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Lattice control of nonergodicity in a polar lattice gas
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(Received 26 July 2022; revised 2 December 2022; accepted 6 December 2022; published 5 January 2023)

Strong enough intersite interactions may result in lack of ergodicity in disorder-free many-body lattice
systems. Ultracold dipolar gases in optical lattices provide an experimentally accessible platform for exploring
this physics. Dipolar intersite interactions are usually assumed to decay with a fixed power law. We show that
in a one-dimensional polar lattice gas the actual decay depends on the transversal confinement. This affects
profoundly the particle dynamics, which mimics rather that of a system with an externally controllable effective
power-law interaction. Our results show that the crucial role of the interaction decay on disorder-free localization
may be flexibly studied in experiments with polar gases.
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I. INTRODUCTION

Many-body localization [1–3] constitutes a major excep-
tion to the thermalization paradigm in many-body systems.
Although initially considered in the presence of disorder,
recent years have witnessed a rapidly growing interest in
nonergodic disorder-free systems [4–22]. Disorder-free local-
ization occurs naturally due to dynamical constraints [23–25],
which result in a finite number of conservation laws, inducing
Hilbert-space fragmentation [26–31].

Ultracold particles in optical lattices and tweezer
arrays constitute an exceptional system for studying
out-of-equilibrium many-body quantum systems [32], as
recently highlighted by experiments on many-body localiza-
tion [33–36], quantum scars [37], and (disorder-free) Stark
localization [18,20]. Most current lattice experiments involve
contact-interacting particles. In the tight-binding regime,
those experiments simulate different forms of the Hub-
bard model with on-site interactions [38,39], although weak
nearest-neighbor (NN) interactions may result from superex-
change [40].

Recent experiments are focusing on long-range interact-
ing lattice systems, including trapped ions [41,42], Ryd-
berg gases [37,43–45], and polar lattice gases of magnetic
atoms [46–48], and polar molecules [49]. These gases are
characterized by strong intersite interactions, and hence al-
low for the realization of different spin models and extended
Hubbard models (EHMs) [50]. Spin models have been real-
ized in magnetic atoms [46,48], polar molecules [49], and
Rydberg atoms [45], whereas seminal EHM experiments have
been performed using magnetic [47] and Rydberg atoms [44].
Intersite interactions result in an intriguing dynamics in
EHMs [51–58]. In particular, the combination of energy
conservation, finite bandwidth, and dipolar interactions is ex-

pected to result in Hilbert-space shattering and disorder-free
localization for strong enough dipolar interactions [59].

Long-range systems present intersite interactions which
may potentially extend well beyond NN interactions. In
trapped ions, the power-law interaction 1/rβ (with r the in-
tersite distance) may be externally tailored (0 < β < 3) using
laser dressing [41,42]. In polar gases, due to the form of the
dipolar interactions, the dipolar tail is typically assumed to
decay with a fixed power law 1/r3. However, this assumption
must be carefully reconsidered, especially in low-dimensional
models, since intersite dipolar interactions are affected by the
geometry of the on-site Wannier functions [60,61].

In this paper, we show that the dipolar tail acquires in
one-dimensional (1D) lattices a universal analytic dependence
on the transversal confinement, which may depart under typ-
ical conditions strongly from the quite generally assumed in
up-to-date studies 1/r3 form. This leads to a very significant
modification of the dynamics of 1D hard-core polar lattice
gases, which, remarkably, mimics that of a model with vari-
able power-law interactions, 1/rβ �=3, where the power β, and
with it the localization threshold, may be controlled by the
transversal confinement. Our results show that near-future
experiments on polar gases may hence provide a surprisingly
flexible platform for the study of the key role of intersite
interactions on disorder-free localization in many-body lattice
systems.

The structure of the paper is as follows. In Sec. II we dis-
cuss the model under consideration. Section III is devoted to
the dependence of the dipolar tail on the transversal confine-
ment. In Sec. IV we analyze how Hilbert-space fragmentation
in the polar lattice gas is affected by the transversal confine-
ment. Section V analyzes the particle dynamics when starting
with an initial density wave, whereas Sec. VI discusses the
case of general initial Fock state. In Sec. VII we comment on
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possible experimental realizations, while Sec. VIII summa-
rizes our conclusions. More technical details are discussed in
the Appendixes.

II. EXTENDED HUBBARD MODEL

We consider dipolar bosons of mass m in a 1D optical
lattice, V0 sin2(πz/λ), transversally confined by an isotropic
harmonic potential 1

2 mω2
⊥(x2 + y2). The dipole moments are

assumed to be oriented by an external field on the xz plane
forming an angle α with the lattice axis z. For a sufficiently
deep lattice, the system is well described by the EHM:

Ĥ = −t
∑

i

(b̂†
i b̂i+1 + H.c.) +

∑
i

∑
j>0

Vjn̂in̂i+ j, (1)

where b̂i (b̂†
i ) is the annihilation (creation) operator at site i,

n̂i = b̂†
i b̂i, and we impose the hard-core constraint (b̂†

i )2 = 0.
This constraint is well justified if no site is multiply occupied
initially, and if the on-site interactions are large enough to
prevent multiple occupations at any later time. Although the
on-site interactions depend on the dipole-dipole interaction,
for strong enough short-range interactions (which may require
the use of Feshbach resonances), we can neglect multiple
occupation at any time for all values of the dipole strength
considered. The hard-core constraint implies negligible colli-
sionally assisted hops, which may be relevant in the soft-core
regime [62,63].

The intersite interaction for dipoles j sites apart is charac-
terized by the coupling constant [64]:

Vj =
∫

d3r
∫

d3r′V (�r − �r ′)|ϕ(�r)|2|ϕ(�r ′ − jλ�ez )|2, (2)

where V (�r) = Cdd
4πr3 (1 − 3 (x sin α+z cos α)2

r2 ) is the dipole-dipole
interaction. For magnetic dipoles, Cdd = μ0μ

2, with μ0 the
vacuum permeability and μ the magnetic moment. For elec-
tric dipoles, Cdd = d2

ε0
, with ε0 the vacuum dielectric constant

and d the electric dipole moment. We characterize below the
dipole strength by the dipolar length, add = mCdd

12π h̄2 . The on-site
wave function, ϕ(�r) = φ0(x, y)W (z), is given by the Wannier
function W (z) associated to the lowest-energy band, and by

the ground state of the transversal trap, φ0(x, y) = e−(x2+y2 )/2l2⊥√
π l⊥

,

with l2
⊥ = h̄/mω⊥ (we assume that h̄ω⊥ is much larger than

other energies involved in the EHM).

III. THE DIPOLAR TAIL

For deep enough lattices, we may approximate W (z) �
e−z2/2l2√√

π l
, with l = λ

πs1/4 , where s = V0
ER

and ER = π2 h̄2

2mλ2 is the

recoil energy. We then obtain for l⊥ > l (see Appendix A)

Vj

ER
= 3B3/2

2π2
(3 cos2 α − 1)

(add

λ

)
f (

√
B j), (3)

where B = π2

2
χ

1− χ

2
√

s
, χ = h̄ω⊥

ER
, and

f (ξ ) = 2ξ −
√

2π (1 + ξ 2)eξ 2/2erfc(ξ/
√

2). (4)

FIG. 1. (a) Dipolar tail Gj for s = 8 and χ = 0.47 (B = 2.54).
Blue stars and orange circles depict, respectively, the results obtained
directly using the exact Wannier functions, and using Eq. (4). Green
crosses indicate the 1/ j3 tail. (b) Power βeff for s = 30 and different
χ . The dots indicate the results obtained employing Eq. (2) with the
exact Wannier functions. The solid line depicts − log(G2)/ log(2).
The inset shows the results for a wider range of χ values. In both
graphs the dashed line indicates βeff = 3.

Denoting V ≡ V1, we can write Vj = V Gj (B), with Gj (B) =
f (

√
B j)/ f (

√
B) [65]. Hence, actual hard-core dipoles in 1D

lattices have a universal dependence on both V/t and B, that
characterize, respectively, the dipole strength and the dipo-
lar tail.

This tail must be compared to the 1/ j3 decay, which is
quite generally assumed in studies of polar lattice gases [for a
comparison for B = 2.54 see Fig. 1(a)]. Although the 1/ j3 de-
cay is eventually recovered at sufficiently long distances, i.e.,
Gj→∞(B) → 1/ j3, the correction may be very relevant for the
first-nearest neighbors. The modification of the ratio G2 be-
tween next-to-NN and NN interactions is particularly relevant,
since this ratio is crucial for the Hilbert-space fragmentation
and dynamics in a polar lattice gas. In contrast, as shown
below, beyond-next-to-NN interactions play a relatively minor
role. Hence, we introduce at this point the effective power
βeff (B) [see Fig. 1(b)], such that G2(B) = 1/2βeff (B) [66]. Note
that there is a one-to-one correspondence between B and
βeff (B), and hence the hard-core lattice gas will present uni-
versal properties in V/t and βeff .
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For l > l⊥ (χ > 2
√

s), βeff (B) > 3; i.e., the dipolar tail
decays to the first-nearest neighbors faster than 1/ j3. In that
regime, for large enough χ and s, βeff approaches β∞ �
3 + 1

ln(2)
9

2π2
√

s
(see Appendix B). As a result, for l > l⊥,

next-to-NN interactions are less relevant than in the 1/ j3

model, and the correction to the 1/ j3 dependence due to
the transversal confinement induces only minor modifications
in the dynamics (also the ground-state properties are only
slightly affected [61]).

In stark contrast, for l < l⊥ (χ < 2
√

s), βeff (B) may
become significantly smaller than 3 [see Fig. 1(b)]; i.e.,
the dipolar tail decays significantly slower than 1/ j3 for
the first-nearest neighbors. The markedly enhanced role of
the next-to-NN interactions leads to a strongly modified dy-
namics, as shown below.

IV. HILBERT-SPACE FRAGMENTATION

For the model with just NN interactions (NN model), Vj =
V δ j,1, increasing V/t results in an emerging dynamical con-
straint, given by the conservation of the number of NN bonds
NNN = ∑

j〈n jn j+1〉. This constraint leads to Hilbert-space
fragmentation into dynamically unconnected blocks [26]. The
presence of a 1/ j3 tail results for large enough V/t in a strong
fragmentation (shattering) of the NN blocks due to the emerg-
ing conservation of the number of next-to-NN (NNN) bonds,
NNNN = ∑

j〈n jn j+2〉 [59]. As shown below, the controllable
modification of V2/V significantly affects this shattering, and
with it the particle dynamics.

In order to study Hilbert-space fragmentation, we employ
exact diagonalization to obtain the eigenstates |α〉 of N parti-
cles in L sites with open boundary conditions. We then express
the Fock states | f 〉 = ∏L

l=1 |nl ( f )〉 with population nl ( f ) =
0, 1 in site l , in the basis of eigenstates, | f 〉 = ∑

α ψ f (α)|α〉.
For the NN model, a sufficiently large V/t > 10 results in
Hilbert-space fragmentation into unconnected blocks (NN
blocks) with a size much smaller than the overall Hilbert-
space dimension. Further fragmentation of the NN blocks due
to beyond-NN interactions is characterized for each Fock state
| f 〉 by the fractal dimension, D f = − ln(I f )/ ln(� f ) [67],
where � f is the size of the NN block to which | f 〉 belongs,
and I f = ∑

α |ψα ( f )|4 is the inverse participation ratio. D f

approaches zero when the NN block shatters. The average, D,
of D f over the whole Fock basis provides a good quantitative
estimation of the shattering.

Figure 2 shows D, as a function of V/t , for Vj = 1/ jβ and
Vj = V Gj (B), characterized by βeff (B). The comparison of
both graphs shows that, due to the dominant role played by the
next-to-NN interactions, Hilbert-space shattering in an actual
dipolar gas may closely mimic that of a system with modified
power-law interactions 1/ jβ=βeff (B). Note also the potentially
very large deviation from the results expected for a 1/ j3 tail.

V. DYNAMICS OF AN INITIAL DENSITY WAVE

The actual form of the interaction decay has relevant con-
sequences for the dynamics of particles, well illustrated by the
relatively simple case of an initial density wave:

| • • ◦ ◦ • • ◦ ◦ • • ◦ ◦ · · · 〉,

FIG. 2. Shattering of the NN blocks. Top: Average D for V/ jβ

interactions, as a function of V/t and β. Bottom: Same for a polar
lattice gas, as a function of V/t and βeff (right axis) and χ (for
s = 30) (left axis). The color plot is obtained for N = 8 particles
in L = 16 sites with open boundary conditions. The inset shows D
as a function of V/t for a dipolar gas with B = 11.5 (βeff � 2.6)
for N = 7 and L = 14 and N = 8 and L = 16. The crossing point
provides an estimation of the shattering transition. The white curves
in both panels show the crossing points of the D curves for N = 7
and L = 14 and N = 8 and L = 16.

with open boundary conditions, which may be prepared using
a superlattice (similar initial conditions have been recently
studied in Rydberg gases [44]). Figure 3 compares the dynam-
ics for a 1/ j3 decay, and the actual evolution for B = 2.54
(βeff � 2) for V/t = 16. Although in both cases we observe
delocalization at long times, the homogenization is approx-
imately four times slower in the actual polar lattice gas.
Density homogenization is well characterized by the inhomo-
geneity parameter,

η = 1

2Lρ(1 − ρ)

L∑
j=1

|〈n̂ j〉 − ρ|, (5)

with ρ = N/L. Note that η ranges from 1 for a maximally
inhomogeneous state (i.e., for a Fock state), to 0 for a fully ho-
mogeneous density, with 〈n̂i〉 = ρ, for all sites i. Figures 3(c)
and 3(d) show η, after a time τ = 200/t , for, respectively,
Vj = V/ jβ and a polar gas with different χ (and hence dif-
ferent βeff ). In both cases a marked jump in η as a function
of V/t characterizes the onset of strong localization. Note as
well the remarkable similarity down to βeff � 1 (B � 0.3) of
both graphs as a function of, respectively, β and βeff . Hence,
for B > 0.3, the dynamics and the localization threshold at a
given time in a polar lattice gas are basically indistinguishable
from those in a system with power-law interactions 1/ jβeff .

For βeff < 1, the dynamics of a polar lattice gas departs
significantly from that of a 1/ jβeff model (see Fig. 3). In
particular, the polar gas presents a marked resonance for
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FIG. 3. Homogenization of an initial density wave. Average den-
sity at different sites as a function of time for (a) Vj = V/ j3 and
(b) Vj = Gj (B), for B = 2.54 (βeff � 2). In both cases V/t = 16.
Results obtained from time-dependent variational principle (TDVP)
calculations for L = 60 and N = 30 (see Appendix C). Panels (c) and
(d) show the inhomogeneity parameter averaged in the time interval
190/t < τ < 210/t , evaluated for a system with L = 24, N = 12,
and an initial density wave as in (a) and (b). (c) Results for a model
V/ jβ as a function of β and V/t , which should be compared with
(d), where the results for a polar gas and different values of βeff and
V/t are presented. The results were obtained using Chebyshev time
propagation (see Appendix D).

βeff � 0.8 (B � 0.17), at which the gas becomes quickly ho-
mogeneous even for large V/t . Such a resonance is absent in
the corresponding power-law model, which presents a steady
reentrance of the delocalized regime. This is easy to under-
stand, since for β → 0, the intersite interactions become a
constant of motion, V

2

∑
i �= j nin j = V N (N − 1)/2, with N the

total particle number, and hence the system is formed effec-
tively by noninteracting hard-core bosons. This steady growth
of the extended regime is not present in the actual polar lattice
gas, because for long distances Gj → 1/ j3. Only for βeff → 0
delocalization extends to large V/t values.

VI. DYNAMICS FOR GENERAL INITIAL FOCK STATES

The previous conclusions are, for βeff > 1, largely repre-
sentative of the dynamics for more general initial Fock states.
We have evaluated the dynamics of all possible initial Fock
states for L = 16 and open boundary conditions, fixing only
N = 8 and an initial NNN = 4. Note that this set includes 4410
states with different number of clusters of various lengths.
Figure 4 shows for Vj = V/ jβ and for a polar lattice gas the
value of η (averaged over all possible initial conditions) after
an evolution time τ = 200/t . Also for this more general case,
there is a marked transition between localization and delocal-
ization. However, the behavior of the averaged η is less abrupt,
due to the difference in the degree of localization between
different initial conditions. The results for both models are

FIG. 4. Inhomogeneity η after a time τ = 200/t , evaluated for a
system with L = 16 sites, and averaged over all initial Fock states
with N = 8 and initial NNN = 4. The cases of (a) Vj = V// jβ and
(b) a polar lattice gas are shown. The thick black curve indicates
the line with η = 0.5. The results were obtained using exact time
evolution [68]. The dashed green (dotted yellow) curves indicate the
values in the (V/t , βeff ) space achieved for different ω⊥ for 164Dy in
an UV lattice of λ = 180 nm (for NaK, with d = 0.8 D, in a lattice
with λ = 500 nm) with a fixed lattice depth s = 8. For the dashed
green (dotted yellow) curve, from left to right, χ varies from 0.0167
to 4.68 (from 0.0045 to 0.21).

again remarkably similar, down to βeff � 1 (B > 0.3). For
lower βeff the results are markedly different. Note the absence
of a resonance in the polar gas, which is a specific feature
of an initial density wave. Note that also for general initial
conditions, the power-law model presents at low β a marked
reentrance of the extended regime, absent in polar lattice gases
at low B.

VII. EXPERIMENTAL RELEVANCE

Our results are directly relevant for ongoing and near-
future experiments with low-dimensional dipolar gases in
optical lattices, including magnetic atoms, polar molecules,
and Rydberg gases. For a polar lattice gas, our analysis reveals
that there should be a potentially very significant difference
between the case in which one-dimensionality is achieved in
a three-dimensional (3D) lattice, and the case in which it is ob-
tained by means of transversal harmonic confinement. In the
former case, the suppression of transversal hopping requires
a very strong lattice on the transversal directions, resulting
in l⊥ � l . The typically assumed 1/ j3 dependence is hence
approximately reached for a sufficiently large lattice depth
s [61]. In the latter case, in contrast, even tight transversal
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confinements may result in strongly modified properties. For
example, a lattice depth of s = 20 and a transversal confine-
ment with χ � 0.5 results in βeff (B) � 2. For 164Dy in an
UV lattice with λ = 180 nm this would require ω⊥/2π �
4.6 kHz, whereas a frequency 1.58 kHz will be needed for
a NaK molecule in a lattice with λ = 500 nm. Note that
changing ω⊥ modifies both V/t and βeff . In Fig. 4(b) we show
the trajectories in (V/t, βeff ) for s = 8 obtained for different χ

for Dy and NaK (for s = 8 the hopping times are respectively
10 and 31 ms). Note that in both cases the localization-to-
delocalization transition may be crossed by changing ω⊥ at a
fixed lattice depth.

VIII. CONCLUSIONS

One-dimensional polar lattice gases are characterized by
intersite interactions that decay following a universal depen-
dence on the transversal confinement and the lattice depth.
This decay, which may depart very significantly from the quite
generally assumed 1/r3 form, strongly affects the dynam-
ics of hard-core systems. Interestingly, due to the dominant
role played by nearest-neighbor and next-to-nearest-neighbor
interactions, both Hilbert-space fragmentation and homoge-
nization dynamics become basically identical to a model with
an externally controllable power-law decay. As a result, polar
lattice gases constitute a flexible platform for the study of
the role of intersite interaction in disorder-free many-body
localization. Similarly, one may anticipate that, in the pres-
ence of disorder, the critical disorder amplitude leading to the
extended to localized crossover may depend nontrivially on
the interactions tail. Such a study, as well as the treatment of
soft-core bosons [70], will be discussed elsewhere.
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APPENDIX A: DERIVATION OF DIPOLAR TAIL

The dipole-mediated intersite interaction between particles
separated by j sites is characterized by the coupling constant:

Vj =
∫

d3r
∫

d3r′V (�r − �r ′)|ϕ(�r)|2|ϕ(�r ′ − jλ�ez )|2, (A1)

where we neglect the effect of exchange terms, since they are
negligibly small for a sufficiently deep lattice. In the following
calculation, we assume that the dipole is oriented along the
lattice axis z (α = 0 in the notation of the main text), but as
discussed below, the calculation can be easily generalized to
any dipole orientation.

As discussed in the main text, we may approximate the on-
site wave function by a Gaussian:

|ϕ(�r)|2 = e−z2/l2

√
π l

e−ρ2/l2
⊥

π l2
⊥

, (A2)

where ρ =
√

x2 + y2. Then the Fourier transform of the den-
sity is of the form ñ j (�k) = ñ(�k)eikz jλ, and

ñ(�k) = e−k2
z l2/4e−k2

ρ l2
⊥/4. (A3)

Using the convolution theorem we may then reexpress Vj in
the form

Vj �
∫

d3k

(2π )3
Ṽ (�k)ñ0(�k)ñ j (�k) (A4)

with Ṽ (�k) = 4πd2

3 [ 3k2
z

|�k|2 − 1], the Fourier transform of the

dipole-dipole interaction potential. Using the form of ñ j (�k),
we may then rewrite

Vj � 2d2

3π ll2
⊥

∫ 1

0
du

[
3u2

�2 + (1 − �2)u2
− 1

]

×
∫ ∞

0
dqq2e−q2/2 cos

(
q

z j

l
u
)

(A5)

with � = l/l⊥. For the specific case of a harmonic confine-
ment with frequency ω⊥ and an optical lattice along z with
depth V0, we may define, as in the main text, χ = h̄ω⊥

ER
and s =

V0
ER

, and reexpress �(χ, s) = 1√
2

√
χ 1

s1/4 . We can then write

Vj � 2d2

3
√

2π ll2
⊥

Fj (χ, s) (A6)

with

Fj (χ, s) =
∫ 1

0
du

[
3u2

�2 + (1 − �2)u2
− 1

][
1 − z̃2

j u
2
]
e− 1

2 z̃2
j u

2

(A7)

with z̃ j = jπs1/4. Changing the integration variable into ũ =
z̃ ju, and reorganizing the integrand we can rewrite the integral
in the form

Fj (χ, s) = 1

z̃ j

∫ z̃ j

0
du

⎡
⎣(

2 + �2

1 − �2

)

−
(

3

1 − �2

)
1

1 + 1−�2

�2
ũ2

z̃2
j

⎤
⎦(1 − ũ2)e−ũ2/2. (A8)

For a sufficiently large s, due to the rapidly decaying expo-
nential we can safely move the integral boundary to infinity.
Note that this is only possible if � < 1 (l⊥ > l). We can then
perform the integral analytically, obtaining

Vj

ER
= 3

π2
B3/2

(add

λ

)
f (

√
B j), (A9)
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FIG. 5. Homogenization plot for B = 2.54 V/t = 16 obtained with TDVP for χ = 256 (left) and χ = 384 (right). Observe that more
accurate results for larger χ value undergo homogenization in longer times. This is a typical behavior for a not fully converged TDVP
algorithm [77].

where f (ξ ) is the expression of Eq. (4) of the main text. The
procedure for other dipole orientations is identical, and we
may obtain the general expression of Eq. (3) of the main text.

As a side remark, we compare the result of Eq. (A9) and
the known result for the interaction between two dipoles in a
1D system (in absence of lattice) when the dipole is oriented
along the system axis [71]. We can rewrite Eq. (A9) in the
form

Vj

ER
= 3π

(χ

2

)3/2
(

ãdd

λ

)
f

(
j̃π

√
χ

2

)
, (A10)

with ãdd = add/(1 − χ

2
√

s
)3/2 and j̃ = j/

√
1 − χ

2
√

s
. Compar-

ing to the result of Ref. [71], we note that Eq. (A10) acquires
the same form as the interaction between two dipoles with
a regularized dipole length ãdd separated by an effective
distance j̃λ.

APPENDIX B: ASYMPTOTIC EXPRESSION FOR LARGE �

Let us consider at this point the case � = l/l⊥ � 1, which
is the typical case in strong 3D optical lattices. In that case,
we may approximate for sufficiently deep lattices:

Vj = 2d2

3
√

2π ll2
⊥

3

�2

∫ 1

0
du

u2

(1 − u2)

[
1 − z̃2

j u
2]e− 1

2 z̃2
j u

2
. (B1)

Since only small u contribute for large s, we may expand

Vj � 2d2

3
√

2π ll2
⊥

3

�2

∫ 1

0
du

(
u2 + (

1 − z̃2
j

)
u4 + · · · )e− 1

2 z̃2
j u

2

� 2d2

3
√

2π ll2
⊥

3

�2

√
π

2

[√
2

z̃3
j

+ (1 − z̃2
j )

3
√

2

z̃5
j

+ · · ·
]

× erf

(
z̃√
2

)

= −2d2

λ3

1

j3

[
1 + 6

j2π2
√

s
+ · · ·

]
. (B2)

Then

V

V2
� 8

[
1 + 9

2π2
√

s
+ · · ·

]
. (B3)

Now, writing V
V2

= 2βeff , and anticipating that βeff − 3 � 1,
we may expand

2βeff � 8[1 + ln(2)(βeff − 3)]. (B4)

Comparing both expressions we get the final result,

β∞ � 3 + 1

ln(2)

9

2π2
√

s
, (B5)

written in the main text.

APPENDIX C: TIME-DEPENDENT VARIATIONAL
PRINCIPLE ALGORITHM IMPLEMENTATION

The time-dependent variational principle (TDVP) algo-
rithm [72–75] may allow for studying the time evolution, for
a limited time, of systems formed by hundreds of sites. In the
algorithm, the time-evolved state is represented as a matrix
product state (MPS) (for a review see, e.g., Ref. [76]). Such
states are represented by tensors, which, apart from physical
indices (site number, Hilbert-space dimension on a given site),
are characterized, at each site, by an auxiliary index running
over a space of dimension χ . The higher χ , the more en-
tangled states can be typically faithfully represented by the
MPS representation. During the time evolution with a many-
body Hamiltonian, the entanglement in the time-evolved state
typically grows with a rate dependent on the properties of
the system. The rapid growth of the entanglement of an ini-
tially low-entangled state prevents from evolving the state for
too long, typically limiting evolutions beyond tens of tunnel-
ing times in the ergodic regime. Once the motion becomes
nonergodic, and in particular localized, the growth of entan-
glement in time is much slower, which allows for faithfully
tracing the time evolution even up to times of the order of
a thousand tunneling times (for recent implementations for
short-range Hamiltonians see Refs. [16,77–80], where all the
details are discussed). We use the same implementation, ex-
tended to the dipolarlike long-range terms using the so-called

013301-6
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FIG. 6. Homogenization plot for V/t = 20 obtained with TDVP for χ = 384, for the 1/ j3 model (left) and for Gj (B) with B = 2.54 (right).
Whereas the system remains fully localized in the latter model, the 1/ j3 model shows the start of the density homogenization, which fully
develops at later times.

matrix-product-operator representation of the Hamiltonian,
implemented within the ITENSOR library [81].

Due to the long-range coupling as well as to the large
value of V/t , the algorithm requires a large amount of CPU
time for propagation. For the data presented in Fig. 3 of the
main text, the propagation took more than a month on a single
thread of a fast workstation for χ = 384 (less than a week
for χ = 256). While the results were slightly different for
χ = 256 and 384 (see Fig. 5), indicating lack of convergence
in the delocalized regime, the qualitative time dependence
obtained was the same, with homogenization (delocalization)
occurring slightly slower for a larger (more accurate) χ value,
confirming the claims expressed in the main text.

Figure 6 shows the exemplary dynamics obtained for larger
value of V/t with converged results up to time t = 700/t for
both the 1/ j3 model and the case with the Gj (B) tail. As in
Fig. 3, the 1/ j3 model leads eventually to delocalization at
later times, whereas the model with the correct dipolar tail
shows a fully localized dynamics.

APPENDIX D: CHEBYSHEV PROPAGATION
IMPLEMENTATION

We use the Chebyshev propagation scheme, as described in
detail in Ref. [82] for L = 24 at half filling. In this approach,
the time-evolution operator U (�t ) = exp(−iH�t ) over time
period �t is expanded as

U (�t ) ≈ e−ib�t

(
J0(a�t ) + 2

N∑
k=1

(−i)kJk (a�t )Tk (H)

)
,

(D1)
where a = (Emax − Emin)/2, b = (Emax + Emin)/2, and Emin

(Emax) is the lowest (highest) eigenstate energy of the Hamil-
tonian H . H = 1

a (H − b) is the rescaled Hamiltonian with the
spectrum in the [−1, 1] interval, Jk (t ) is the Bessel function of
order k, and Tk (x) is the Chebyshev polynomial of order k. The
order of the expansion N and the time step �t are controlled
by the preservation of the unitarity of the evolution allowing
for numerically exact results; for further details see Ref. [80].

[1] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter
Phys. 6, 15 (2015).

[2] F. Alet and N. Laflorencie, C. R. Phys. 19, 498 (2018).
[3] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod.

Phys. 91, 021001 (2019).
[4] G. Carleo, F. Becca, M. Schiro, and M. Fabrizio, Sci. Rep. 2,

243 (2012).
[5] T. Grover and M. P. A. Fisher, J. Stat. Mech.: Theory Exp.

(2014) P10010.
[6] M. Schiulaz, A. Silva, and M. Müller, Phys. Rev. B 91, 184202

(2015).
[7] M. van Horssen, E. Levi, and J. P. Garrahan, Phys. Rev. B 92,

100305(R) (2015).
[8] L. Barbiero, C. Menotti, A. Recati, and L. Santos, Phys. Rev. B

92, 180406(R) (2015).
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Vuletić, and M. D. Lukin, Nature (London) 551, 579 (2017).

[38] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

[39] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Nature (London) 415, 39 (2002).

[40] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,
A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I.
Bloch, Science 319, 295 (2008).

[41] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-
Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe, Nature
(London) 511, 198 (2014).

[42] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R.
Blatt, and C. F. Roos, Nature (London) 511, 202 (2014).

[43] A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).
[44] E. Guardado-Sanchez, B. M. Spar, P. Schauss, R. Belyansky,

J. T. Young, P. Bienias, A. V. Gorshkov, T. Iadecola, and W. S.
Bakr, Phys. Rev. X 11, 021036 (2021).

[45] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D.
Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang,
T. Lahaye et al., Nature (London) 595, 233 (2021).

[46] A. de Paz, A. Sharma, A. Chotia, E. Maréchal, J. H. Huckans, P.
Pedri, L. Santos, O. Gorceix, L. Vernac, and B. Laburthe-Tolra,
Phys. Rev. Lett. 111, 185305 (2013).

[47] S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z.
Cai, M. Baranov, P. Zoller, and F. Ferlaino, Science 352, 201
(2016).

[48] A. Patscheider, B. Zhu, L. Chomaz, D. Petter, S. Baier, A.-M.
Rey, F. Ferlaino, and M. J. Mark, Phys. Rev. Res. 2, 023050
(2020).

[49] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard,
A. M. Rey, D. S. Jin, and J. Ye, Nature (London) 501, 521
(2013).

[50] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann,
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