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We show that a variety of nonequilibrium dynamics of interacting many-body systems are universally
characterized by an elegant relation, which we call the dynamic virial theorem. The out-of-equilibrium dynamics
of quantum correlations is entirely governed by Tan’ s contact. It gives rise to a series of observable consequences
and is closely related to experiments with ultracold atoms. In particular, we show that the dynamic virial
theorem provides an experimentally accessible verification of the maximum energy growth theorem [R. Qi et al.,
Phys. Rev. Lett. 126, 240401 (2021)], which is encoded in the evolution of the atomic cloud size during
expansion. In addition, the dynamic virial theorem leads to a simple thermodynamic relation of strongly
interacting quantum gases in the framework of two-fluid hydrodynamic theory, which holds in a wide range
of temperature. This thermodynamic relation is a type of out-of-equilibrium analog of Tan’s pressure relation at
equilibrium. Our results provide a fundamental understanding of the generic behaviors of interacting many-body
systems at nonequilibrium and are readily examined in experiments with ultracold atoms.
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I. INTRODUCTION

The investigation of nonequilibrium dynamics of strongly
interacting many-body systems is of fundamental importance
and remains an open challenge in modern physics, while
it is broadly relevant to many phenomena in the universe,
ranging from the evolution of neutron stars and the proce-
dure of chemical reactions, to complex living systems in
biology. The discovery of universal features in quantum sys-
tems at nonequilibrium, irrelevant to the microscopic detail of
the studied objects, is a longstanding challenge to date and
attracts a great deal of attention in both theory and exper-
iment. Ultracold atoms, as clean, controllable, and versatile
quantum systems, provide an unprecedented platform for the
exploration of a wide variety of phenomena in many-body
physics, ranging from thermodynamic equilibrium to out-of-
equilibrium dynamics [1-6]. Remarkably, ultracold atomic
systems have unique advantages for the study of nonequi-
librium dynamics within experimentally resolved intrinsic
timescales (typically milliseconds), holding promising oppor-
tunities to test the universality of many-body dynamics far
from equilibrium [7-13].

A set of universal relations in cold atoms, connected by a
simple contact parameter, has been discovered [14—16]. These
relations simply follow from the short-range correlation of
two-body physics and provide a remarkable understanding of
the profound properties of interacting many-body systems. To
date, an impressive amount of experimental and theoretical
effort has been devoted to confirm the universal relations and
explore their important consequences [17-24]. While most of
them are focused on the properties of many-body systems

*pengshiguo @wipm.ac.cn

2469-9926/2023/107(1)/013308(9)

013308-1

at equilibrium, the universal relations at nonequilibrium are
rarely studied and still remain elusive.

In this work, it is found that a variety of dynamic processes
of many-body systems driven away from equilibrium by either
the time-dependent external potential or time-dependent inter-
actions are elegantly governed by the dynamic virial theorem.
These are the favorite ways to study the out-of-equilibrium
dynamics in experiments of cold atoms, such as the expan-
sion dynamics [25,26] and the interaction quench [7-10,13].
The dynamic virial theorem reveals a deep insight into the
precise energy conversion relation, i.e.,

1d%I(t)  R*C(r)
4 dr? 8ama(t)’

E(1) = 2Eq (1) = (D

which imposes an intrinsic constraint on the energy dynamics.
Here, m is the atomic mass, % is Planck’s constant, and a(¢)
is the scattering length generally varying in time. Eyo(¢) is
the energy corresponding to the external harmonic poten-
tial, I(t) = (mr?) is the moment of inertia of the systems,
and C(¢) is Tan’s contact [14—16]. In the classical (or high-
temperature) limit, the kinetic energy dominates the internal
energy. The dynamic virial theorem immediately implies an
interesting nondamping monopole oscillation with twice the
trapping frequency in a perfectly spherical trap, and systems
never reach thermal equilibrium. This long-predicted phe-
nomenon by Boltzmann’s equation has recently been observed
by JILA’s group in a thermal Bose gas [27]. In the quantum
(or low-temperature) limit, the interaction between particles
comes into play and shifts the frequency of the monopole
oscillation [28-31]. We find that the dynamics of the quan-
tum correlations is entirely governed by Tan’s contact. In the
unitarity limit with divergent scattering length, the systems
display scale invariance. The dynamic virial theorem requires
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a unitary gas to exactly follow the same dynamics of an ideal
gas [25,26,32]. At equilibrium, the dynamic virial theorem
simply recovers that of [16] at finite interaction strength,
and further reduces to the well-known equilibrium result of
E = 2E, for unitary and ideal gases [33].

The applications of the dynamic virial theorem are demon-
strated in several typical dynamic processes. The observable
consequences in experiments of ultracold atoms are discussed.
There are two typical ways to study the nonequilibrium
dynamics in experiments with cold atoms, i.e., in a time-
dependent trap and with a time-dependent interaction. For
the former, we show that the release energy of cold atoms
during free expansion is directly given by the dynamic virial
theorem. The frequencies of monopole oscillations are simply
derived according to the dynamic virial theorem. In addition,
the dynamic virial theorem simply characterizes the intriguing
Efimovian expansion of scale-invariant quantum gases in a
time-dependent harmonic trap [26]. For the latter, a funda-
mental issue has theoretically been addressed recently as to
how fast the energy could be pumped into a noninteracting
system by increasing interactions [34]. Counterintuitively, it
is not true that the faster the interaction increases, the larger
the rate of energy gain becomes. Instead, there exists an upper
limit of the initial energy growth rate, which could be reached
only when the scattering length increases with time ¢ as ~+/7,
known as the maximum energy growth theorem. However, the
direct measurement of the energy dynamics in experiments is
difficult. We show that the dynamic virial theorem provides an
experimentally accessible way to verify the maximum energy
growth theorem according to the expansion behavior of the
atomic cloud size. Remarkably, a simple dynamic thermody-
namic relation is derived using the dynamic virial theorem
in the framework of the two-fluid hydrodynamic theory for
interacting quantum gases. This thermodynamic relation is a
type of out-of-equilibrium analog of Tan’s pressure relation at
equilibrium [16] and holds in a wide range of temperatures.

The rest of the paper is arranged as follows. In the next sec-
tion, we present the brief proof of the dynamic virial theorem
for interacting many-body systems. Afterwards, the dynamic
virial theorem is applied to study the out-of-equilibrium dy-
namics for cold atoms in time-dependent harmonic traps, i.e.,
free expansion (Sec. III), Efimovian expansion (Sec. IV), and
monopole oscillation (Sec. V). We show, in Sec. VI, that the
dynamic virial theorem provides an experimentally accessi-
ble verification of the maximum energy growth theorem by
increasing interatomic interactions, which is encoded in the
evolution of the atomic cloud size during expansion. An out-
of-equilibrium thermodynamic relations is obtained by using
the dynamic virial theorem in the framework of the two-fluid
hydrodynamic theory in Sec. VII. Finally, the remarks and
conclusions are summarized in Sec. VIII.

II. DYNAMIC VIRIAL THEOREM

To prove the dynamic virial theorem (1), let us consider a
system consisting of N atoms (either bosons or fermions) in a
harmonic trap. The Hamiltonian of the system takes the form
of

A = Ho + Vin, (2)

in which
N
Hy=""[pj/2m+ Vho(r;:1)] 3)
j=1

is the single-particle Hamiltonian, and

Vi =Y _Ulrija)] )
ij

is the interatomic interactions with r;; =r; —r;. Here, we
consider the most general case in which the harmonic poten-
tial Vi, and interatomic interactions both vary in time, i.e.,
with the time-dependent trapping frequency w(¢) and s-wave
scattering length a(z). The evolution of the moment of iner-
tia 1({) :.(Zj mrjz.) = (mr?) is governed by the Heisenberg
equation, i.e.,

T Llum )

e in 7
which simply yields I = dI/dt = 2(D), and D = leyzl(rj .
p; +p;-r;)/2 is the generator of scale transformation
named the dilatation operator [32,35,36]. By further taking
the second-order derivative with respect to time, i.e., I =
2([D, H])/ih, we obtain

d*I . R N 2 .
P 4(H) — 8(Vho) — 4(Viny) + E<[D’ Vinl).  (6)

To proceed, we notice that the two-body interaction
U (rij;a), under the scale transformation, has the property
of e’ieﬁ/hU(rij;a)eiGD/h = ¢*U(r;j; ¢“a) for infinitesimal €.
Expanding both sides of this equation up to the first-order term
of €, we obtain the commutation relation of [D, U], which in
turn gives

1
ih

. . Wit
<[D,Vim]>=2(Vim)+a< 5 > )
a

Inserting Eq. (7) into Eq. (6) and combining with the
Hellmann-Feynman theorem and Tan’s relation [15], i.e.,

Ain E 8
<avt>_a R )

da | 9a  4mwma®’

we finally arrive at Eq. (1) with E(t) = (H) and Ep.(t) =
(Vho). The similar formulism has been obtained in discussing
the breathing mode of two-dimensional Fermi gases and the
corresponding scale-invariant dynamics, such as the quan-
tum anomaly [37,38]. Here, we emphasize that Eq. (1), as
a fundamental analogous relation of virial theorem at equi-
librium [33], characterizes a broad variety of nonequilibrium
dynamics of interacting quantum gases. It provides a deep
insight into generic out-of-equilibrium characters, which we
are going to demonstrate as in the following.

III. FREE EXPANSION OF QUANTUM GASES

Free expansion, simply releasing atoms from the trap,
provides crucial information on both the equilibrium and dy-
namic properties of ultracold atomic gases. It is widely used
in experiments of cold atoms, such as the time of flight.
One of the direct applications of dynamic virial theorem is
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to calculate the release energy, i.e., E = E(t). Since the
release energy is well understood in weakly interacting and
unitary gases, it is inversely convenient to verify the validity
of the dynamic virial theorem. To this end, the knowledge
of evolution of Tan’s contact as well as that of the moment
of inertia is required. As an example, let us consider free
expansion of a two-component Fermi gas, initially prepared
at equilibrium in the trap. We evaluate the evolution of Tan’s
contact and moment of inertia of the system in the framework
of hydrodynamic theory [39,40]. To solve the hydrodynamic
equations, we adopt the scaling form of the time-dependent
density profile, i.e., n(r, t) = ny(r/b)/b*(t), where no(r) is
the equilibrium density profile initially in the trap. The time
dependence of n(r,t) is entirely determined by the scaling
factor b(t). The atomic cloud size (r?)(t) during expansion
is related to the initial size (r?)o by the scaling factor b(¢) as
(r2)(t) = b*(t){r?)o, which in turn gives

L4 )
1(t) = o [b°(t) + b(1)b(1)]E,, ®

where Eég) is the initial potential energy and wy is the initial
trapping frequency.

In the weakly interacting Bardeen-Cooper-Schrieffer
(BCS) limit with small negative scattering length, the scaling
factor b(t) satisfies [39,40]

2
by — 20 4 3 (o - — L | =
b(t) - b3([) + ZX(g)wO|:b3(t) b4([)] - 07 (10)

i(not)/Eég) is the ratio of interaction energy

Eiiﬁ) to potential energy Elfg) initially in the trap, and g =
4 h*a/m is the interaction strength between atoms. The con-
tact C(¢) during expansion may be evaluated according to the
local density approximation (LDA) by making the adiabatic
ansatz [41], ie., C(t) = fdrI(r, 1), with local contact den-
sity Z(r, t) ~ 4mn*(r, t)a® [15], which in turn gives C(¢) =
4nmaEi(nOt)/h2b3. With all these results in hand, we easily
obtain the release energy according to the dynamic virial

theorem, i.e.,

where x(g)=FE

(1)

e = EOL L 12 + by — 21
ho 0)3

2b3(t)
From Eq. (10), we find [42]

1, N | 1
aTg[b (1) +b)b®)] =1 — 2X(g)[1 b3(t):|' (12)

Then the release energy reads
Ea = [1 - 5x(@®]Ey

in the weakly interacting limit, and further reduces to the well-
known result Ee; = E,° in the BCS limit [2].

In the Bose-Einstein-Condensation (BEC) limit with small
positive scattering length, the scaling factor satisfies [40]

13)

.. w?
b(t) — =0
O~ 50
It is simply that of weakly interacting bosons [43,44].
The evolution of contact is again determined by C(f) =

(14)

f drZ(r,t) with local contact density [15]

4 ,t
I(r,t)~ —nn(r )

+ 72 (x, tapa, (15)
where a,, &~ 0.6a is the scattering length between molecules
[45]. Then we have C(t) = Cy + C,,b~3, in which C, = 4w N/a
is the contribution from the binding energy of the tightly
bound molecules that is not released during expansion.
Cn=/[ drnzné(r)ama is the initial contact corresponding
to the interaction energy between molecules, i.e., E,fffm e
thm/4nma. From the dynamic virial theorem, the release
energy is easily calculated, i.e.,
N €p

EreIEE‘i‘T

=[50 * 5 - s
33() 3 203(@) ™
where €, = i*/ma? is the binding energy of molecules. By
further using the equilibrium virial theorem for weakly in-
teracting bosons initially in the trap, Erfg?m = 2E}§2) /3 [46],
the release energy simply becomes E,. = 2Eég) /3, the well-
known result in the BEC limit [2].
In the unitarity limit with divergent scattering length,
the release energy is rather easy to calculate since the sys-
tem obeys an exact scale-invariant evolution, which yields

bt)=,/1+ a)(%t2 [32,36]. In addition, the second term on
the right-hand side of Eq. (1) vanishes in the unitarity limit.
Consequently, the dynamic virial theorem simply gives the
well-known result £ = Eég) [2].

Another application of free expansion is to test the scale
invariance of strongly interacting quantum gases as well as
important consequences resulting from the scale-symmetry
breaking [25,47,48]. Such scale-invariant dynamics could be
identified according to the evolution of the cloud size, which
is governed by the dynamic virial theorem. If defining

(16)

m
(1) = —5 (") = (7)o, (17)
ho
we easily obtain the equation satisfied by 72(t),
d R[C(t) — Col
ST =24+ ——F—, (18)
dr? 47TmaE1§g)

where Cy is the initial contact before release. In [25], T2(¢), as
an identification of the scale invariance, is measured in the free
expansion and obeys t2(¢) = t* for a scale-invariant Fermi
gas. In the weakly interacting limit, we obtain

a2 .
T~ 24 0.29278kpsal (1 +0?) = 1] (19)

and

2
%tz(z‘) ~ 2+ 2.4668(kia)  [(1+ w3?) "2 = 1] (20)
in the strongly interacting limit, where ky; is the Fermi wave
number at trap center for an ideal gas. Generally, an accurate
estimation of contact is needed to depict the evolution of T2(¢)
in the free expansion, for example, by using high-temperature
virial expansion [25,49,50].
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IV. EFIMOVIAN EXPANSION

Scale-invariant quantum gases display a fancy scaling ex-
pansion dynamics in time-dependent harmonic traps, i.e.,
w(t) ~ 1 /\/Xt, with variation rate A. This phenomenon is
termed “Efimovian expansion” [26]. Here, we show that such
profound expansion dynamics is inherently governed by the
dynamic virial theorem. By further taking the derivative of
dynamic virial theorem with respect to ¢, we obtain

1d*1 dE _dE, K dC
—— = —-2— —. 21
4d3  dt dt 8mwma dt
According to the Hellmann-Feynman theorem, we have
L _Lipo)=(Lao)=-1. @
dt — dt ~\dt o
Combining with Ey, = I/2At?, we arrive at
I 4.dl 4l n* dC
(23)

T a W 2mmadr

For noninteracting and resonant-interacting (scale-invariant)
Fermi gases, the right-hand side of Eq. (23) vanishes, which
recovers that of [26,51]. The evolution of cloud size demon-
strates a temporal scaling expansion behavior. Away from the
scale-invariant point at finite interaction strength, the expan-
sion dynamics resulting from the scale-symmetry breaking is
simply characterized by the evolution of contact [52-54]. In
the strongly interacting limit, the contact can approximately
be estimated as before, i.e., C(t) &~ Cy/b(t) with b*(t) =
1(t)/Iy. Here, Iy is the initial moment of inertia and Cy =
25671aNkF1/35§‘1;/4 is the initial contact [41,46], where N is
the total atom number, and « ~ 0.12 and &z ~ 0.37 are uni-
versal parameters. The evolution of cloud size (or moment of
inertia) during Efimovian expansion near resonant interaction
is shown in Fig. 1.

V. MONOPOLE OSCILLATIONS

The study of low-energy elementary excitations is a subject
of primary importance in many-body physics. It is achieved,
for example, by abruptly disturbing the external trap and ex-
erting the oscillation of the system around its equilibrium. In
the following, let us discuss the monopole oscillation of cold
atoms in a spherical trap, which we find is governed by the
dynamic virial theorem.

Let us first consider a cluster of classical particles in a
harmonic trap interacting according to short-range potentials.
The moment of inertia of a single particle is defined as I =
mr?. Then we have I =2p -r with the momentum p. By
further taking the second-order derivative with respect to f,
we obtain / = 2(p-r+ p - F). As we have p = F, the force
acting on the particle, and the kinetic energy Ex, = p - 1/2,
we obtain I = 2(F - r + 2Ej,). In the harmonic trap, the force
acting on the particle is the negative gradient of the potential
energy, i.e., F = —VE},, which immediately gives F -r =
—2F},. Finally, we obtain E (1) — 2En(t) = I(r)/4. Since the
interactions between the atoms are local, the positions of the
atoms as well as their moment of inertia are not changed from
the instant before to the instant after collision. Therefore, the
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FIG. 1. Efimovian expansion of a two-component Fermi gas near
resonance. Here, the variation rate of the trap is set to be A = 0.01,
1o is the initial time, /; is the initial moment of inertia (or cloud size),
and kg is the initial Fermi wave number at the trap center for an ideal
gas.

momentum and energy conversation implies that [27]

1d°1
E(t) — 2B (1) = 177
holds for a cluster of classical particles. Equation (24) is the
classical version of the dynamic virial theorem. The classi-
cal dynamic virial theorem simply leads to a nondamping
monopole oscillation with the frequency wy = 2wy, which
has recently been observed in a Bose gas [27].

In the low-temperature limit, quantum correlations result-
ing from interactions come into play. Let us consider the
small monopole oscillation of a two-component Fermi gas
initially prepared at equilibrium in the trap. Then the total
energy of the system is given by the virial theorem, and we
have E = [2 — x(g)/2]E\ in the BCS limit, E = 2E, in the
unitarity limit, and E = 5El§2) /3 — N¢p/2 in the BEC limit.
Here, x(g) = EY /Eég) is the ratio of the interaction energy

nt

Ei(n(? to the potential energy Eﬁg), €p 1s the binding energy
of molecules, and N is the atom number. At time ¢ = 0, the
monopole oscillation is exerted due to a slight disturbing
on the trap. The evolution of contact is easily evaluated by
using the adiabatic ansatz as before. Then the evolution of the
moment of inertia or the cloud size is given by the dynamic
virial theorem.

In the BCS limit, we obtain

(24)

&y

dt?

+4wly — o3 x (g)y"* — 2w} [2 - %} =0, (25)
where we have defined y = (+?)(¢)/(r*)(0). By linearizing
Eq. (25) around the equilibrium, i.e., y & 1 4+ dy, we obtain

d*sy

3
7 + [4 +3 x(g)]wgay =0. (26)
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We find that the frequency of the monopole oscillation is

shifted to wy = wo+/4 + 3x(g)/2 by interatomic interactions.
It further reduces to wy; = 2wy in the noninteracting limit. In
the BEC limit, we similarly have

& 2 10
TS Hdely - Seb - Teb=0. @)
which is linearized to
4%
7} + 5028y = 0. (28)

The frequency of the monopole oscillation is then shifted to
wy = «/ga)o in the BEC limit, consistent with the well-known
result of Bose gases in the presence of mean-field interactions.
In the unitarity limit, the dynamic virial theorem implies that
a strongly interacting Fermi gas exactly follows the same
monopole oscillation as that of an ideal gas with the frequency
wy = 2wg.

VI. MAXIMUM ENERGY GROWTH UNDER INCREASING
INTERACTIONS

In this section, let us discuss the dynamic behavior of inter-
acting many-body systems with time-dependent interatomic
interactions. Explicitly, we consider how fast the energy could
be pumped into a system by increasing interactions, starting
from the noninteracting limit. This fundamental issue has
recently been addressed [34]. Counterintuitively, it is not true
that the faster the interaction increases, the larger the rate of
energy gain becomes. The maximum energy growth theorem
states that there exists an upper limit of initial energy growth
rate, which could be reached only when the scattering length
increases with time ¢ as ~+/7. However, the direct measure-
ment of the energy dynamics in experiments is difficult. Here,
we are going to show that the dynamic virial theorem provides
an experimentally accessible way to verify the maximum en-
ergy growth theorem according to the evolution of the cloud
size during expansion.

Let us consider a two-component Fermi gas initially pre-
pared at equilibrium in the trap. It is supposed that the initial
interatomic interaction is so weak that we may treat it as an
ideal gas. Then the gas is released from the trap for ¢ > 0,
accompanied by the increase of interactions. To estimate the
initial energy growth rate, it is sufficient to consider the dy-
namics of the system in short time. Here, the short time is
defined as the timescale much smaller than the many-body
timescale t, = i/ EF related to the Fermi energy Er, and also
larger than the timescale 7, = mr3/h imposed by the range
ro of the two-body potential. In this timescale, the scattering
length may be assumed to take a power-law form of

a(t) = anof(wot)”, (29

and the two-body physics dominates the expansion dynamics.
Here, an, = «/fi/mwy is the harmonic length with respect to
the initial trap with frequency wy, and «, 8 > 0 are parameters
that characterize, respectively, the power and quench rate.
Then the energy can be obtained by simply integrating Tan’s
sweep theorem over time ¢, i.e.,

WC(t) da

_ 30
4rma?(t') dt’ (30)

E(t) = E(0) + / dt’
0

where E(0) is the initial energy that is simply the potential
energy Ep,(0) given by the virial theorem at equilibrium. The
evolution of the cloud size or the moment of inertia is related
to the energy characterized by the dynamic virial theorem in
expansion,

il =4E() + FCw) 3D
dr? 2rmal(t)’
Inserting Eq. (30) into (31), we obtain
d’I R2C(t) Bt C(t) da
=20 — L 4 ! —, 32
a0t e T wm /0 2oyar’ Y

and Iy = 2E,(0)/ w(z) is the initial moment of inertia. We find
that the dynamics of Tan’s contact is crucial for evaluating the
energy as well as the cloud size, which is simply governed
by the two-body physics in short time as pointed out in [34].
There are totally three typical behaviors of the evolution of
contact in short time, depending on the power parameter o
[34],i.e.,

167%g,(0)a(@), o>1/2
ct) = {IAB) (0t /m, o« =1/2 (33)
|A(00)>g2(0)it /m, 0 <1t < 1/2,
where g»(r) is defined as
g(r) = / dRpy(R +1/2,R —1/2), (34)
and
p2(r1, 1) = (FL )Y (e)f () ()0 (39)

is the two-body density matrix for the initial state. Here, it is
defined A(8) = [B(1/2) + 1/47 81! and B(a) = i¥/*T'(a +
1)/4nT(a + 1/2). Subsequently, the energy as well as the
evolution of the moment of inertia can conveniently be evalu-
ated as follows.

For o > 1/2, the contact takes the form of

C(t) = 16m%g2(0)a*(t) = 167w°g2(0)ap, B (wot**.  (36)
The energy growth §E(t) = E(¢) — E(0) in short time is ob-
tained according to Eq. (30),

SE(t)
gz(O)aﬁoth
By inserting Egs. (29) and (36) into Eq. (32), the evolution of
the moment of inertia in short time satisfies
d?I 2471 B
Combining with the initial conditions /(0)/lp =1 and
1(0)/Iy = 0, we obtain

= 47 B(wot )°. 37)

82(0)ano(wor )*. (38)

I |:Ii -1+ (a)ot)z)} = 2rp (wot)* ™, (39)
o

T I+ )2 +a)

with fp = gz(O)aﬁohwo /Eno(0). If defining the reduced mo-
ment of inertia and energy growth as

N il 1 2
1) = fy [E = (1 + (wot) )} (40)
SE(t) = ﬂ (41)
 hawoga(0)ap,’
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we easily find a one-on-one correspondence between the en-
ergy growth and the moment of inertia,

3 A+a)2+a), &
SE(t)=4np [Tl(”} (42)
At the critical point of & = 1/2, we have
A\ 12
a(t) = Bano(wot)'? = /3<5> t'2, (43)

and the contact is linearly dependent on time, i.e., C(t) =

|A(B)|?g2(0)it /m. Then the reduced initial energy growth

takes the form of

JA(B)I* (wot)'/?
4 B '

Similarly, according to the dynamic virial theorem, the evolu-
tion of the moment of inertia satisfies

SE(t) = (44)

d’1 2
-7 =205l + — 3 AB)I*g2(0)ano(wot)' /2, (45)
which yields
. A 2 t 5/2
T = MBI @or )

St p

Then we arrive at the one-on-one correspondence between the
reduced initial energy growth and the moment of inertia,
- A(B)I3 "
SE(t) = ﬂ[&r BI)]'>. A7)
4 B
For 0 < o < 1/2, the evolution of the contact linearly in-
creases with time as well, i.e.,C(t) = |A(oo)|2g2(0)ht/m, and
is independent of the parameters « and 8. This means that the
contact is independent of how fast the scattering length varies
in time, even if the scattering length initially grows infinitely
fast as in the quench process. In this case, the corresponding
reduced energy growth becomes
SE() = -1 () 48)
= —— (o .
Bl —a)
Again the evolution of the moment of inertia is given by the
dynamic virial theorem,

d*l 5. 32Ran 1+ e
yri 21y + - mgz(o)(wof) , (49)
which yields
- 16(1 + o) —
0 (ot (50)

TAl-0)2-a)B-a)

Then we arrive at the relation

_ 16«
SE(t)) = ——
R Tr
_ _ _ (1=a)/(3—a)
X[ﬁ(l )2 —a)(3 a)i(t)} 5D
16(1 + )

Until now, we have obtained the one-on-one correspon-
dence between the instantaneous energy gain and the moment
of inertia (or cloud size). The initial energy growth as a func-
tion of the atomic cloud size is plotted in Fig. 2 for several

10 T T T T T
— - o=0.1
e 0=0.3
o=0.5
$—o=07
l=--— 0=1.0

6 _
=y
N
3% ao .
,/”’ -----------------------
ST et T e
2—/' PP SO E
Lo e
0~

0 1 " 1 " 1 " 1 "
0.00 0.02 0.04 0.06 0.08 0.10
i)

FIG. 2. The initial energy growth as a function of the atomic
cloud size during the expansion accompanied by an increasing of the
scattering length a(t)/an, = B(wot)* at different power parameters.
Here, we set 8 = 1.

typical power parameters. The energy gain resulting from
the interaction increasing can conveniently be measured in
experiments according to the measurement of the cloud size in
expansion. We find that expanding to the same size, the energy
gain of the system reaches the maximum when the scattering
length increases as ~+/f, which provides an identification of
the maximum energy growth theorem in experiments.

VII. THERMODYNAMIC RELATION

In the following, we derive an out-of-equilibrium ther-
modynamic relation for interacting quantum gases. Here, a
two-fluid hydrodynamic theory is adopted to study the dynam-
ics at nonequilibrium, which is applicable in a wide range of
temperatures. The basic idea of the two-fluid hydrodynamic
theory lies in considering the system as if it were a mixture
of two different liquids at finite temperature: A superfluid
without viscosity and a viscous normal fluid. Analogous to
those for superfluids or normal fluids, the number density of
particles satisfies the equation of continuity,

” +V.j=0, (52)
where n = n, + ny is the total number density, and j = n, v, +
ngV is the current density with the number density ny,) for
the superfluid (normal) component and the corresponding
velocity vy,. In addition, the current density j satisfies an
additional equation [55],

i, 5~ M
Jat P 0xx

n Vet oI,
— =— —, 53
+ m ox; Xk: 0xy (53)

for the ith component of j, where Vy, is the external potential,
[T is the momentum current density tensor defined as

P
1_Iik = NpUpiUnk + NsVsi Vg + n_/l(Sik’ (54)
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and p is the pressure. The viscous normal fluid introduces an
additional dissipation described by

M = _Qo'ik - 5ik<ﬁa{ + 9”2/>’ (55)

m m m

with
aUm' 3Unk 2

= — 284V - v,, 56
Oik an BXi 3 k \/ ( )
o) =V - [mng(v, — vy)l, 7
02’ =V.v,. (58)

Here, n and ¢ » are, respectively, the shear and bulk viscosi-
ties. Equations (52) and (53) forms a set of basic equations to
describe the dynamics of interacting quantum gases at finite
temperature.

At zero temperature, the system becomes a pure superfluid,
and the number density of the normal component vanishes as
well as corresponding velocities. Then, Eq. (53) becomes

d(nv;) 0 1 dp n 0Vex
—(nv; ——+ — =0, (59
Jt +;3xk(nvvk)+m8xi+m ox; (59)
which, combined with the equation of continuity, yields
0 v V Ve
TV L T, (60)
ot mn m
By using the identity of
02
V(?) =vx(VxVv)+(v-V)y, 61)

and concerning the fact that the superfluid corresponds to a
potential flow with V x v = 0, we arrive at

v v? \v VVey
— 4+ V| = +_P+_et
Jat 2 mn m

This is the well-known Euler equation for a superfluid (see,
for example, [56]). Here, all the quantities are those for the
superfluid so that the subscript s is dropped off without con-
fusion.

Above the critical temperature, the system is entirely a nor-
mal fluid and the superfluid portion vanishes. Then, Eq. (53)
becomes the Euler equation for a normal fluid in the presence
of viscosity at finite temperature [25,55], i.e.,

op 0Vext

0
_ V) | + —
|:nm o7 + nm(v )i|v + o +n o,

=0. (62)

= ai(naik + 81£207). (63)
v Ok
Consequently, we find that the two-fluid hydrodynamic theory
provides a rather general formulism to describe the dynamics
of interacting many-body systems in a wide range of tem-
peratures. Moreover, the quantum pressure comes into play
at zero temperature, which could formally be included in the
definition of pressure, i.e., p = p. + p, and p.(, stands for
the classical (quantum) pressure [57].
Now we are ready for the discussion of the evolution of
moment of inertia I(t) = (mr?) based on the two-fluid hydro-
dynamic formulism. The ith component of (r?) is defined as

(x?) = [drnx?, with i = x, y, z, which obeys

dfx?) an ,

—t= /drgxi = —/dr(V S =2/drj,-x,-. (64)

By further taking the second-order derivative with respect to
t, we have

d2 x~2 3 ',‘
v _ Z/dr—in. (65)
dt? ot
According to Eq. (53), we obtain
d?(x? OVex
<x’> = 2fdr(l'1ii +IT,) — 2fdrxi£ et (66)
dt? m 0x;

By inserting the explicit form of Hg) into the above equa-
tion and assuming that the external potential is a harmonic
trap, i.e., Vexe(r) = mw?r?/2, we arrive at

1 d2<x2) v2; v2 P
— — |4 — sy B
4 dr / r[” ) Ty T,

U 1 / /
— 7 0ii — _(4101 + ;20'2)i|

2m 2m

1
— fdr£<—mw2x?).
m\ 2

Summing the above equation over all three directions and
noticing Y, [ drno; = 0, we finally obtain

(67)

1d%1 3 3
) = Eyin — Eho + EJ ~5 / dr(glal/ + é‘zo'z/)’ (68)

where Eyiy = [ dr(n,mv? + nymv?)/2 corresponds to the to-

tal kinetic energy of the normal fluid and superfluid, Ep, =
[ drn(ma?r?/2) is the potential energy, and J = [ drpis the
integral of the local pressure over the whole space, namely,
the thermodynamic potential. Equation (68) simply reduces
to that for a normal fluid with {; = 0 above the critical tem-
perature [25].

Combining Eq. (68) and the dynamic virial theorem, we
find the following simple relation for interacting quantum
gases:

2 h?
j = _Einternal(t) + 1 C(t) + F([), (69)

3 2w ma(t)
where we have defined the internal energy Einterna = E(¢) —
Eyin(t) — Eno(t) and the dissipation energy resulting from
viscosities, I'(t) = fdr(;“laf + &20%). This relation holds for
both the normal fluid and superfluid as well as their mixtures,
and thus is valid in a wide range of temperatures. Equa-
tion (69) is a kind of the out-of-equilibrium analog of Tan’s
pressure relation since it simply reduces to the well-known
form for uniform gases at equilibrium [16], i.e.,

2 T
P = _ginternal +

_— 70
3 12mrma (70)

with the internal energy density Einernal, the contact density
Z =C/V, and the volume V.
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VIII. CONCLUSIONS

It is shown that a variety of out-of-equilibrium dynamics
of interacting many-body systems is elegantly governed by
the dynamic virial theorem. Its applications in several typical
nonequilibrium dynamic processes of cold atoms are pre-
sented, in which observable consequences in experiments are
discussed. Remarkably, the dynamic virial theorem provides
an experimentally accessible way to verify the maximum
energy growth theorem according to the measurement of
the atomic cloud size in expansion. In addition, the dy-
namic virial theorem gives rise to a simple thermodynamic
relation, the analog of Tan’s pressure relation at equilib-
rium, for interacting many-body systems in the framework
of two-fluid hydrodynamic theory. This thermodynamic re-
lation holds in a wide range of temperatures. Our results

provide a fundamental understanding of the generic behav-
iors of interacting many-body systems at nonequilibrium and
are readily examined in future experiments with ultracold
atoms.
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