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Dynamic structure factor of one-dimensional Fermi superfluid with spin-orbit coupling
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We theoretically calculate the density dynamic structure factor of one-dimensional Fermi superfluid with
Raman-type spin-orbit coupling, and analyze its main dynamical character during phase transition between
Bardeen-Cooper-Schrieffer superfluid and topological superfluid. Our theoretical results display four kinds of
single-particle excitations induced by the two-branch structure of the single-particle spectrum, and the cross
single-particle excitation is much easier to see in the spin dynamic structure factor at a small transferred
momentum. Also we find a new rotonlike collective mode emerges at a fixed transferred momentum q � 2kF ,
and it only appears once the system enters the topological superfluid state. The occurrence of this rotonlike
excitation is related to the switch of the global minimum in the single-particle spectrum from k = 0 to k � 2kF .
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I. INTRODUCTION

Since the experimental realization of the spin-orbit cou-
pling (SOC) effect in ultracold atomic gases [1–3], it has
been possible to investigate many interesting and exotic matter
states, such as the stripe phase [4], the topological state [5],
etc., in this highly controllable system. To study properties of
these many-body matter states, lots of scattering techniques
based on the interplay between atoms and light play signifi-
cant roles in enriching knowledge about them. For example,
radio frequency can often be used to study the single-particle
spectral function [6], while the two-photon Bragg scattering
technique is utilized to study both single-particle excitations
and rich collective ones [7,8].

As a many-body physical quantity, the dynamic structure
factor is related to the imaginary part of the response func-
tion after Fourier transformation [9]. The definition of the
dynamic structure factor is related closely to a certain physical
operator, which is applied to perturb the system. Usually we
focus our discussion on density operators of two spin compo-
nents, which at the same time can impart a set of momentum
and energy to the system to induce a density response. This
density-related dynamic structure factor provides rich infor-
mation about the dynamics of the system. At a small trans-
ferred momentum, the signal of the dynamic structure factor
is dominated by all possible collective excitations, such as
Goldstone phonon excitation [8], second sound [10], Leggett
excitation [11–13], and possible Higgs excitation [14,15]. At
a large transferred momentum, the dynamic structure factor
is mainly influenced by the single-particle excitation [16],
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which is determined by the many-body single-particle spec-
trum. Collecting all possible dynamical excitations displayed
by dynamic structure factor, we can effectively understand
dynamical properties related to a certain many-body matter
state of the system. Usually the experimental measurement of
many-body physical quantities is a challenging work. How-
ever, it is know that the density dynamic structure factor is
proportional to the value of center-of-mass velocity of the sys-
tem [17], which makes it feasible to measure density structure
factor by a two-photon Bragg scattering experiment.

In this paper, we theoretically investigate one-dimensional
(1D) Fermi superfluid with Raman-type SOC effect. The sys-
tem can be realized by confining the motion of the system
in the other two dimensions with the optical lattice tech-
nique. The physics we find in this paper is also expected
to be valid in other systems, such as the nanowire setting
in condensed matter physics [18]. This system has been
found to experience a phase transition from a conventional
Bardeen-Cooper-Schrieffer (BCS) superfluid to an interesting
topological superfluid by continuously increasing an effective
Zeeman field [5,19,20]. When the system comes into this
topological superfluid, an impurity, a boundary or a topologi-
cal defect can generate local Majorana fermions accompanied
by a zero eigenenergy [21–23]. Since there is no symmetry
breaking during phase transition, experimentally it is a great
challenge to distinguish these two matter states. In this paper,
we theoretically calculate the density dynamic structure fac-
tor of a 1D Raman–SOC Fermi superfluid with the random
phase approximation [24], and analyze its main dynamical
characteristics in both BCS and topological superfluids, which
is expected to provide some dynamical information to under-
stand and distinguish these two states.

This paper is organized as follows. In the next section, we
will use the language of Green’ s function to introduce the
microscopic model of a 1D Fermi superfluid with the Raman
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SOC effect, outline the mean-field approximation, and show
how to calculate the response function with the random phase
approximation. We give results of the dynamic structure factor
of both BCS and topological superfluids in Sec. III. In Sec. IV
we give our conclusions. Some calculation details will be
given in the Appendix.

II. METHODS

A. Model and Hamiltonian

For a two-spin-component 1D Raman–SOC Fermi su-
perfluid with s-wave contact interaction, the system can be
described by a model Hamiltonian,

H =
∑

σ

∫
dx ψ†

σ (x)

[
− 1

2m

∂2

∂x2
− μ

]
ψσ (x)

− h
∫

dx[ψ†
↑(x)ei2kRxψ↓(x) + H.c.]

+ g1D

∫
dx ψ

†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x), (1)

where ψσ (ψ†
σ ) is the annihilation (generation) operator of real

particles with mass m for thespin-σ component and chemical
potential μ. A dimensionless parameter γ = −mg1D/n0 is
usually used to describe the strength of an attractive interac-
tion g1D of a uniform system at a bulk density n0, by which
we can define the Fermi wave vector kF = πn0/2 and Fermi
energy EF = k2

F /2m. h comes from the Rabi frequency of
SOC interaction and is often defined as an effective Zeeman
field, and kR is the recoil momentum of the SOC laser beam,
both of which come from the SOC effect. Here and in the fol-
lowing, we have set h̄ = kB = 1 for simplicity. In many related
references about the SOC effect, a further unitary transfor-
mation is carried out on the above Hamiltonian [21], which
results in a term k̂ · σ that will appear in the single-particle
Hamiltonian (σ is Pauli matrix), and the same operation also
changes the physical meaning of spin index. So here we do not
carry out this transformation to keep the original definition of
spin index.

A standard mean-field treatment is done to the interaction
Hamiltonian Hint = g1D

∫
dx ψ

†
↑ψ

†
↓ψ↓ψ↑ with the usual def-

inition of order parameter � = −g1D〈ψ↓ψ↑〉. After Fourier
transformation to the mean-field Hamiltonian, we can obtain
its expression in the momentum representation, which reads

Hmf =
∑
kσ

ξkc†
kσ

ckσ − h
(
c†

k+kR↑ck−kR↓ + H.c.
)

−
∑

k

[�c†
k↑c†

−k↓ + �∗c−k↓ck↑] (2)

with ξk = k2/2m − μ. Usually the order parameter � is a
complex number. However U(1) symmetry is broken in the
ground state of the system, and the phase of � is randomly
chosen as a constant number. Here we can just take this phase
to be zero, and set � = �∗.

The exact diagonalization of mean-field Hamiltonian Hmf

is a feasible but tedious task because of the long ex-
pression of each eigenvector. Luckily this problem can
be solved by the motion equation of Green’s function

ω〈〈c1|c2〉〉 = 〈[c1, c2]+〉 + 〈〈[c1, Hmf ]|c2〉〉, where c1 and c2

are any possible fermionic operators of the system, and
the double-bracket notation 〈〈c1|c2〉〉 is the correspond-
ing momentum-energy Fourier transformation of space-time
Green’s function −〈T ψ1(r1, τ )ψ2(r2, 0)〉. Finally we find that
the system has six independent Green’s functions, which are

G1(k, ω) ≡ 〈〈
ck+kR↑

∣∣c†
k+kR↑

〉〉=∑
l

[G1]l
k/

(
ω − El

k

)
,

G2(k, ω) ≡ 〈〈
ck−kR↓

∣∣c†
k−kR↓

〉〉 =
∑

l

[G2]l
k/

(
ω − El

k

)
,

�(k, ω) ≡ 〈〈
ck+kR↑

∣∣c−k−kR↓
〉〉 =

∑
l

[�]l
k/

(
ω − El

k

)
,

S(k, ω) ≡ 〈〈
ck−kR↓

∣∣c†
k+kR↑

〉〉 =
∑

l

[S]l
k/

(
ω − El

k

)
,

F1(k, ω) ≡ 〈〈
ck+kR↑

∣∣c−k+kR↑
〉〉=∑

l

[F1]l
k/

(
ω − El

k

)
,

F2(k, ω) ≡ 〈〈
ck−kR↓

∣∣c−k−kR↓
〉〉 =

∑
l

[F2]l
k/

(
ω − El

k

)
, (3)

where l = ±1,±2 denotes respectively all four quasi-particle
energy spectra E (+1)

k = −E (−1)
k = Uk and E (+2)

k = −E (−2)
k =

Dk . Symbols Uk and Dk are the up and down-branch quasipar-
ticle spectra, respectively,

Uk =
√

E2
k + h2 + k2λ2 + 2

√
E2

k h2 + ξ̃ 2
k k2λ2, (4)

Dk =
√

E2
k + h2 + k2λ2 − 2

√
E2

k h2 + ξ̃ 2
k k2λ2, (5)

with ξ̃k = ξk + ER, λ = kR/m, ER = k2
R/2m, and Ek =√

ξ̃ 2
k + �2. These single-particle spectra greatly influence the

static and dynamical properties of the ground state. All ex-
pressions of [G1]l

k , [G2]l
k , [�]l

k , [S]l
k , [F1]l

k , and [F2]l
k will be

listed in the Appendix. Based on the fluctuation and dissipa-
tion theorem, it is easy to get the relation between all physical
quantities and corresponding Green’s functions. For example,
we obtain equations of density

n1 =
∑

k

〈c†
k↑ck↑〉 = − 1

π

∑
k

∫
dω

Im[G1(k, ω)]

eω/T + 1
, (6)

n2 =
∑

k

〈c†
k↓ck↓〉 = − 1

π

∑
k

∫
dω

Im[G2(k, ω)]

eω/T + 1
, (7)

and order parameter

�

g1D
= −

∑
k

〈c−k↓ck↑〉 = 1

π

∑
k

∫
dω

Im[�(k, ω)]

eω/T + 1
, (8)

with Green’s functions G1, G2, and � in Eq. (3) at temperature
T . By self-consistently solving the above density and order
parameter equations, the value of chemical potential μ and
order parameter � can be numerically calculated.

In the following, we take an interaction strength γ = π

and a typical experimental value of kR = 0.75kF . As shown
in Fig. 1, the system experiences a phase transition from
BCS superfluid to topological superfluid when increasing con-
tinuously the effective Zeeman field h over a critical value
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FIG. 1. The distribution of free energy in panel (a), Ecr = |h −√
(μ − ER )2 + �2| in panel (b), and chemical potential (blue solid

line) and order parameter (olive dashed line) at different effective
Zeeman fields h during the phase transition between BCS superfluid
(red solid line) and topological superfluid (black solid line). A gray
dotted line marks the location of critical value of effective Zeeman
magnetic field hc = 1.135EF at γ = π and kR = 0.75kF .

hc = 1.135EF , at which the free energies of two states are
equal [see panel (a)]. This is a first-order phase transition,
during which these two states compete with each other and
make chemical potential μ and order parameter � experience
a discontinuous variation at hc [see panel (c)]. It should be
noticed that the critical Zeeman field hc here is larger than the
another critical value of Zeeman field h at which the topologi-
cal superfluid just turn out and Ecr = |h −

√
(μ − ER)2 + �2|

just touches zero [see panel (b)].
The physical origin of this phase transition can also be

understood from the geometrical structure of the down-branch
single-particle spectrum Dk . As shown in Fig. 2, the global
minimum of Dk experiences a switch from k = 0 (red dotted
line) to a nonzero k (black solid line), when continuously in-

FIG. 2. The distribution of down-branch single-particle spectrum
Dk at γ = π and kR = 0.75kF .

creasing Zeeman field h. At the critical point (hc = 1.135EF ),
there are two options of the matter state for atoms to stay in
the momentum space, in which the value of chemical potential
[panel (c) of Fig. 1] can push all atoms to stay in the regime
around k = 0, or both k = 0 and nonzero k minimum. The
competition between these two situations generates both BCS
and topological superfluid with the same free energy, and
finally makes the system undergo this phase transition.

Next we will discuss the dynamical properties of the sys-
tem and numerical methods to calculate them.

B. Response function and random phase approximation

In the Fermi superfluid, there are four different densities,
which are denoted respectively by n1 = ∑

k〈c†
k↑ck↑〉, n2 =∑

k〈c†
−k↓c−k↓〉, n3 = ∑

k〈c−k↓ck↑〉, and n4 = ∑
k〈c†

k↑c†
−k↓〉.

n1 and n2 are the normal spin-up and spin-down densities,
while n3 and n4 are anomalous densities (or superfluid cor-
relation) [25]. Due to the interaction between particles, these
densities are closely coupled with each other. Any fluctuation
in each kind of density will make the other densities generate
an obvious density fluctuation in them. This physics plays a
significant role in the dynamical excitation of the system, and
also demonstrates the importance and necessity of the term in
the Hamiltonian beyond mean-field theory. The random phase
approximation has been verified to be a good method to treat
the fluctuation term of the Hamiltonian [24]. Comparing with
experiments, it can even obtain some quantitatively reliable
predictions in three-dimensional Fermi superfluid [26,27].
Its prediction also qualitatively agrees with quantum Monte
Carlo data in a two-dimensional Fermi system [15]. Here
we also use the same method to carry out a calculation to
qualitatively study the dynamical excitation of 1D SOC Fermi
superfluid. Its main idea is introduced in the following.

Following the standard linear response theorem, a weak
external density perturbation potential Vext = [V1,V2,V3,V4],
which carries a specific momentum q, is exerted on the Fermi
superfluid. The corresponding perturbation Hamiltonian is de-
scribed by Hext = ∑

kq 

†
k+q(V1σ1 + V2σ2 + V3σ3 + V4σ4)
k .

Here 
k = [ck↑, c†
−k↓]T is the field operator matrix in the

momentum representation. Four matrices σ1 = (I + σz )/2,
σ2 = (I − σz )/2, σ3 = (σx − iσy)/2, and σ4 = (σx + iσy)/2
are defined with Pauli matrices σx,y,z and unit matrix I . This
perturbation Hamiltonian Hext will induce a density fluctua-
tion of all densities, labeled by a matrix

ρq =
∑

k

⎡⎢⎢⎢⎣
n1

kq

n2
kq

n3
kq

n4
kq

⎤⎥⎥⎥⎦ =
∑

k

⎡⎢⎢⎢⎢⎣



†
k σ1
k+q



†
k σ2
k+q



†
k σ3
k+q



†
k σ4
k+q

⎤⎥⎥⎥⎥⎦. (9)

These density fluctuations in reverse play a non-negligible
role in generating a fluctuation Hamiltonian Hsc = ∑

q ρ†
q Aq,

which is usually called the self-consistent dynamical potential
[28]. Here

Aq =

⎡⎢⎢⎢⎣
n2

q

n1
q

n3
q

n4
q

⎤⎥⎥⎥⎦ = g1D

∑
k

⎡⎢⎢⎢⎣
n2

kq

n1
kq

n3
kq

n4
kq

⎤⎥⎥⎥⎦
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is the strength of the fluctuation potential. Different from the
two- or three-dimension case, the contribution from n3

q and n4
q

is not divergent and there is no need to carry on renormaliza-
tion to one-dimensional interaction strength g1D [15,26].

In a weak perturbation situation, the amplitude of density
fluctuation ρq is proportional to the external potential Vext, and
they are connected to each other by

ρq = χVext, (10)

where χ is the response function of the system and includes
rich information about the dynamical excitation, however, this
calculation is usually quite hard tocarry out. As discussed
above, a feasible way to figure out this problem is to use the
random phase approximation, which collects effects of both
Vext and Vsf = MI Aq to define an effective external potential

Veff = Vext + Vsf . (11)

Then the motion of real gases in external potential Vext is
equivalent to the motion of mean-field gases in this effective
potential Veff . So the density fluctuation is connected to this
effective potential Veff by

ρq = χ0Veff , (12)

where χ0 is the response function in the mean-field approx-
imation, whose calculation is relatively much easier. Finally,
with Eqs. (9)–(12), we find χ and χ0 are related to each other
by the equation

χ = χ0

1 − χ0MI g1D
, (13)

where

MI =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦
is a constant matrix reflecting the coupling situation of four
different densities.

Next we discuss the derivation of the mean-field response
function χ0, which is a 4 × 4 matrix:

χ0 =

⎡⎢⎢⎢⎣
χ0

11 χ0
12 χ0

13 χ0
14

χ0
21 χ0

22 χ0
23 χ0

24

χ0
31 χ0

32 χ0
33 χ0

34

χ0
41 χ0

42 χ0
43 χ0

44

⎤⎥⎥⎥⎦. (14)

Here any matrix element χ0
i j (x1, x2, τ, 0) ≡

−〈n̂i(x1, τ )n̂ j (x2, 0)〉. In the uniform system, all response
function should only be a function of relative coordinate
x = x1 − x2 and imaginary time τ . So a generalized
coordinate R = (x, τ ) is used to continue the discussion.
Based on Wick’s theorem, we should consider all possible
two-operator contraction terms, which are all related to the six
independent Green’s functions (3). We find that the mean-field
response function can be displayed by χ0 = A + B, in which
A is the mean-field response function connecting to Green’s
functions G1, G2, and �, while B connects the SOC Green’s
functions S, F1, and F2. For example, in the spatial and time
representation,

χ0
11(R) ≡ −〈n̂1(x1, τ )n̂1(x2, 0)〉 = A11(R) + B11(R),

where A11(R) = G1(−R)G1(R) and B11(R) = F †
1 (−R)F1(R).

In the ground state (� = �∗), we find F †
1 = F1. After Fourier

transformation to Green’s functions and with identical re-
lation 1

β

∑
ipn

1
ipn−ε

× 1
ipn+iqn−ε′ = f (ε)− f (ε′ )

iqn+ε−ε′ (ipn and iqn are
Matsubara frequencies, and f (x) is the Fermi distribution
function), we obtain the expression of all matrix elements in
the momentum-energy representation

χ0(q, ω) = A(q, ω) + B(q, ω), (15)

where

A =

⎡⎢⎢⎣
A11, A12, A13, A14

A12, A22, A23, A24

A14, A24, −A12, A34

A13, A23, A43, −A12

⎤⎥⎥⎦
has nine independent matrix elements and

B =

⎡⎢⎢⎣
B11, B12, B13, B14

B12, B22, B23, B24

B14, B24, B33, B34

B13, B23, B43, B33

⎤⎥⎥⎦
has ten independent matrix elements. All expressions of these
matrix elements are listed in the Appendix.

C. Dynamic structure factor

With Eqs. (13) and (15), we get expressions of both the
density and spin response functions, which are expressed by

χn ≡ χ11 + χ22 + χ12 + χ21,
(16)

χs ≡ χ11 + χ22 − χ12 − χ21.

And the density dynamic structure factor Sn(q, ω) and the spin
one Ss(q, ω) are connected with the corresponding response
function by

Sn/s = − 1

π

1

1 − e−ω/T
Im[χn/s], (17)

where q and ω are the transferred momentum and energy,
respectively. The sum rules of these two dynamic structure
factors were introduced in the Ref. [29].

III. RESULTS

In the following discussions, we still focus on the inter-
action strength γ = π and also the recoil momentum kR =
0.75kF at zero temperature. These parameters are the same as
the ones in Fig. 1. We numerically calculate the density and
spin dynamic structure factor, which are shown in Figs. 3 and
4, respectively, in the phase transition between BCS superfluid
(upper two panels) and topological superfluid (lower two pan-
els). Generally we investigate a full dynamical excitation in
different transferred momenta q, including the low energy (or
momentum) collective excitation to the high energy (or mo-
mentum) single-particle excitation. Of course, the presence of
SOC effect goes on enriching dynamical behaviors compared
to those in conventional Fermi superfluid.

A. Collective phonon and rotonlike excitations

At a low transferred energy ω, it is easy to investigate the
collective excitation. By continuously increasing transferred
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FIG. 3. The density dynamic structure factor Sn(q, ω) of the SOC
Fermi superfluid at different Zeeman fields h = 0.9EF , hc, 1.3EF .
Panels (a) and (b) shows results in BCS superfluid, while panels
(c) and (d) show results in topological superfluid.

momentum q from zero, we initially see a gapless phonon
excitation in the density dynamic structure factor Sn(q, ω),
which is shown by the lower red curve in all four panels of
Fig. 3. When the system is in the BCS superfluid (h � hc, up-
per two panels), the spectrum of collective phonon excitation
just monotonically rises with transferred momentum q, and
finally merges into the single-particle excitation continuum
at a certain large enough q. In the whole BCS regime, the
phonon velocity almost does not vary much with the effective
Zeeman field h, except in a narrow regime close to transition
where BCS superfluid becomes a metastable state and the
velocity suddenly drops (red solid and dotted lines of Fig. 5).
Of course, the gapless phonon excitation can also be seen in
the topological superfluid (black solid and dot line of Fig. 5),
and its velocity monotonically increases with Zeeman field

FIG. 4. The spin dynamic structure factor Ss(q, ω) of the SOC
Fermi superfluid at different Zeeman fields h = 0.9EF , hc, 1.3EF .
The arrangement of parameters in these four panels is the same as
that in Fig. 3.

FIG. 5. The sound velocity c at different effective Zeeman fields h.

h and finally saturates to a constant value. In the critical
regime h = hc, the BCS and topological states have the same
Free energy. Although we calculate respectively their dynamic
structure factor, the phonon excitation of one state may be
potentially influenced by the other, and turns out to be a
complex excitation behavior (see Fig. 3 and 4).

Besides the phonon collective excitation, we investigate a
new collective rotonlike excitation only appearing in the topo-
logical superfluid. As shown in the lower two panels of both
Figs. 3 and 4, this rotonlike excitation is a natural extension
of the phonon mode, and it is denoted by a local minimum of
the excitation spectrum at a fixed momentum q � 2kF , which
is just the global minimum of the down-branch spectrum Dk

(see the red line of Fig. 2). There is no rotonlike excitation in
the BCS superfluid, where q � 2kF is just a local minimum
and the global minimum is located at q = 0. These results tell
us that the emergence of rotonlike excitation is closely related
to the formation of the global minimum at q � 2kF , which is
just the character of spectrum Dk in topological superfluid.
All discussions above hint that the specific single-particle
effect brought about by the SOC effect plays an important
role in the appearance of the rotonlike excitation at a certain
interaction strength. In general, we have also checked that the
same rotonlike mode can be seen in other different interaction
strengths (for example γ = 2.5, 4.0) and recoil momentum
kR, and the location of the rotonlike excitation is always fixed
at q � 2kF .

The dynamical behavior of collective mode can be dis-
played by both the density and spin dynamic structure factor.
However a different excitation related to single-particle exci-
tation happens at a relatively large transferred energy ω when
q is small, whose physical origin will be introduced in the
following.

B. Threshold of single-particle excitation spectrum

When the transferred energy ω is large enough, a pair
breaking of Cooper pairs will occur and separate pairs into
free Fermi atoms. Indeed a great part of the dynamical ex-
citation in Figs. 3 and 4 is dominated by this pair-breaking
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FIG. 6. Four kinds of single-particle excitation spectra. Olive
line: Dk ↔ Dk+q. Red line: Dk ↔ Uk+q and Uk ↔ Dk+q. Blue line:
Uk ↔ Uk+q. The arrangement of parameters in these four panels is
the same as that in Fig. 3.

effect. In the density dynamic structure factor Sn, this ef-
fect usually is very obvious in a relatively large transferred
momentum q > kF , where the collective excitations are very
suppressed. Differently from the conventional Fermi super-
fluid, this single-particle excitation takes up a large regime in
the spin dynamic structure factor Ss, even for a small or zero
transferred momentum q. Before understanding this single-
particle excitation, it is necessary to study the threshold energy
to break a Cooper pair.

This pair-breaking excitation is related to the two-branch
structure of quasiparticle spectra Uk and Dk , and the two
atoms forming a Cooper-pair can come from the same or
different single-particle spectra. This two-branch structure of
the spectrum generates much richer single-particle excitation
than the conventional Fermi superfluid, and induces four pos-
sible combinations of Fermi atoms in a Cooper pair, namely
the DD, DU , UD, and UU types. The minimum energy at
a certain momentum q to break a pair should be min[Dk +
Dk+q], min[Dk + Uk+q], min[Uk + Dk+q], or min[Uk + Uk+q].
Also due to the three-potential-well geometry of down-branch
spectrum Dk , there are not only the global minimum en-
ergy but also many possible local minima to break a Cooper
pair in single-particle excitations. These results are shown in
Fig. 6. The lowest olive line denotes the DD excitation, and
its minimum value of pair-breaking excitation is from the
down-branch quasiparticle spectrum (min[Dk + Dk+q]). Be-
sides the global minimum, it also has two or even three local
minima at some specific transferred momentum q, displayed
by olive dotted lines. In other regimes of q, these local minima
will disappear since the geometry of the spectrum has been
changed. From the BCS superfluid (h = 0.9EF ) to the topo-
logical superfluid (h = 1.3EF ), the value of order parameter �

monotonically decreases with effective Zeeman field h [shown
by panel (b) of Fig. 1. This behavior makes the pair-breaking
excitation much easier at large h, and generally makes the
olive line become lower and lower.

The red line denotes DU and UD excitations, which are
overlapped with each other. The two atoms in a pair comes

FIG. 7. The density (gray) and spin (magenta) dynamical struc-
ture factor of 1D SOC Fermi superfluid at transferred momentum
q = 4kF . The arrangement of parameters in these four panels is the
same as that in Fig. 3.

from different branches of the spectrum. They start from
min[Dk + Uk+q], whose energy is higher than the DD one.
Similar to DD excitation, there are some possible local min-
ima in these cross excitations. It should be emphasized that
this DU single-particle excitation at a small q displays a much
stronger excitation strength in the spin dynamic structure fac-
tor than the one in the density dynamic structure factor (see
Fig. 4), which also reflects the coupling between different spin
components.

Starting from min[Uk + Uk+q], the blue line is the UU
excitation, which requires the largest excitation energy. This
excitation has less density of state in the small q regime in
the BCS superfluid, while the topological state enhances its
density of state and displays a relatively stronger signal.

All of these kinds of critical single-particle excitations are
located in the colorful edge curves of Figs. 3 and 4, and mark
the regime of single-particle excitation. To better understand
the dynamical excitation in these colorful panels, we will
discuss the dynamic structure factor at a selected transferred
momentum q.

C. Dynamic excitation at a constant momentum q

For a relatively large transferred momentum q � kF , the
dynamic structure factor will be dominated by the single-
particle excitation. As shown in Fig. 7, we investigate the
density and spin dynamic structure factor at q = 4kF in both
BCS and topological superfluids. In all four panels, we can see
two obvious single-particle excitations (DD and DU type) and
a sharp collective phonon excitation. The locations of thresh-
old energy for two single-particle excitations are respectively
labeled by the olive and red dash-dot arrows. Here the phonon
excitation has already been mixed with the DD single-particle
excitation, which results in a nonzero expansion width of the
peak of collective mode. Its location is between the olive and
red arrows, after which more and more single-particle excita-
tions result. There is no obvious UU excitation signal here,
which is drowned into the background of other single-particle
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FIG. 8. The density (gray) and spin (magenta) dynamical struc-
ture factor of 1D SOC Fermi superfluid at transferred momentum
q = 2kF . The arrangement of parameters in these four panels is the
same as that in Fig. 3.

excitations. At q = 4kF , it is easy to see that the topolog-
ical superfluid displays a relatively stronger DD excitation
q = 4kF than the one in the BCS state.

When taking transferred momentum q = 2kF , the compe-
tition between collective mode and single-particle mode is
very intense. We see a much richer dynamical excitation. As
shown in Fig. 8, both Sn and Ss present two sharp deltalike
peaks and all three kinds of single-particle excitation, the
threshold locations of which are still respectively labeled by
olive, red, and blue arrows. At q = 2kF , the left sharp peak
in four panels locates on the left side of green arrows (DD
type excitation). In fact it is a natural extension of the col-
lective phonon excitation, which is close to merging into the
single-particle excitation continuum. The peak in topological
superfluid (lower two panels) happens at a relatively low exci-
tation energy since the system generates a rotonlike collective
excitation, which has been discussed above. Regarding the
right sharp peak, it locates at the higher red “eyebrow” po-
sition in Fig. 3; its physical origin is still an open question,
and we argue that it may be the possible collective Higgs
oscillation, which has totally merged into the single-particle
excitation [30].

For a much smaller transferred momentum q = 1kF , the
competition of all dynamical excitations displayed by two dy-
namic structure factors becomes much more intense, and the
energy differences among all possible excitations are not far
away from each other. The results for both BCS and topologi-
cal states are shown in Fig. 9. When h = 0.9EF (BCS), we see
one clear phonon excitation around ω � 1.2EF , and all three
other kinds of single-particle excitations to the right, whose
initial excitation energies are marked by arrows. In this case,
DU type excitation has two threshold energies. While the left
red arrow is from the global minimum of excitation energy,
min[Dk + Uk+q], the right one comes from its local minimum.
Similar physics is also found for h = hc (BCS side). However
a high peak (ω � 2.3EF ) rises after the olive arrows. When the
system comes into the topological regime (h = 1.3EF ), this
unknown peak (ω � 1.9EF ) will present a deltalike excitation

FIG. 9. The density (blue) and spin (red) dynamical structure
factor of 1D SOC Fermi superfluid at transferred momentum q =
1kF . The arrangement of parameters in these four panels is the same
as that in Fig. 3.

in a certain narrow energy regime (see also the lower right
panel of Fig. 3). It seems that this unknown peak is different
from the unknown one discussed above. Maybe it is generated
by the competition of two collective modes in two different
states, and we argue it is the redundancy of collective modes in
the metastable state. Regarding the single-particle excitation,
three minima of DD type have also been obtained in this case,
and their positions are located by three olive arrows, each of
which will induce the regular oscillation of the curve of the
dynamic structure factor.

IV. CONCLUSIONS AND OUTLOOK

In summary, we numerically calculate the density and spin
dynamic structure factor of 1D Raman–SOC Fermi superfluid
with the random phase approximation during the phase transi-
tion between BCS and topological superfluid. The dynamic
structure factor presents rich single-particle excitations and
collective mode. Due to the two-branch structure of the single-
particle spectrum, there are three kinds of single-particle
excitation, namely DD, DU (UD), and UU excitation. We
also calculate their own threshold energies to break a Cooper
pair. Among these single-particle excitations, the DU one
takes a great part only in the spin dynamic structure factor at a
small transferred momentum, which comes from the coupling
effect between spin and orbital motion. Regarding collective
excitation, there is an interesting rotonlike collective excita-
tion at k � 2kF when the system comes into the topological
state. The generation of this rotonlike excitation is due to the
switch of the global minimum of the single-particle spectrum
Dk from k = 0 to k � 2kF . Similar physics has also been
found in other different interaction strengths γ and recoil
momenta kR. Also these are some unknown quasi-delta-like
excitations when q is between kF and 2kF , whose phyiscal
origin is worth explaining in our future research. Also it will
be interesting to investigate the Majorana mode in the future
in a system with a hard-wall boundary condition or a system
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with a soliton, which is absent in the system we consider in
this paper.
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APPENDIX

In this Appendix, we will list expressions of six inde-
pendent Green’ functions and mean-field response functions
χ0 = A + B:

G1(k, ω) = ∑
l [G1]l

k/(ω − El
k ), with

[G1]1
k = +U 2

k − ξ 2
− − h2 − �2

2
(
U 2

k − D2
k

)
+ ξ+U 2

k − ξ+ξ 2
− + ξ−h2 − ξ+�2

2Uk
(
U 2

k − D2
k

) ,

[G1]2
k = +U 2

k − ξ 2
− − h2 − �2

2
(
U 2

k − D2
k

)
− ξ+U 2

k − ξ+ξ 2
− + ξ−h2 − ξ+�2

2Uk
(
U 2

k − D2
k

) ,

[G1]3
k = −D2

k − ξ 2
− − h2 − �2

2
(
U 2

k − D2
k

)
− ξ+D2

k − ξ+ξ 2
− + ξ−h2 − ξ+�2

2Dk
(
U 2

k − D2
k

) ,

[G1]4
k = −D2

k − ξ 2
− − h2 − �2

2
(
U 2

k − D2
k

)
+ ξ+D2

k − ξ+ξ 2
− + ξ−h2 − ξ+�2

2Dk
(
U 2

k − D2
k

) ,

where ξ± = (k ± kR)2/2m − μ. G2(k, ω) = ∑
l [G2]l

k/(ω −
El

k ), with

[G2]1
k = +U 2

k − ξ 2
+ − h2 − �2

2
(
U 2

k − D2
k

)
+ ξ−U 2

k − ξ−ξ 2
+ + ξ+h2 − ξ−�2

2Uk
(
U 2

k − D2
k

) ,

[G2]2
k = +U 2

k − ξ 2
+ − h2 − �2

2
(
U 2

k − D2
k

)
− ξ−U 2

k − ξ−ξ 2
+ + ξ+h2 − ξ−�2

2Uk
(
U 2

k − D2
k

) ,

[G2]3
k = −D2

k − ξ 2
+ − h2 − �2

2
(
U 2

k − D2
k

)
− ξ−D2

k − ξ−ξ 2
+ + ξ+h2 − ξ−�2

2Dk
(
U 2

k − D2
k

) ,

[G2]4
k = −D2

k − ξ 2
+ − h2 − �2

2
(
U 2

k − D2
k

)
+ ξ−D2

k − ξ−ξ 2
+ + ξ+h2 − ξ−�2

2Dk
(
U 2

k − D2
k

) .

�(k, ω) = ∑
l [�]l

k/(ω − El
k ), with

[�]1
k = −[�]2

k = −�
[
U 2

k − (ξ 2
− − h2 + �2)

]
2Uk

(
U 2

k − D2
k

) ,

[�]3
k = −[�]4

k = +�
[
D2

k − (ξ 2
− − h2 + �2)

]
2Dk

(
U 2

k − D2
k

) .

S(k, ω) = ∑
l [S]l

k/(ω − El
k ), with

[S]1
k = h

[
− ξ+ + ξ−

2
(
U 2

k − D2
k

) − U 2
k + ξ+ξ− − h2 + �2

2Uk
(
U 2

k − D2
k

) ]
,

[S]2
k = h

[
− ξ+ + ξ−

2
(
U 2

k − D2
k

) + U 2
k + ξ+ξ− − h2 + �2

2Uk
(
U 2

k − D2
k

) ]
,

[S]3
k = h

[
+ ξ+ + ξ−

2
(
U 2

k − D2
k

) + D2
k + ξ+ξ− − h2 + �2

2Dk
(
U 2

k − D2
k

) ]
,

[S]4
k = h

[
+ ξ+ + ξ−

2
(
U 2

k − D2
k

) − D2
k + ξ+ξ− − h2 + �2

2Dk
(
U 2

k − D2
k

) ]
.

F1(k, ω) = ∑
l [F1]l

k/(ω − El
k ), with

[F1]1
k = −�h(2Uk + ξ+ − ξ−)

2Uk
(
U 2

k − D2
k

) ,

[F1]2
k = −�h(2Uk − ξ+ + ξ−)

2Uk
(
U 2

k − D2
k

) ,

[F1]3
k = +�h(2Dk + ξ+ − ξ−)

2Dk
(
U 2

k − D2
k

) ,

[F1]4
k = +�h(2Dk − ξ+ + ξ−)

2Dk
(
U 2

k − D2
k

) .

F2(k, ω) = ∑
l [F2]l

k/(ω − El
k ), with

[F2]1
k = +�h(2Uk − ξ+ + ξ−)

2Uk
(
U 2

k − D2
k

) ,

[F2]2
k = +�h(2Uk + ξ+ − ξ−)

2Uk
(
U 2

k − D2
k

) ,

[F2]3
k = −�h(2Dk − ξ+ + ξ−)

2Dk
(
U 2

k − D2
k

) ,

[F2]4
k = −�h(2Dk + ξ+ − ξ−)

2Dk
(
U 2

k − D2
k

) .
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The expressions of all nine independent matrix elements in
mean-field response function A are

A11 = +
∑
pll ′

[G1]l
p[G1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A12 = −
∑
pll ′

[�]l
p[�]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A13 = +
∑
pll ′

[G1]l
p[�]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A14 = +
∑
pll ′

[�]l
p[G1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A22 = +
∑
pll ′

[G2]l
p[G2]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A23 = −
∑
pll ′

[�]l
p[G1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A24 = −
∑
pll ′

[G1]−l
p [�]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A34 = +
∑
pll ′

[G2]−l
p [G2]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A43 = +
∑
pll ′

[G1]l
p[G1]−l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

where f (x) = 1/(ex/kBT + 1) is the Fermi-Dirac distribution
function. The expressions of ten independent matrix elements

in mean-field response function B are

B11 = −
∑
pll ′

[F1]l
p[F1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B12 = +
∑
pll ′

[S]l
p[S]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B13 = −
∑
pll ′

[S]l
p[F1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B14 = −
∑
pll ′

[F1]l
p[S]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B22 = −
∑
pll ′

[F2]l
p[F2]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B23 = +
∑
pll ′

[S]l
p[F2]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B24 = +
∑
pll ′

[F2]l
p[S]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B33 = −
∑
pll ′

[F2]l
p[F1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B34 = −
∑
pll ′

[S]−l
p [S]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B43 = −
∑
pll ′

[S]l
p[S]−l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

.
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