
PHYSICAL REVIEW A 107, 013309 (2023)

Kelvin wave in miscible two-component Bose-Einstein condensates
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We study the dispersion relation of Kelvin waves propagating along single- and half-quantum vortices in mis-
cible two-component Bose-Einstein condensates based on the analysis of the Bogoliubov–de Gennes equation.
With the help of the interpolating formula connecting the dispersion relations in low- and high-wave-number
regimes, we reveal the nontrivial dependence of the dispersion relation on the intercomponent interaction through
the change in the vortex-core size of the vortical component. We also find the splitting of the Kelvin wave
dispersion into gapless and gapped branches when both components have overlapping single-quantized vortices.
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I. INTRODUCTION

Quantized vortices play a leading role in macroscopic
quantum phenomena associated with superfluidity, thoroughly
studied in, e.g., liquid helium [1], cold atomic gases [2],
and exciton-polariton condensates [3]. Vortices in three-
dimensional superfluids form lines that may be linear or
curved and can possess axial wave excitations propagating
along vortex lines. The gapless excitation involving helical
deformation of a vortex line is known as the “Kelvin wave”
[4,5]. Kelvin waves can exist in low-temperature superfluids
and have been discussed intensively in the context of the decay
mechanism of quantum turbulence [6–13].

A study of vortex waves in cold atomic Bose-Einstein
condensates (BECs) has some advantages compared with that
in other superfluid systems. Experimentally, a vortex can be
created in a well-controlled manner, e.g., by means of an
external rotation [14], phase engineering [15], and a moving
obstacle [16]. Excitations of vortex waves are closely related
to collective modes of the BEC [17]. Also, vortex dynamics
can be visualized by optical techniques, which enable us to
make direct measurements of the three-dimensional dynamics
of vortex lines [18,19]. Theoretically, the vortex states can
be well described by the Gross-Pitaevskii (GP) mean-field
theory [20]. The excitation spectrum of the Kelvin wave and
other vortex waves can be studied by the linearization analysis
based on the Bogoliubov-de Genne (BdG) equation and direct
numerical simulations of the GP equations [21–26].

In this work, we discuss a nontrivial case, namely, Kelvin
waves in miscible two-component BECs. Two-component (bi-
nary) BECs with tunable interatomic interactions have been
realized in cold atomic gases [27–30]. The salient feature in
this system is caused by the presence of interatomic interac-
tions between the different components, which determine, for
example, the miscibility or immiscibility of the ground-state
structure. Although vortex dynamics in a binary superfluid
system have been studied in various situations, most of them

are restricted in the two-dimensional analysis [31–44]. Al-
though Hayashi et al. considered, through a three-dimensional
analysis, the dynamical instability of helical shear flows of
binary BECs [45], in which one flows along the core of
the vortex line of the other component, their analysis was
restricted to the immiscible case.

A vortex in miscible two-component BECs takes a rich
variety of core structures [46]. When the first component has
a vortex, the nonvortex second component is influenced by
the presence of the vortex core; the density of the second
component fills in the vortex core so that the superfluid order
parameter does not vanish there. As the second component
feels the density distribution of the first component as the
potential well, the second component forms a density peak
(minimum) at the vortex axis for repulsive (attractive) in-
tercomponent interaction. When there are vortices in both
components, such an attractive intercomponent interaction
causes overlapping of the vortex cores [47]. This variety of
vortex structures makes us expect the nontrivial dispersion
relation of the vortex waves, compared with that of the single-
component one. We calculate the dispersion relation of the
Kelvin wave through the BdG analysis to study the impact
arising from intercomponent interaction on the properties of
the Kelvin wave. We find that the Kelvin wave dispersion is
well described by the formula that interpolates the quadratic
+ logarithmic form in a low-wave-number regime and the
quadratic form in a high-wave-number regime, depending on
the intercomponent interaction only through the vortex thick-
ness.

This paper is organized as follows. In Sec. II, we briefly re-
view the properties of the Kelvin wave in a single-component
BEC and introduce the interpolating method. Next, we turn
to the problem of the two-component BECs, discussing the
dynamical stability of the vortex states in Sec. III A and giving
a detailed evaluation of the vortex-core size in Sec. III B.
The analyses of the BdG equations for the Kelvin wave are
described in Sec. IV. We conclude the paper in Sec. V.

2469-9926/2023/107(1)/013309(9) 013309-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3825-9099
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.013309&domain=pdf&date_stamp=2023-01-18
https://doi.org/10.1103/PhysRevA.107.013309


KASAMATSU, OKADA, AND TAKEUCHI PHYSICAL REVIEW A 107, 013309 (2023)

II. KELVIN WAVE IN A SINGLE-COMPONENT
BOSE-EINSTEIN CONDENSATE

First, we briefly review the Kelvin wave excitations in
a single-component BEC based on the microscopic analy-
sis of the BdG equation. We consider a straight vortex line
in a dilute gaseous BEC confined in a cylinder. The vortex
state can be obtained by solving the stationary GP equa-
tion (ĥ + g|�|2)� = μ�, where ĥ = −h̄2∇2/(2M ) + Vext(r)
is the single-particle Hamiltonian with atomic mass M and
external potential Vext(r). The parameter g is the coupling
constant, given by the s-wave scattering between cold atoms.
The chemical potential μ determines the equilibrium bulk
density n = μ/g far from the boundary. In the following, we
consider the homogeneous system [Vext(r) = 0] in the cylin-
drical coordinates r = (r, θ, z).

The stationary vortex solution can be written in the ax-
isymmetric form �(r) = f (r)eiqθ with the real function f (r)
and the vortex winding number q; the solution has translation
symmetry along the z axis. We impose the Neumann boundary
condition at r = R as f ′(R) = 0, where the prime means the
derivative by r. Also, we impose f (0) = 0 and f ′(0) = 0 for
q �= 0 and q = 0, respectively. The radial profile of the vortex
state with q = 1, depicted in Fig. 1(a), shows that the density
becomes zero at the vortex core and heals from zero to the
bulk value n in the scale of the healing length ξ = h̄/

√
Mgn.

We do not consider a vortex with q � 2, which is dynamically
unstable [48–53].

Next, we consider the fluctuation around the stationary
vortex solution. The wave function is taken to be �(r, t ) =
�(r) + δ�(r, t ), where the fluctuation can be written as

δ�(r, t ) = eiqθ−iμt/h̄[u(r, t ) − v∗(r, t )], (1)

and the amplitudes u(r, t ) and v(r, t ) are set as

u(r, t ) =
∑

m,l,kz

umlkz (r)ei(lθ+kzz−ωt ), (2)

v(r, t ) =
∑

m,l,kz

vmlkz (r)ei(lθ+kzz−ωt ). (3)

Here, m and l represent the quantum numbers of the radial
mode and the azimuthal mode, respectively, and kz is the axial
wave number along the z axis. The radial profiles umlkz (r) and
vmlkz (r), which are real functions, depend on these quantum
numbers and are obtained by solving the coupled BdG equa-
tion

H(lkz )wmlkz = h̄ωwmlkz . (4)

This equation yields the eigenvalue ω = ωmlkz and the eigen-
vector wmlkz = [umlkz (r), vmlkz (r)]T. The matrix H(lkz ) is given
by

H(lkz ) =
(

ĥ+
lkz

−gf (r)2

gf (r)2 −ĥ−
lkz

)
, (5)

with

ĥ±
lkz

= h̄2

2M

(
− ∂2

∂r2
− 1

r

∂

∂r
+ (q ± l )2

r2
+ k2

z

)
− μ + 2gf 2.

(6)

FIG. 1. In (a), we plot the profile of the stationary solution with
a vortex at r = 0 (red dashed curve) and the Bogoliubov ampli-
tudes umlkz(r) (dark red curve) and vmlkz(r) (light blue curve) with
(m, l, kz ) = (0,−1, ξ−1) for a single-component BEC in a cylin-
der; u and v are not normalized. The insets show the isosurface
of |� + δ�|2 = 0.8n for the Kelvin mode with kzξ = 1 within the
region |z| � 20ξ . (b) shows the dispersion relation of the Kelvin
wave with l = −1 with R = 30ξ [54]. The result shown by the
red dots is obtained by solving the BdG equation (4) numerically.
We show the log-log plot of the data, where the small negative
shift �/μ � −10−3 at kz = 0 is subtracted. The blue dashed line
represents h̄2k2

z /(2M ), while the green dash-dotted curve represents
Eq. (8) with rv = 0.7095ξ . The black solid curve represents the
interpolating formula of Eq. (10). The inset shows the linear plot
enlarged in the low-kz region.

Here, we give a boundary condition similar to that of f (r);
u′

mlkz
(R) = 0, and umlkz (0) = 0 [u′

mlkz
(0) = 0] when the cen-

trifugal term in Eq. (6) exists for l �= −q [vanishes for l =
−q], with similar notation for vmlkz .

The normal Kelvin wave corresponds to the core-localized
mode with the angular quantum number l = −1 for a vortex
with q = 1, whose dispersion relation and mode profile are
shown in Fig. 1; these plots are obtained by numerically
solving the BdG equation, and the numerical details are ad-
dressed in the next section. The Bogoliubov amplitude is
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bounded at the vortex core, having a finite value at r = 0, as
shown in Fig. 1(a). The excitation of this core-localized mode
induces the finite amplitude at the vortex core, resulting in
the displacement of the core position from r = 0. By taking
into account the axial propagation ∝ eikzz through Eqs. (2)
and (3), the excitation actually involves helical deformation
of the vortex core, as in the inset of Fig. 1(a). In Fig. 1(b),
we show the log-log plot of the dispersion relation. When
the condensate is confined in the finite-size container, the
dispersion relation of the Kelvin wave has a small negative
shift � = −h̄2/(MR2) [55,56]; in Fig. 1(b), we thus subtract
� from h̄ω, i.e., h̄ω − � ≡ h̄	, to make a log-log plot. This
negative shift is associated with the mode with a positive norm
but negative energy for kz = 0 [20,21]. The curve for kz 
 1
asymptotically approaches the single-particle behavior

h̄ω � h̄2k2
z

2M
. (7)

In the low-kz regime, the dispersion is given by the analytic
expression derived in Ref. [56] as

h̄ω = h̄2k2
z

2M

[
ln

1

kzrv
− χ (kzR)

]
. (8)

Here, rv represents the cutoff length associated with the
vortex-core structure, whose value is given analytically as

rv = e0.577−0.227

2
ξ � 0.7095ξ . (9)

In the following, we identify rv as the vortex-core size. The
function χ (kzR) describes the correction of the finite-size
effect, given as χ (x) = [K0(x) + K2(x)]/[I0(x) + I2(x)] with
the modified Bessel functions In and Kn of the first and second
kinds and the asymptotic behavior χ (x) ∼ 2/x2 for x � 1
and χ (x) ∼ πe−2x for x 
 1. Thus, the contribution k2

z χ (kzR)
takes a value 2/R2 at kz = 0 and converges rapidly to zero for
kzξ 
 ξ/R or kzR 
 1.

From the above-mentioned asymptotic behaviors, the
Kelvin wave dispersion in the full range of kz can be described
by interpolating relations (7) and (8). Among the types of
simple interpolating functions, we see in Appendix A that the
arctangent-type function has the smallest difference from the
numerical results. Thus, we suggest an interpolating formula
of the Kelvin wave dispersion in the form

h̄ωint = h̄2k2
z

2M

{
ln

[
e

2
π

arctan
(

π
2 ervkz

)
]

− χ (kzR)

}
. (10)

For rvkz � 1 the analytical formula in Eq. (8) is reproduced,
while for rvkz 
 1 the quadratic relation h̄ωint ∼ h̄2k2

z /(2M )
is obtained. Figure 1(b) shows that this interpolating formula
reproduces the numerical result quite well. The difference
between the numerical results and Eq. (10) is within 5% in the
relevant range of kz, as seen in Appendix A. We will apply this
interpolating function, Eq. (10), to characterize the dispersion
relation of the Kelvin wave in two-component BECs.

III. VORTEX-CORE SIZE IN TWO-COMPONENT
BOSE-EINSTEIN CONDENSATES

Next, we seek the counterpart of the Kelvin wave of the
axisymmetric vortex states in the miscible two-component
BECs. Our focus is on clarifying the effects of the intercompo-
nent interaction on the dispersion relation and the Bogoliubov
amplitudes of the Kelvin mode. After introducing the formu-
lation, we classify dynamically stable regimes of the vortex
states in Sec. III A.

We expect that the dispersion relation of the Kelvin wave
in two-component BECs can also be characterized by the
vortex-core size. This hypothesis is based on the prospects:
(i) The dispersion relation in a short-wavelength limit would
also behave as a single-particle excitation. (ii) The dispersion
relation in a long-wavelength limit would be influenced only
by the cutoff length or the vortex-core size since microscopic
features such as the internal structure of the vortex core would
not have a direct impact on the large-scale collective dy-
namics. In the following, we will verify this expectation by
evaluating the vortex-core size from the stationary solution in
Sec. III B and extending the trial interpolating function (10) to
the case of miscible binary condensates.

A. Dynamically stable vortices

The stationary state of the two-component BECs can be
described by the coupled GP equations

μ j� j =
⎛
⎝ĥ j +

∑
j′=1,2

g j j′ |� j′ |2
⎞
⎠� j, j = 1, 2. (11)

Here, the single-particle Hamiltonian of the component j is
ĥ j = −h̄2∇2/(2Mj ) + V j

ext(r), and the coupling constants are
g j j′ . Like in Sec. II, the external potential V j

ext(r) is taken
to be zero and impose the Neumann boundary condition at
r = R. In the homogeneous system, the mean-field theory
predicts that two components experience phase separation
when g12/

√
g11g22 > 1 is satisfied [57]. On the other hand,

for g12/
√

g11g22 < −1, the condensates undergo a focusing
collapse. In this work, we confine ourselves to the miscible
regime −1 < g12/

√
g11g22 < 1, in which one can safely con-

sider the dynamically stable vortex states. In the following,
we fix the density in the bulk region as |�1|2 = |�2|2 = n
for simplicity and use the physical units determined by n.
We here put M1 = M2 = M, g11 = g22 = g, and μ1 = μ2 =
gn(1 + γ ), with the new parameter g12/g ≡ γ . To this end, we
present our results by using units independent of γ , namely,

ξ = h̄√
Mgn

, τ = h̄

gn
(12)

for length and time, respectively, similar to those in Fig. 1 for a
single-component BEC. These scales are useful to make clear
the effect of intercomponent interaction γ on the properties of
the Kelvin mode.

To consider a small fluctuation around the stationary so-
lution, we write the wave function as � j (r, t ) = � j (r) +
δ� j (r, t ). Here, the stationary solutions can be written as

� j (r, θ, z, t ) = f j (r)eiq jθ−iμ j t , (13)
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with the real radial functions f1(r) and f2(r) and the vortex
winding number q1 and q2. The fluctuation can be written as

δ� j (r, t ) = eiq jθ−iμ j t
[
u j (r, t ) − v∗

j (r, t )
]
. (14)

Along lines similar to the discussion in Sec. II,
we consider the fluctuation by setting the ansatz as
u j (r, t ) = ∑

m,l,kz
u( j)

mlkz
(r)ei(lθ+kzz−ωt ) and v j (r, t ) =∑

m,l,kz
v

( j)
mlkz

(r)ei(lθ+kzz−ωt ). The resulting BdG equation for
the radial component reads

H(lkz )wmlkz (r) = h̄ωwmlkz (r), (15)

where

wmlkz (r) = [
u(1)

mlkz
(r), v(1)

mlkz
(r), u(2)

mlkz
(r), v(2)

mlkz
(r)

]T
, (16)

H(lkz ) =

⎛
⎜⎜⎜⎝

ĥ+
lkz,1

−gf 2
1 g12 f1 f2 −g12 f1 f2

gf 2
1 −ĥ−

lkz,1
g12 f1 f2 −g12 f1 f2

g12 f1 f2 −g12 f1 f2 ĥ+
lkz,2

−gf 2
2

g12 f1 f2 −g12 f1 f2 gf 2
2 −ĥ−

lkz,2

⎞
⎟⎟⎟⎠,

(17)

h±
lkz, j = h̄2

2M

(
− ∂2

∂r2
− 1

r

∂

∂r
+ (q j ± l )2

r2
+ k2

z

)

−μ j + 2gf 2
j + g12 f 2

j′ , j′ �= j. (18)

We solve this eigenvalue equation numerically to obtain the
eigenvalue ωmlkz and the eigenfunctions u( j)

mlkz
(r) and v

( j)
mlkz

(r)
for given l and kz.

For later discussion, it is useful to recall the excitation
spectrum of the density oscillation for a homogeneous system
without vortices (q1 = q2 = 0). In our simplified parameters,
the excitation spectrum with respect to the wave number k in
a homogeneous system is [58]

(h̄ω)2
± = h̄2k2

2M

[
h̄2k2

2M
+ 2n(g ± g12)

]
. (19)

Here, we have two branches associated with the plus (minus)
sign, corresponding to the in-phase (out-of-phase) oscillation
of the two-component densities. In the low-k limit, we have
the phonon dispersion ω � √

gn(1 ± γ )/M k, while we have
the single-particle spectrum ω � h̄2k2/(2M ) in the high-k
limit. For γ > 0, the out-of-phase branch approaches the
quadratic relation ω− ∝ k2 as γ → 1. Similarly, the in-phase
branch becomes ω+ ∝ k2 as γ → −1. These behaviors imply
the instability associated with the phase separation at γ = 1
and focusing collapse at γ = −1.

Without loss of generality, we can consider the three
cases of the axisymmetric vortex states with (q1, q2) = (1, 1),
(1, 0), and (1,−1). In the particular parameter regimes, these
vortex states have dynamical instability associated with the
appearance of the imaginary frequency of the Bogoliubov
excitations, as summarized in Table I. Although we surmise
this table from previous works [35,38,44], we give some
supporting materials in Appendix B. We confine ourselves
to considering Kelvin waves in the dynamically stable state.
We expect that, even when there is small parameter asym-
metry such as an imbalance of masses or of intracomponent
scattering lengths, this stability diagram will not change. A

TABLE I. Diagram of the dynamical stability of axisymmet-
ric vortex states in the two-component BECs based on past works
through an analysis of the BdG equation (15) [35,38,44].

−1 < γ < 0 0 < γ < 1

Case A, q1 = 1, q2 = 1 stable unstable
Case B, q1 = 1, q2 = 0 stable stable
Case C, q1 = 1, q2 = −1 unstable unstable

systematic analysis including the full range of the parame-
ter asymmetry would be an interesting perspective for future
studies.

B. Vortex-core size

In cases A and C in Table I, the axisymmetric vortex states
consist of singly quantized vortices (SQVs) with vanishing
total densities at r = 0, where both components have exactly
the same density profile, f1(r)2 = f2(r)2. Then, the nonlinear
term of the GP equation can be written as g(1 + γ ) f j (r)3. As a
result, the vortex-core size is determined by the modified heal-
ing length ξ/

√
1 + γ . To see this property, we numerically

solve Eq. (11) and extract the vortex-core size by making the
Gaussian fit ∝ e−r2/(2σ 2 ) to the profile 1 − f 2

j /n. For γ = 0
we find that σ ≈ 1, and the core size rv can be reproduced
when multiplying σ by a factor of 0.7095. According to this
fitting analysis and rv = 0.7095σ , we determine the vortex-
core size for γ �= 0, as shown in Fig. 2(b). The core size for
γ > 0 (γ < 0) decreases (increases) from that for γ = 0 and

FIG. 2. (a) shows the radial density profile of the axisymmetric
vortex state with (q1, q2) = (1, 0) for several values of γ . The dark
red and light blue curves represent |ψ1|2 and |ψ2|2, respectively, and
the left and right panels correspond to the solutions for γ � 0 and
γ < 0, respectively. (b) shows the vortex-core size, determined by
the Gaussian fitting of the vortex-core profile, for (q1, q2) = (1, 0)
(solid circles) and (q1, q2) = (1, 1) (open squares). The interpolating
curves for the two plots are given by rv/ξ = 0.7095/

√
1 − γ 2 and

rv/ξ = 0.7095/
√

1 + γ .
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is written as

rv � 0.7095ξ√
1 + γ

≡ rSQV. (20)

In other words, the vortex solutions for different values of
γ have profiles similar to Fig. 1(a) when we use the scaled
coordinate r

√
1 + γ /ξ .

For case B, we have a configuration of a half-quantized vor-
tex (HQV) [33,36]. Figure 2(a) shows the stationary density
profiles of the vortex states for (q1, q2) = (1, 0) for several
values of γ . For γ > 0 the intercomponent interaction is
repulsive, so the vortex core is filled by the other nonrotat-
ing component to reduce the overlapping of the condensate
density. For γ < 0, on the other hand, the density of the
nonrotating component is reduced together with the density
depletion of the vortex core. The size of the vortex core
of the �1 component has a nontrivial dependence on γ , as
shown in Fig. 2(b), where we show a Gaussian fitting analysis
similar to case A for the density profile f 2

1 . The core size
behaves symmetrically with respect to the sign of γ . This is
due to two length scales in our problem, namely, the “den-
sity” healing length ξd = ξ/

√
1 + γ and the “spin” healing

length ξs = ξ/
√

1 − γ [33]. The former determines the spa-
tial scale on which the total density f 2

1 + f 2
2 varies, and the

latter does the same for the density difference f 2
1 − f 2

2 . Since
the asymptotic behaviors of the profile functions for r 
 1
are written as ( f 2

1 + f 2
2 )/n ∼ 2 − ξ 2

d /r2 and ( f 2
1 − f 2

2 )/n ∼
−ξ 2

s /r2 [33], the profile for the first component is written as
f 2
1 /n ∼ 1 − (ξ 2

d + ξ 2
s )/(2r2). Thus, as shown in Fig. 2(b), the

core size can be fitted as

rv = 0.7095ξ√
1 − γ 2

≡ rHQV. (21)

IV. KELVIN WAVE IN TWO-COMPONENT BECs

In this section, we discuss the properties of the Kelvin wave
for each vortex state by solving the BdG equation (15). From
the above discussion, the structure of the vortex core is rele-
vant for the properties of the Kelvin wave in two-component
BECs through the ratio of the core size rv = rv(γ ) and the
system size R as a finite-size effect. We thus fix the system
size for a certain γ to R/ξ = 30rv(γ )/rv(0) throughout the
following discussion to compare the results of the Kelvin
wave for γ = 0.

A. Kelvin wave of a HQV

First, we consider the Kelvin wave for (q1, q2) = (1, 0),
i.e., a half-quantized vortex. As in the single-component BEC,
the Kelvin mode corresponds to the lowest-energy mode with
l = −1. The corresponding mode with kz = 0 translates the
vortex core without changing its internal structure. Then, the
Bogoliubov amplitudes for finite kz are also localized for both
components, as shown in Fig. 3(a). For γ > 0 the amplitude
u(2)

mlkz
of the nonvortex component takes the opposite sign of

u(1)
mlkz

[the left panel of Fig. 3(a)]. This means that the density
peak of �2 at the vortex core of �1 [see the left panel of
Fig. 2(a)] decreases when the Kelvin wave is excited. Then,
the denser region of the �2 component follows the displace-
ment of the vortex core in �1. For γ < 0 the Bogoliubov

FIG. 3. The properties of the Kelvin wave (l = −1) for
(q1, q2) = (1, 0). (a) The Bogoliubov amplitudes u(1)

mlkz
(r) (dark

red solid curve), v1
mlkz

(r) (light blue solid curve), u(2)
mlkz

(r) (dark
red dashed curve), and v2

mlkz
(r) (light blue dashed curve) with

(m, l, kz ) = (0,−1, ξ−1), which are typical for γ > 0 (left) and γ <

0 (right). (b) Log-log plots of the Kelvin wave dispersion are for
several values of γ . The red open symbols for γ > 0 are almost
coincident with the blue solid symbols for γ < 0 with the same
magnitude |γ |. The solid, dashed, and dash-dotted curves refer to
Eqs. (10), (7), and (8), respectively. The inset shows the linear plot
enlarged in the low-kz region, where the green dash-dotted curves
are Eq. (8) with rv = rHQV for |γ | = 0.2, 0.6, and 0.9 from top to
bottom. In (c), we plot the difference of the dispersion relation from
that for γ = 0. The solid curves represent the corresponding differ-
ence calculated from the interpolating formula (10) with rv = rHQV.
The top and bottom panels show the results for γ > 0 and γ < 0,
respectively.

amplitudes distribute similarly to the case of γ > 0, but the
amplitude u(2)

mlkz
takes the same sign as u(1)

mlkz
[the right panel
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of Fig. 3(a)]. This also implies that the density hollow of �2

[see the right panel of Fig. 2(a)] follows the displacement of
the vortex core of �1 when the Kelvin wave is excited.

Figure 3(b) shows the dispersion relation of the Kelvin
wave for (q1, q2) = (1, 0) and various values of γ . To make
a log-log plot, we subtract the negative-energy shift � at
kz = 0 as h̄ω(γ ) − �(γ ) = h̄	(γ ) as in Fig. 1(b). All plots
at kzξ 
 1 asymptotically approach the quadratic function
h̄2k2

z /(2M ), independent of the values of γ . This is because
for kzξ 
 1 the term h̄2k2

z /(2M ) in the diagonal component
of Eq. (17) becomes dominant. However, the curvature of the
dispersion curve in the low-kz region has a weak dependence
on γ , as seen in the inset of Fig. 3(b). We find that the analytic
expression (8), in which rv is replaced by rHQV instead of
0.7095ξ , can describe well the dispersion in a low-kz regime.
To show this result more clearly, we plot in Fig. 3(c) the differ-
ence in the dispersion relation from that for γ = 0, i.e., that of
the single-component BEC. Here, the difference is evaluated
by [	(0) − 	(γ )]/	(0). This γ dependence can be explained
by the fact that the vortex-core size with (q1, q2) = (1, 0)
increases together with γ . To confirm this, we generate a
similar plot, but now it is calculated from the interpolating
formula in Eq. (10). Here, the core size rv in Eq. (10) is also
evaluated by rv = rHQV. The curves in Fig. 3(c) can capture
the obtained γ dependence quite well.

We also note that the dispersion relations for γ < 0 are
almost identical to those for γ > 0 with the same magnitude,
as seen in Figs. 3(b) and 3(c). Thus, the dispersion relation
behaves symmetrically with respect to the sign of γ , which
supports the conclusion that the dispersion relation of the
Kelvin wave is characterized by the vortex-core size of the
vortical component, as expected from the γ 2 dependence of
rv in Fig. 2(b).

B. Kelvin wave of a SQV

Next, we consider the Kelvin wave for (q1, q2) = (1, 1).
In this setting, the vortex state is dynamically stable only for
γ � 0. Since both components have a vortex, we can consider
two branches of the Kelvin wave with nodeless radial modes,
corresponding to the in-phase and out-of-phase oscillations
(with a π -phase difference) of the helical vortex-line defor-
mation. For γ < 0, the intercomponent attractive interaction
energetically prefers the in-phase oscillation to the out-of-
phase one, which is generally gapped since it involves the
deformation of the vortex-core profile. We here discuss the
two branches since both branches are gapless for γ = 0 and
the out-of-phase Kelvin wave could have an excitation energy
much lower than those of the other gapped modes when γ is
sufficiently small.

Figure 4(a) shows a series of eigenvalues of the Bogoli-
ubov modes with l = −1 for γ = −0.6 as a function of kzξ .
The in-phase Kelvin mode corresponds to the lowest gapless
mode, which is well separated from the other gapped exci-
tation branches. This dispersion relation is well described by
the interpolating formula of Eq. (10) with a suitable choice
of rv (see the following discussion). The out-of-phase Kelvin
mode appears above a certain axial wave number kzξ as a re-
sult of an avoided crossing of the two out-of-phase collective
modes which are extended over the system in the low-kz limit.

FIG. 4. (a) shows the dispersion relation of the Bogoliubov
modes with l = −1 and various values of the radial quantum num-
ber m for (q1, q2) = (1, 1) and γ = −0.6. The lowest mode (solid
red circles) represents the in-phase Kelvin mode. The out-of-phase
Kelvin mode emerges at kzξ � 0.16 as a result of the avoided cross-
ing of the two out-of-phase collective modes, shown by the blue
solid and open triangles. In (b), we show the radial profile of the
Bogoliubov modes (u(1)

mlkz
, v

(1)
mlkz

) relevant to the avoided crossing in
(a) for kzξ = 0.12, 0.16, and 0.2. The dark red curve and the light
blue one with solid triangles correspond to the amplitudes u(1)

mlkz

and v
(1)
mlkz

, respectively, of the lower-lying mode [solid triangles in
(a)], while those with open triangles correspond to the higher-lying
mode [open triangles in (a)]. The profile of the second component is
out-of-phase (u(2)

mlkz
, v

(2)
mlkz

) = −(u(1)
mlkz

, v
(1)
mlkz

), not shown here.

As shown in Fig. 4(a), the avoided crossing takes place at
kzξ = 0.16, below which the two relevant modes are extended
to the bulk region [top panel of Fig. 4(b)]. For kzξ > 0.16
the dispersion curve of the lower-lying mode approaches the
quadratic form, and concurrently, its mode amplitudes are
localized at the vortex core, as seen in the bottom panel of
Fig. 4(b). Although we do not have a convincing explanation
for why the out-of-phase mode arises from this avoided-
crossing mechanism, the result means that it is difficult to
separate overlapping vortex lines for a low-kz regime without
affecting the bulk region.

The dispersion relation of the in-phase mode for γ < 0
takes a form similar to that of the single-component BEC,
being just Eq. (10) with rv = rSQV. This is because Eq. (15)
with the conditions f1 = f2 and (u1

mlkz
, v1

mlkz
) = (u2

mlkz
, v2

mlkz
)

owing to the in-phase mode reduces to the single-component
BdG equation, so that one can reproduce the unique dispersion
curve seen in Fig. 1 under a suitable scaling plot, apart from
the finite-size correction χ (kzR). Figure 5(a) shows the dis-
persion relations of the out-of-phase Kelvin mode for several
values of γ , which also exhibit the quadratic dependence with
respect to kz at kzξ 
 1. Thus, the out-of-phase mode in the
high-kz region can be written as h̄ω � h̄2k2

z /(2M ) + �ε with
a constant energy gap �ε. The energy gap arises from the
fact that the relative displacement of the vortex cores in each
component involves the deformation of the core structure and
results in the energetic cost. In Fig. 5(b), we plot the energy
gap �ε as a function of γ . This γ dependence of �ε can be
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FIG. 5. In (a), log-log plots of the dispersion relations of the
out-of-phase Kelvin mode are shown for several values of γ (<0).
The blue dashed line represents h̄2k2

z /(2M ). The curves in the lower-
kz region represent the frequency of the lower-lying out-of-phase
mode contributing the avoided crossing. (b) shows the energy gap of
the out-of-phase mode, extracted by the relation h̄ω = h̄2k2

z /(2M ) +
�ε in the high-kz region. The solid curve represents �ε/(gn) =
−γ /(1 − γ ).

fitted well by the relation �ε ∝ −γ /(1 − γ ), whose deriva-
tion needs more detailed consideration of the short-range
properties of the vortex-vortex interaction.

V. CONCLUSION

In summary, we discussed the Kelvin wave of SQVs and
HQVs in miscible two-component BECs. We first confirmed
that the Kelvin wave dispersion of a single-component BEC is
well described by the interpolating formula (10) in the whole
range of kz. Based on this interpolating formula and the pre-
cise evaluation of vortex-core properties, we considered the
impact of the intercomponent interaction on the Kelvin mode
by solving the BdG equation. For (q1, q2) = (1, 0), the Kelvin
wave dispersion is weakly dependent on the intercomponent
interaction only through the change in the vortex-core size in
the vortical component, which is written as Eq. (10) with rv =
rHQV. Thus, the dispersion is symmetric with respect to the
sign of the intercomponent coupling constant. In the case of
(q1, q2) = (1, 1) and the attractive intercomponent interaction
γ < 0, we have both lower-lying in-phase and higher-lying
out-of-phase branches for the Kelvin wave. The dispersion of
the in-phase branch is gapless, written as Eq. (10) with rv =
rSQV. The out-of-phase Kelvin wave is a gapped excitation,
speculated to be generated from the avoided crossing of the
two out-of-phase delocalized modes at low kz. This energy gap

FIG. 6. The errors between the numerical data and Eq. (A1)
with the interpolating function given by (A) arctan x (red cir-
cles), (B) tanh x (blue squares), (C) x/

√
1 + x2 (green diamonds),

and (D) x/(1 + x) (black triangles). Here, the error is defined by
δ ≡ (	 − 	int )/	.

is associated with the deformation of the vortex core caused
by the relative displacement of the vortex position from the
center.
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APPENDIX A: HOW TO DETERMINE
AN INTERPOLATING FUNCTION BETWEEN

EQS. (7) AND (8)

We here describe how to determine the interpolating func-
tions in Eqs. (7) and (8) among several possible interpolating
functions. To interpolate Eqs. (7) and (8), the logarithmic term
of the dispersion relation of the Kelvin wave can be modified
as

h̄ωint = h̄2k2
z

2M

[
ln

e

φ(ekzrv)
− χ (kzR)

]
. (A1)

Here, φ(x) (x > 0) is an interpolating function satisfying the
asymptotic behavior φ(x) ∼ x for x � 1 and φ(x) ∼ 1 for
x 
 1. Note that the contribution χ (kzR) from the finite-size
effect converges to zero for kzR 
 1, so we do not need to
consider it in the asymptotic limit at x 
 1. We consider
several simple functions satisfying the above asymptotic be-
havior: (A) φ(x) = (2/π ) arctan(πx/2), (B) φ(x) = tanh(x),
(C) φ(x) = x/

√
1 + x2, and (D) φ(x) = x/(1 + x). To seek

the best choice that can reproduce the numerical results, we
calculate the deviation of the interpolating function from the
numerical one as δ = (	 − 	int )/	, where h̄	 = h̄ω − �

with the negative-energy shift � at kz = 0 (see the main text).
Among the above cases, choice A gives a better interpolation
within 5% error in the intermediate range of kzξ , as shown in
Fig. 6. We thus adopt Eq. (10) in the analysis.
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FIG. 7. The imaginary part of the eigenvalues of the BdG equa-
tion (15) for l = 1, kz = 0, and (q1, q2) = (1, 1) (dark red dots) and
(q1, q2) = (1,−1) (light blue dots) as a function of γ . The radius of
the system is R = 56ξ .

APPENDIX B: THE BDG ANALYSIS SUPPORTING TABLE I

In this Appendix, we provide some discussion and numeri-
cal evidence which support the stability diagram in Table I.
The dynamical stability of the vortex states can be studied
through the analysis of the BdG equation (15) for kz = 0. As
shown in Fig. 7, the numerical solution reveals that an imag-
inary frequency appears in the range 0<γ<1 for (q1, q2) =
(1, 1) (case A) and −1<γ<1 for (q1, q2) = (1,−1) (case C),
which is consistent with Table I.

For case A, the dynamically stable vortex configuration
can take place only at −1 < γ < 0. This is because there
is no relative velocity between the two components and the
attractive intercomponent interaction energetically prefers the
overlapping of vortex cores. Thus, the properties of the vortex
state are similar to those of a single-component BEC. For
0 < γ < 1 the overlapping vortices experience the splitting
dynamical instability [38,44] induced by the repulsive inter-
vortex interaction [36]. The bubble structure of the unstable
domain shown in Fig. 7 is also seen in the splitting instability
of a multiply quantized vortex in a single-component BEC
[48–50,52,53].

For case C, we have a stationary vortex state similar to that
in case A, but the counterrotating vortex state always gives
rise to the dynamical instability for any value of γ [35,38].
In this regime, the local relative velocity between the two
components increases near the vortex core and can locally
exceed the critical velocity of the countersuperflow instability
around the vortex-core region [35]. Thus, this instability also
leads to the splitting of the overlapping vortex cores, which
was demonstrated in Ref. [44] only for 0 < γ < 1. In the
case of (q1, q2) = (1, 0) (case B), the local relative velocity
also increases in the vortex core. However, the same argument
does not necessarily hold since the density difference between
the two components also increases. Since the HQV involves
the smallest unit of circulation realized in this system, no
further splitting can occur, and it is likely to be stable in the
bulk.
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