband approxi-
mation [39,42]. After extracting the experimental parameters
in the nondriven case, especially the bare Rabi frequencies of
all sublevels, we estimate the residual stray magnetic field.
Last, we measure the Floquet degenerate Rabi spectrum and
the Rabi oscillation and find the periodic modulation will not
break the SU(N ) symmetry.

This paper is organized as follows. In Sec. II, we briefly in-
troduce the experimental setup. In Sec. III, we give the model
of the degenerate driven system and its analytic solution. In
Sec. IV, we discuss how to determine the experimental param-
eters. In Sec. V, we demonstrate the degenerate Floquet Rabi
spectroscopy and give an analysis of the SU(N ) symmetry.
Section VI includes the conclusions and outlook.

II. EXPERIMENTAL SETUP

Approximately 104 87Sr atoms are cooled to about 3 µK
using standard laser-cooling techniques and trapped in a 1D
optical lattice in the Lamb-Dicke region, where the mo-

tion and the photon recoil momentum of the atom will not
broaden the clock-transition spectra [43–45]. The 1D optical
lattice consists of two counterpropagating laser beams at the
magic wavelength λL = 813.43 nm [45], where the ac Stark
frequency shifts of the two clock states (5s2) 1S0 (|g〉) and
(5s5p) 3P0 (|e〉) are identical. One incident lattice laser beam,
with a linear polarization along the direction of gravity, is
focused on the center of the magneto-optical trap (MOT).
After a high-reflection mirror, its retroreflected laser beam is
also focused on the MOT center and forms a standing wave
with the incident laser. The lattice laser (TOPTICA Photonics
AG, Munich, Germany) has a power of 300 mW and beam
waist w0 � 50 µm around the MOT center. Because of the
large trapping depth U0 � 94ER in our experiments, where
ER is the lattice recoil energy (see the Appendix), the tunnel-
ing between lattice sites can be ignored, so that the system
can be taken as a series of independent harmonic traps. The
eigenstates of each harmonic trap are labeled as the external
states |�n〉 or |nr, nz〉, where nr(z) corresponds to the transverse
(longitudinal) direction of the optical lattice potential [39,46].

The clock transition 1S0 ↔ 3P0 is interrogated by the clock
laser (DL Pro, TOPTICA Photonics AG, Munich, Germany)
with a wavelength of 698 nm propagating collinear with the
lattice laser. The clock laser is divided into two parts by a
beam splitter (BS). Ninety percent of the clock laser passes
directly through the BS, is collimated by the lens assembly,
and overlaps with the lattice laser. Ten percent is reflected
by the BS and then enters a 10-cm-long ultralow-expansion
ultrastable cavity with a finesse of 400 000. The clock laser
beam has the same polarization direction as the lattice laser,
with a 2-mm waist around the MOT center. The linewidth
of the clock laser is narrowed to 1 Hz after Pound-Drever-
Hall locking, and the short-term stability of the clock laser
is 1×10−15 at 1 s [47]. The natural lifetime of 3P0 is about
120 s, and the duration of the measurement processes does
not exceed 1 s, so we can ignore the spontaneous emission
during the clock-transition detection by using the method of
“electronic shelving” [45,48].

By changing the currents of three-dimensional compensa-
tion coils (TDCCs), we fine-tune the magnetic field around the
atoms approaching zero as much as possible. Then we apply a
periodic sinusoidal modulation to the piezoelectric transducer
(PZT) attached to the grating of the external cavity which gen-
erates the lattice light to periodically change the cavity length.
Under this modulation, the lattice frequency is modulated ac-
cordingly and can be expressed as ωL(t ) = ω̄L + ωa sin(ωst ),
where ω̄L = 2πc/λL is the central lattice frequency at the
magic wavelength λL and ωa(s) is the driving amplitude (fre-
quency), which is typically several hundred megahertz (hertz)
in our experiment. The degenerate driving spectra can be
obtained by scanning the frequency of the clock laser with
the help of an acousto-optic modulator in each clock detection
cycle. The intensity of the clock laser is set to be Ip � 3 µW/

cm2, which gives a power broadened transition linewidth
γ
√

1 + Ip/Isat � 2.7 Hz, with Isat = 0.41 pW/cm2 being the
saturation intensity of the clock transition and γ = 1 mHz
being the natural linewidth [45]. Considering the Fourier-
limited linewidth of the Rabi spectrum is 0.89/t � 5.9 Hz
with t = 150 ms, which is the main limit of the spectrum
linewidth, we can neglect the effect of saturation broadening.
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III. THE MODEL

Under the lattice laser frequency modulation, the atoms
at different sublevels may pick up a sublevel-dependent ve-
locity in the comoving frame of the lattice [39]. Due to the
Doppler effect, the dynamics of the atoms at certain mF in
external energy level |�n〉 is governed by the time-dependent
Landau-Zener-Stückelberg-Majorana Hamiltonian in the lat-
tice comoving frame [39–41]

ĤmF

�n (t ) = h̄

2

[
δmF + AmF ωs cos(ωst )

]
σ̂z + h̄

2
gmF

�n σ̂x. (1)

Here h̄ is the reduced Planck’s constant, and the detuning
δmF = δ + �ω

mF
0 includes the bare clock-laser detuning δ =

ωp − ω0 and also the π -transition frequency shift for the mF

sublevel �ω
mF
0 because there is still an unavoidable small

residual magnetic field in the experiment. ω0 and ωp are
the bare clock-transition frequency and clock-laser frequency,
respectively. AmF is the sublevel-dependent renormalized driv-
ing amplitude, and gmF

�n is the coupling strength of the mF

sublevel in the external state |�n〉 [39,46].
The π -transition frequency shift is derived from the as

Stark shift caused by the lattice laser acting on the Zeeman
sublevels and the possible residual stray magnetic field. In the
present of lattice potential with trapping depth U0 at a weak
magnetic field B, the π -transition frequency shift between mF

sublevels can be expressed as [49–51]

�ω
mF
0 = (�κS + �κV mF ξ �ek · �eB + �κT β )U0 + δgmF μ0B,

(2)

where �κS , �κV , and �κT are the coefficients due to dif-
ferential scalar, vector, and tensor polarizabilities between
1S0 and 3P0, respectively. ξ is the degree of ellipticity of the
lattice light field, where ξ = 0 (±1) represents perfect linear
(circular) polarization. �eB and �ek are unitary vectors along the
quantization axis and the lattice wave vector, respectively. The
coefficient β is equal to (3 cos2 φ − 1)[3m2

F − F (F + 1)],
with φ being the angle between the linear polarization di-
rection of the lattice laser and the quantization axis. The
last term in Eq. (2) is the first-order Zeeman shift in which
δg is the differential Landé factor between the two clock
states due to the hyperfine interaction on the excited state
3P0 [49,52]. μ0 is equal to μB/h, with μB being the Bohr
magneton and h being Planck’s constant. The hyperpolar-
izability effect (∝U 2

0 ) and the second-order Zeeman shift
are ignored in Eq. (2) as they are negligible at the level of
1 mHz [51,53–55].

First, the effect of scalar shift can be neglected because it
is independent of mF while the lattice laser frequency varies
around the magic wavelength. Second, the effect of periodic
driving on the external potential can also be neglected due to
the small driving amplitude [39]. Third, considering the lattice
field is linearly polarized along the quantization axis, we can
directly obtain ξ � 0, �ek · �eB � 0, and φ � 0, so the vector
shift term is also omitted. Last, according to Ref. [51], the
tensor shift coefficient is about −0.06 mHz/ER. Because U0 �
94ER in our experiment (see the Appendix), the tensor shift
is less than 1 Hz and can also be neglected. Thus, the main
frequency shift is only the last term, which depends on mF

and the magnetic field B, with δgμ0 = −108.4(4) Hz/G [49].

TABLE I. The determined experimental parameters.

Parameter Value Parameter Value Parameter Value

Tz 3.5 µK νz 66.8 kHz Nz 5
Tr 4.0 µK νr 250 Hz Nr 1336

Then, the π -transition frequency shift can be simplified as
�ω

mF
0 = −108.4mF B.

The population of atoms is evenly distributed among 10
Zeeman sublevels after the second stage of cooling [56].
In the absence of driving, SU(N = 10) symmetry implies
the number of atoms in each of the 10 sublevels is con-
served [11,26]. The dynamics of atom distribution due to
the FE is still an open question, so here we introduce a
sublevel-dependent distribution NmF /N0 during the FE, where
N0 is the total atom number and it will be determined from
the experiments later. The Floquet spectrum can be treated
as the summation of contributions from all the independent
degenerated sublevels, so the total excitation probability in
terms of the Zeeman sublevels can be obtained by solv-
ing the Hamiltonian (1) with the resolved Floquet sideband
approximation [39,42]

PTol
e =

∑
mF

PmF
e , (3)

where

PmF
e =

∑
�n,k

q(�n)

[
NmF gmF

�n Jk
(
AmF

)
N0gk,mF

eff

]2

sin2

(
gk,mF

eff

2
t

)
(4)

is the excitation probability of the mF sublevel and

gk,mF
eff =

√(
δmF − kωs

)2 + [
gmF

�n Jk
(
AmF

)]2
(5)

is the effective Rabi frequency for the kth-order sideband
of the mF sublevel, Jk (·) is the kth-order Bessel func-
tion of the first kind, and q(�n) is the Boltzmann factor.
The coupling strength can be explicitly written as gmF

�n =
gmF e−η2

z /2e−η2
r /2Lnz (η

2
z )Lnr (η2

r ), where ηz = √
h/(2mνz )/λp

and ηr = √
h/(2mνr )�θ/λp are the Lamb-Dicke parameters,

νz(r) is the longitudinal (transverse) trap frequency, λp is the
clock-laser wavelength, �θ is the residual misalignment angle
between the lattice and probe axis, and m is the mass of the
atom [39,46]. In order to theoretically obtain the excitation
probability [39,40,57], the experimental parameters should be
determined first.

IV. DETERMINATION OF THE EXPERIMENTAL
PARAMETERS

In the nondriven case, the SU(N ) symmetry is not broken,
so NmF /N0 = 1/N . Then we can determine the experimental
parameters from the degenerate Rabi spectrum in the non-
driven system. In Table I, we list some of the determined
experimental parameters which require the same methods as
the polarized case (see Ref. [39] and the Appendix). Besides
that, we need to determine the bare Rabi frequencies gmF of
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FIG. 2. The Zeeman spectrum in the presence of a 460-mG mag-
netic field at 150-ms clock-laser interrogation time. These peaks,
from left to right, correspond to the π transition for the mF = −9/2
to mF = +9/2 sublevels, respectively.

all the sublevels as well as the small residual magnetic field B
without driving.

First, we use the nondriven Zeeman spectrum to extract the
Rabi frequency of each sublevel. In order to split the Zeeman
sublevels, the currents of TDCCs are adjusted to as large as
460 mG along the direction of gravity. As shown in Fig. 2, the
Zeeman spectrum presents eight obvious peaks with intervals
close to the theoretical prediction δ�ω

mF
0 = 108.4B ≈ 50 Hz,

which is much larger than linewidths of the spectrum that are
a few hertz. Due to the first-order Zeeman shift, these peaks
correspond to the Zeeman sublevels except for mF = ±1/2,
which has a quite weak excitation probability. By scanning the
clock-laser frequency at a fixed clock-laser interrogation time,
we get a set of Zeeman spectra in Fig. 2. Then we can extract
the excitation fraction for each sublevel from the Zeeman
spectra under different interrogation times and get the Rabi
oscillations of the sublevels as shown in Figs. 3(a)–3(d), corre-
sponding to |mF | = 9/2, 7/2, 5/2, 3/2, respectively. In order
to improve the experimental data, here we take the average
of sublevels with the same |mF | due to positive-negative or Z2

symmetry. In addition, the Rabi oscillation of sublevel |mF | =
1/2 is not shown here because it is too small, and we also
ignore its effect on the Floquet spectra in the following. Then
by fitting the experimental data (before the 200-ms interroga-
tion time) for each Zeeman sublevel with Eq. (4) while taking
AmF = 0, ωs = 0, and NmF /N0 = 1/N , we can get the Rabi
frequency g|mF | in each sublevel and the misalignment angle
�θ , which should be the same for all sublevels [39,46]. Then,
the fitting results are g±9/2/2π = 4.1 Hz, g±7/2/2π = 3.1 Hz,
g±5/2/2π = 2.2 Hz, and g±3/2/2π = 1.3 Hz at a fixed aver-
age misalignment angle �θ = 8 mrad. With the help of these
Rabi frequencies, we show the theoretical Zeeman spectrum
with Eq. (3) by setting AmF = 0, ωs = 0, B = 460 mG, and
t = 150 ms in Fig. 2, and it agrees well with the experimental
data.

When we tune the currents of TDCCs to decease the
strength of the magnetic field, the splitting becomes less ob-

FIG. 3. Rabi oscillations of different Zeeman sublevels at
(a) |mF | = 9/2, (b) |mF | = 7/2, (c) |mF | = 5/2, and (d) |mF | = 3/2.
The experimental parameters are the same as in Fig. 2.

vious, and finally, all the peaks merge into a single broader
peak. Although we can narrow the linewidth by further fine-
tuning the TDCCs, the exact zero magnetic field still cannot
be achieved. In order to further determine the strength of
the residual magnetic field, we keep the clock-laser inten-
sity unchanged and scan the clock-laser frequency under the
150-ms interrogation time, and the Rabi spectrum without
driving is shown in Fig. 4. This narrow spectrum can be
taken as the summation of contributions from all the sublevels
with uniform atom distribution. Thus, we can determine the
stray magnetic field B by fitting the experimental data with
Eq. (3), taking AmF = 0, ωs = 0, and the Rabi frequencies of
the sublevels determined before. As shown in Fig. 4, the fitting
implies a residual magnetic field with B = 6 mG instead of
zero.

FIG. 4. The degenerate narrow spectrum at 150-ms clock-laser
interrogation time. The blue diamonds are the experimental data. The
solid and dashed lines are the theoretical results with magnetic field
B = 6 mG and 0, respectively.
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FIG. 5. Rabi oscillations of (a) the zeroth Floquet sideband at
V̄ = 1.5 V and (b) the first Floquet sideband at V̄ = 2.5 V. The insets
show the corresponding Rabi spectroscopy.

V. ANALYSIS OF THE SU(N) SYMMETRY

The experimental parameters obtained in the nondriven
case are assumed to be unchanged even when introducing
the periodic modulation, except for the atom distribution
NmF /N0 due to the possible SU(N ) symmetry-breaking-
induced atomic redistribution among these sublevels. Mean-
while, the renormalized driving amplitude AmF may also
be different because the sublevels may have different ve-
locities in the lattice comoving frame due to the periodic
modulation [39].

First, it is easy to verify whether the renormalized driving
amplitude is sublevel dependent. If driving amplitudes are
different, the corresponding Bessel function Jk (AmF ) cannot
be fine-tuned simultaneously to zero for all sublevels, so that
the excitation population of the kth-order Floquet sideband
cannot be totally suppressed to zero. In the experiment, the
renormalized driving amplitude AmF can be tuned by chang-
ing the voltages added to the PZT V̄ [39]. As shown in the
insets in Fig. 5, the zeroth (first) Floquet sideband of the
Floquet Rabi spectroscopy is almost completely suppressed
at V̄ = 1.5 V (V̄ = 2.5 V). To rule out the accidental case, we
also measure the Rabi oscillation of these suppressed Floquet
sidebands in Fig. 5. The experimental data clearly show that
the excitation populations of both the zeroth Floquet sideband
at V̄ = 1.5 V and the first one at V̄ = 2.5 V are almost zero
up to 500 ms. They straightforwardly demonstrate all the
renormalized driving amplitudes AmF are fine-tuned simulta-
neously to the same value and thus imply that AmF is sublevel
independent. Thus, we can set the renormalized driving am-
plitudes of all sublevels to be the same value, AmF = A(V̄ ) at
voltage V̄ .

Then, we turn to the atom distribution NmF /N0. In order
to extract NmF /N0, we experimentally measure the Rabi spec-
trum at different voltages and fit them according to Eq. (3)
by taking NmF /N0 and A(V̄ ) as free parameters. Here the con-
tributions of Pe at sublevel mF = ±1/2 are ignored because
the corresponding Rabi frequency is too small. In addition,
NmF /N0 is assumed to be irrelevant to the sign of mF . With
this fitting method, we got the Rabi spectrum (see Fig. 6), the
relation between the voltage and A (see Fig. 7), and the atomic
distribution among the sublevels (see Fig. 8). We will give a
concrete analysis of them in the following.

In Fig. 6, we show the experimental data for the degenerate
Floquet Rabi spectroscopy compared with the theoretical re-
sults at different driving voltages. Generally, the theoretical
results are in good agreement with the experiments at all

FIG. 6. The Floquet degenerate spectrum at 150-ms clock-laser
interrogation time, driving frequency ωs/2π = 200 Hz, and residual
magnetic field B = 6 mG. The experimental data (blue diamonds) are
compared to the theoretical results (red solid lines) at the driving volt-
ages (a) V̄ = 0.5 V, (b) V̄ = 1.0 V, (c) V̄ = 1.5 V, (d) V̄ = 2.0 V,
(e) V̄ = 2.5 V, and (f) V̄ = 3.0 V.

driving voltages. The intervals between the Floquet sidebands
are the same as the driving frequency ωs. Actually, some small
deviations exist because the Floquet spectra are obtained by

FIG. 7. The relationship between the renormalized driving am-
plitude A and driving voltage V̄ added to the PZT in the Floquet
degenerate system (red diamonds) and the Floquet polarized system
(blue circles, from Ref. [39]). The dashed lines are linear fitting
results, and the red region shows the 1σ deviation from the fitting
line of the Floquet degenerate results.
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FIG. 8. The atomic distribution at different sublevels obtained
by fitting the experimental data with Eq. (3) from Floquet theory.
The voltages added to the PZT are (a) V̄ = 0.5 V, (b) V̄ = 1.0 V,
(c) V̄ = 1.5 V, (d) V̄ = 2.0 V, (e) V̄ = 2.5 V, and (f) V̄ = 3.0V .
The dashed lines indicate the weighted mean, and the red region
shapes the 1σ standard deviation. The atomic distribution at sublevel
mF = 1/2 labeled with a star is calculated by subtracting the other
sublevels from 1.

scanning the clock laser with a step of 3 Hz, so it may fail to
touch the peaks of all Floquet sidebands with linewidths of a
few hertz.

In a previous work [39], the relation between the driving
amplitude A and the voltage V̄ added to the PZT is linear.
Before investigating the atom distribution, it is better to verify
the linear relation between A and V̄ . Figure 7 demonstrates
the slope of the degenerate case is very close to the polarized
one (all atoms are pumped into the sublevels mF = ±9/2)
and thus verifies the linearity. Indeed, after linearly fitting the
data with A = kV̄ , we obtain the coefficient k = 1.49(4)/V,
which is approximately the same as the polarized case with
k = 1.52/V [39].

Finally, as the most critical aspect, the atomic distributions
extracted by fitting the experiment data are shown in Fig. 8.
Clearly, they are different, and a few more atoms stay at some
sublevels, such as mF = ±9/2. However, most of them fall
into the 1σ standard deviation of the weighted mean value
(red region around 1/5). The distribution in mF = ±1/2 is
obtained by subtracting the atoms in other sublevels from
unity. It is always larger than 1/5, which may result from ne-
glecting the population on mF = ±1/2 due to the small Rabi
frequency. Based on these experimental results, we conclude
that periodic driving will not break the SU(N ) symmetry in a
certain accuracy range.

VI. CONCLUSIONS AND DISCUSSION

In this work, we experimentally studied the Rabi spec-
troscopy of a degenerate OLC system under FE. Although the
residual stray magnetic field cannot be eliminated, we can still
check whether the SU(N ) symmetry is broken by the FE. We
found that the driving amplitude and its relationship with the
voltage added to the PZT are independent of the Zeeman sub-
levels, which implies that the trapping potential is independent
of the nuclear spin even with FE. More importantly, the atomic
population among the sublevels is still almost uniform, which
implies that the interatomic collision is independent of nuclear
spin under FE.

Although SU(N ) symmetry breaking cannot be completely
ruled out, our experiments still support the idea that peri-
odic modulation of the lattice frequency will not have an
obvious influence on the SU(N ) symmetry. Our work pro-
vides a paradigm using ultranarrow spectroscopy to verify
the SU(N ) symmetry, which may be extended to verify the
SU(N ) symmetry in many-body systems. In addition, our
work may provide a flexible way to quantum control the
multilevel nuclear spin [58,59], which is useful for universal
qudit-based quantum computing. FE combined with SU(N )
physics can also be used to study SU(N ) topological insu-
lators with high winding numbers, which can be expected
to enlarge the scope of symmetry-protected topology [40].
When extended to many-body scenarios, FE can be used to
renormalize the SU(N ) Hubbard model to touch the various
phases of matter. For instance, one can simultaneously tune
the Bloch bands for all the sublevels to study exotic SU(N )
phases in the shallow lattice [10,38,57]. In conclusion, our
work will not only benefit the Floquet OLC [57] but also
shed light on using the degenerate AEA OLC for quantum
computing and quantum simulation [60,61].
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APPENDIX

Here we determine the experimental parameters (listed in
Table I) using the motional sideband spectrum without driving
(one can also refer to Ref. [46] for an elaborate theoretical
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FIG. 9. Determination of the experimental parameters in the non-
driven case. (a) The experimental data for the motional sideband
spectrum in the z direction. (b) The experimental data for the mo-
tional sideband spectrum in the r direction. (c) Theoretical fitting (red
line) with experimental data (blue diamonds) for the blue sideband
in the z direction.

description). The motional trap frequencies [the longitudinal
(transverse) trap frequency νz (νr)], the numbers of motional
states (Nz and Nr), and the atom temperatures (Tz and Tr) are
what we prepare to determine in this Appendix. The motional
sideband spectrum is obtained by changing the frequency
of the clock laser with a step of 500 Hz around the clock-
transition frequency, as shown in Fig. 9(a). The intensity of the
clock laser is about 0.5 W/cm2, and the carrier peak is about
1 kHz due to the saturation broadening. The complicated
sideband spectrum indicates that we need a subtler description
of the energy spectrum more than a simple harmonic trap.
By approximating the longitudinal potential as a 1D harmonic
trap with a quartic distortion and the transverse potential as a
two-dimensional harmonic trap, we get the longitudinal blue-
sideband energy gap, which means the motional transition
|nr, nz〉 → |nr, nz + 1〉 [46],

γ (nz ) = νz − νrec(nz + 1) − νrec
νr

νz
(nr + 1). (A1)

Similarly, we get the transverse motional sideband spec-
trum when there is a slight angle between the clock and lattice
laser beam. And the power of the clock laser is reduced to
about 10 µW to get the transverse resolved sideband spec-
trum shown in Fig. 9(b). So the transverse blue-sideband
energy gap, which means the motional transition |nr, nz〉 →
|nr + 1, nz〉, is

γ (nr ) = νr − νrec
νr

νz
(nz + 1/2). (A2)

The position of the longitudinal blue-sideband sharp edge
means that the largest energy gap determines the longitudinal
trapping frequency νz by γ (nz )(nz = 0, nr = 0) � νz − νrec.
Similarly, we can determine the transverse trapping frequency
by γ (nr )(nz = 0) = νr − νrecνr/2νz. Thus, we can see from
Figs. 9(a) and 9(b) that νz = 66.8 kHz and νr = 250 Hz. Then
we can determine the trap depth and the beam waist by U0 =
ν2

z ER/4ν2
rec � 94 ER and w0 = √

U0/mν2
r π2 = 49 µm, and

the number of motional states is Nz � U0/hνz = 5 and Nr �
U0/hνr = 1336. Now we determine the atom temperature.
The longitudinal red sideband means the motional transition
|nr, nz〉 → |nr, nz − 1〉. If we disregard the details of the side-
band line shapes, the only difference between the blue and red
sidebands is that the Boltzmann weights are shifted according
to nz → nz + 1. And the longitudinal ground state nz = 0
dose not contribute to the red sideband, so we can determine
the longitudinal temperature with the ratio of sideband cross
sections,

σred

σblue
=

∑Nz

nz=1 q(nz )∑Nz−1
nz=0 q(nz )

, (A3)

which gives us the longitudinal temperature Tz = 3.5 µK. The
transverse temperature can be extracted from the longitudinal
blue-sideband line shape with [46]

σblue(δ) ∝
Nz−1∑
nz=0

q(nz )
αδ̃

γ̃ (nz )
e−αδ̃�[γ̃ (nz )δ̃], (A4)

where α= [γ̃ (nz )/νrec](hνz/kBTr ), γ̃ (nz )= νz−νrec(nz + 1),
δ̃ = 1 − δ/γ̃ (nz ), and � is the Heaviside function. By fitting
with experimental data [Fig. 9(c)], we get the transverse tem-
perature Tr = 4.0 µK.
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