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Atomic mixer based on phase control without ac Zeeman shift
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Atom-based mixers have been shown to be very useful in performing the absolute measurement of the
magnitude of a radio-frequency (rf) field by using Autler-Townes (AT) splitting. However, there has been less
success in measuring the phase of a rf field with the AT splitting in a magnetic-resonance system. The phase of
the rf magnetic field plays a very important role in imaging applications. Here, we design an atomic mixer for
measuring the phase of the rf field by detecting the transmission spectra of a laser-detected magnetic-resonance
system based on the interference between Raman and cascade two-photon processes for Fg = 4 of the D1 line of
cesium atoms. A scheme of measuring the rf phase can be realized with the elimination of the ac Zeeman shift of
the system by adjusting the amplitude ratio of a transverse fundamental-wave field and its third-harmonic field.
Theoretical and experimental results show that the scheme with cancellation of the ac Zeeman shift is superior in
linear measurement of the longitudinal rf component. Our results provide schemes for a magnetic sensor based
on quantum interference of nonlinear processes for the absolute measurement of the relative phase of rf fields.
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I. INTRODUCTION

The atom-based mixer is an attractive candidate for a sen-
sor for phase measurement of electromagnetic fields [1,2]. As
a natural multiplier, an atomic mixer can generate new signals
of sum frequency and difference frequency by multiplying
two sinusoidal signals of different frequencies. Due to the
nonlinearity of atoms, atom-based mixers have been exten-
sively applied to measure properties including the strength
[3–7], phase [8], wavelength [9], power [10], and polariza-
tion [11,12] of electromagnetic fields over a wide frequency
range throughout the last decade. As a method to detect the
phase of electromagnetic fields, atomic mixers have potential
advantages over conventional radio technologies, which in-
clude ultrahigh-sensitivity reception with subhertz frequency
resolution [13], the potential of being less susceptible to
noise [14], multiband operation in one compact vapor cell
[15], and the superiority of the lack of need for traditional
down-conversion electronics because the atoms automatically
down-convert the phase-modulated signals to an intermediate-
frequency signal [16]. In the microwave domain, due to
the appearance and application needs of related technologies
[17–20], there is booming research into Rydberg-atom-based
mixers measuring the radio-frequency (rf) phase. A prevalent
way to introduce phase sensitivity is to establish the coher-
ence between two microwave fields resonant with atoms in
an electromagnetically induced transparency (EIT) system.
For example, a Rydberg-atom-based system in which a local
microwave field and a signal microwave field are mixed to
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measure their relative phase is demonstrated in Refs. [21–23].
In such systems, the strong local field acts as a dressing
field inducing Autler-Townes (AT) splitting [24] of the EIT
peak, while the weak signal field acts as a probing field re-
lated to the relative phase. In addition, another popular way
to introduce phase sensitivity is to establish the coherence
between two resonant subsystems of multilevel atoms. For
example, a class of phase-dependent microwave interferom-
etry has been implemented in multilevel loopy ladder systems
and is based upon the interference between the two sub-
systems [25,26]. Moreover, an internal-state Rydberg-atom
interferometer for phase measurement is realized via a rf-
modulated optical carrier field in a closed interferometric
loop [27]. In such systems, the phase dependency of the EIT
signal is induced by the quantum interference between the
closed interferometric loops formed by subsystems. Owing to
large-transition dipole moments between energetically adja-
cent Rydberg states, Rydberg-atom-based mixers have been
widely studied in the phase measurements of rf electric field
in the gigahertz band. However, in the kilohertz-band rf do-
main, less attention has been paid to the atom-based mixer for
characterizing magnetic-field properties, especially in using
magnetic resonance to measure the phase of a rf field. Al-
though the preparation of atomic states and the coupling mode
between atoms and electromagnetic fields in the magnetic-
resonance system are completely different from those in the
EIT system, the two systems are consistent in the way they
characterize the strength and phase of electromagnetic fields
via laser-detected AT spectra. That is, the two systems can
measure the field strength by dressing the atom with a strong
field and probing the system with a weak field and introduce
phase sensitivity via the coherence between fields. In view
of the significance of the phase of the rf magnetic field in
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FIG. 1. Theoretical model geometry of the system in a laboratory
frame xyz where the quantization axis lies along the direction of light
polarization ε and in a rotating frame x′y′z′ where the quantization
axis lies along the direction of the offset field B0.

practical applications [28–34], the phase measurement of a rf
magnetic field by an atomic mixer would be interesting. As
rf magnetic resonance occurs in the hyperfine energy levels
of atoms, an atomic mixer based on a magnetic-resonance
system can realize the phase measurement of the rf mag-
netic field in the low-frequency and even very-low-frequency
band. Moreover, due to the narrow ground-state linewidth
of the atoms housed in a paraffin-coated cell, AT splitting
based on magnetic resonance is more advantageous in the
phase measurement for a weak rf magnetic field. A phase-
controlled atomic mixer based on the interference between
Raman and cascade two-photon processes can be realized
with two schemes, as we will discuss.

In this paper, two magnetic-resonance schemes for realiz-
ing an atomic mixer based on the interference between Raman
and cascade two-photon processes for Fg = 4 of the D1 line of
cesium atoms are proposed. Nevertheless, Raman or cascade
two-photon processes will inevitably cause ac Zeeman shifts
[35] of the system. For the scheme with only one transverse
rf field participating in two-photon resonances, the ac Zeeman
shift of the system cannot be completely canceled. But for the
scheme with two transverse rf fields, the ac Zeeman shift can
be eliminated by stabilizing a specific amplitude ratio between
transverse rf fields. This manner of eliminating energy-level
shift by setting a specific ratio of physical quantities has been
applied in the study of dual-color magic-wavelength traps for
the suppression of atomic ac Stark shifts [36]. In our discus-
sion, a scheme in which the elimination of the ac Zeeman shift
of the system can be achieved, labeled scheme I, is mainly
discussed. In Sec. II, we describe the theoretical model of
scheme I, which is depicted in Fig. 1, and derive the Hamil-
tonian of the system in the dressed-state representation. Then
the second-order perturbation solution of the AT spectrum of
the system is given. In Sec. III, we introduce the experimental
setup of scheme I and demonstrate the effects of different
transverse rf components on the ac Zeeman shift of the system
and the sideband interval of the AT doublet. Subsequently,
the relationship between the sideband interval and the relative
phase is investigated. And the linear relationship between the

FIG. 2. Schematic of two-photon transition processes. The Zee-
man splitting caused by the offset field is �0, and the ac Zeeman
shift caused by the transverse rf fields is ��0. The left section in-
dicates that when the condition ωσ (π ) − ωπ (σ ) = �0 + ��0 is met,
the atoms in the ground-state sublevels will absorb a σ (or π ) rf
photon and then release a π (or σ ) rf photon to form a Raman
two-photon process. The right section indicates that when the con-
dition ωσ + ωπ = �0 + ��0 is met, the atoms in the ground-state
sublevels will absorb a π rf photon and a σ rf photon to form a
cascade two-photon process.

longitudinal Rabi frequency and the sideband interval is eval-
uated under different relative phases. For comparison, another
scheme in which the ac Zeeman shift cannot be eliminated,
labeled scheme II, is detailed in Appendix C. Finally, we make
a conclusion in Sec. IV.

II. THEORY

A. Theoretical model

Magnetic resonance based on two-photon transition with
�m = ±1 is coexcited by two orthogonal rf fields [37,38].
Consider a magnetic-resonance system in which a longitudi-
nal fundamental-wave field participates in both Raman and
cascade two-photon processes, where the geometry of the
magnetic fields is shown in Fig. 1. Two rf fields with the
same frequency as fundamental-wave fields are set orthogo-
nally, wherein the rf field parallel to the offset field generates
the longitudinal component of the fundamental-wave fields
and the rf field perpendicular to the offset field generates
the transverse component. As shown in Fig. 2, the longitu-
dinal fundamental-wave field can cause a Raman two-photon
process together with a transverse third-harmonic field, on
the one hand, and can cause a cascade two-photon process
together with a transverse fundamental-wave field, on the
other hand. The Raman and cascade two-photon processes
are generated simultaneously and interfere with each other.
The resulting interference field acts as a strong driving field to
dress the ground-state sublevels of atoms. In the dressed-state
system coupled to a strong driving field, an AT doublet can be
used to achieve the absolute-magnitude measurement of the
driving field [39,40]. With two-photon resonance, the inter-
ference intensity of these two nonlinear processes has a linear
relationship with the sideband interval of the AT doublet.

We consider the magnetic-resonance geometry of Fig. 1,
where two transverse rf magnetic fields, BT 1 = BT 1 cos(ωt +
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ϕ)ex′ and BT 2 = BT 2 cos(3ωt + θ )ex′ , are perpendicular to the
offset field B0, while another longitudinal rf magnetic field,
BL = BL cos(ωt + ϕ)ez′ , is parallel to B0. In this geometry,
the orientation k of linearly polarized light is along the di-
rection of B0, and the light polarization ε is perpendicular
to all the magnetic fields. Our discussion of laser-detected
magnetic resonance follows the three-step approach [41–43],
which includes polarization-state preparation [44,45], mag-
netic resonance [46,47], and optical detection [48,49]. In the
preparation process of our system, atomic alignment is created
by the linearly polarized light which resonates with the sub-
levels in the ground state Fg = 4 and the excited state Fe = 3
of the D1 line of cesium atoms, and the alignment is described
in a laboratory frame xyz, where the quantization axis lies
along the direction of ε shown in Fig. 1. In the process of
magnetic resonance, the atoms in the ground-state sublevels
absorb the rf photons generated by the transverse and longi-
tudinal fields and transit to the neighboring sublevels; that is,
the magnetic resonance excited by the rf fields is a two-photon
process. When the equivalent Larmor precession frequencies
produced by the two-photon processes match the sum of the
Zeeman splitting �0 and the ac Zeeman shift ��0, the Raman
two-photon magnetic resonance and the cascade two-photon
magnetic resonance are excited, as shown in Fig. 2. In the
optical detection process, the magnetic resonance induced by
the rf fields changes the atomic alignment. When the repopu-
lation process of the ground-state atoms induced by the light
reaches a balance with the magnetic-resonance process, the
information about the field-atom interaction can be obtained
by measuring the transmission spectrum [50]. Moreover, to
probe the magnetic-resonance process, a weak rf magnetic
field Bp is introduced transversely for probing.

B. Hamiltonian of the system

Our system is studied in the rotating frame x′y′z′ shown
in Fig. 1. The Hamiltonian in Cartesian representation is
given by HB = μBgF (Fx′Bx′ + Fy′By′ + Fz′Bz′ ), where μB, gF ,
Fi′ , and Bi′ (i = x, y, z) are the Bohr magneton, the Landé
factor, the angular momentum component, and the magnetic-
field component in the Cartesian representation, respectively.
According to the relation between Cartesian and spherical
basis vectors [51], the total magnetic-field–atom interaction
Hamiltonian in the bare-state representation is given by

HBtot = HBm + HBp, (1)

with

HBm = [�0 + �L cos (ωt + ϕ)]F0

+
[
�T 1√

2
cos (ωt + ϕ) + �T 2√

2
cos (3ωt + θ )

]
F−1

−
[
�T 1√

2
cos (ωt + ϕ) + �T 2√

2
cos (3ωt + θ )

]
F+1,

(2)

HBp = �p√
2

cos(ωpt )(F−1 − F+1). (3)

Here, HBm is the main magnetic-field–atom interaction Hamil-
tonian. HBp is the probing magnetic-field–atom interaction

Hamiltonian, and ωp is the angular frequency of Bp. The
symbol satisfies � j = μBgF Bj ( j = 0, L, T 1, T 2, p), where
�0, �L, �T 1, �T 2, and �p are the Zeeman splitting and the
Rabi frequencies of longitudinal field BL, transverse fields
BT 1 and BT 2, and probing field Bp, respectively. The opera-
tor Fμ(μ = 0,±1) is the angular momentum operator in the
covariant spherical basis representation. Considering the con-
ditions 3ω, |�0 − ω| � �T 1,�T 2 and the restriction that ω

and 3ω are far detuned from �0, the effective Hamiltonian of
HBm can be derived from James’s effective Hamiltonian theory
[52,53] and is given by

H eff
Bm

≈��0F0

+ [�Rei(δt+θ−ϕ) − �Cei(δt+2ϕ)]F−1

− [�Re−i(δt+θ−ϕ) − �Ce−i(δt+2ϕ)]F+1, (4)

with

��0 = �0

4

(
�2

T 1

�2
0 − ω2

+ �2
T 2

�2
0 − 9ω2

)
,

�R = �L�T 2

4
√

2ω
, �C = �L�T 1

4
√

2ω
. (5)

Here, the coefficient ��0 is the ac Zeeman shift [35], which
represents the energy shift of the magnetic sublevels. For
��0 �= 0, the decrease or increase of the separation between
adjacent magnetic sublevels corresponds to the redshift or
blueshift of the resonant frequency. Under the resonance
condition, there exists an amplitude ratio between �T 1 and
�T 2 that keeps ��0 canceled. The amplitude ratio satisfies
�T 1/�T 2 = √

3/5, which guarantees that the redshift caused
by BT 2 and the blueshift caused by BT 1 cancel each other so
that the overall ac Zeeman shift is eliminated. The coefficients
�R and �C are the equivalent Rabi frequencies of the Raman
and cascade two-photon processes, respectively. The symbol
δ = 2ω − �0 uniformly represents the frequency detuning
between the Raman or cascade two-photon process and the
Zeeman splitting.

To gain further insight, the total Hamiltonian HBtot is
discussed in the dressed-state representation. The effective
Hamiltonian H eff

Bm
can be diagonalized. The eigenvectors of

the effective Hamiltonian after diagonalization act as state
vectors in the dressed-state representation. In the dressed-state
representation, each ground-state sublevel is dressed to nine
sublevels with equal splitting �, i.e., the so-called AT splitting
[54], which is given by

� =
√

�2
z + 2

(
�2

R + �2
C − 2�R�C cos �φ

)
. (6)

Here, �z = ��0 − δ is the detuning of two-photon processes,
and �φ = θ − 3ϕ is the relative phase. Equation (6) indicates
that the phase information of the main rf fields is transferred to
the sublevel splitting in the dressed-state representation. The
splitting width is periodically controlled by �φ. With the two-
photon resonance condition 2ω = �0 + ��0, the splitting
width can linearly reflect the interference intensity between
Raman and cascade two-photon processes. Moreover, the
splitting has a linear relationship with the longitudinal rf
component of the system at any �φ. The total Hamiltonian
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in the dressed-state representation is given by

H (d )
Btot

= �p

4
sin β(eiδpt + e−iδpt )F (d )

0

+ �p

4
√

2
(1 + cos β )

[
ei(δp−�)t F (d )

−1 − e−i(δp−�)t F (d )
+1

]
+ �p

4
√

2
(1 − cos β )

[
ei(δp+�)t F (d )

+1 − e−i(δp+�)t F (d )
−1

]
.

(7)

Here, δp = ωp − 2ω is the detuning between the probing
field and the Raman or cascade two-photon process. The
operator F (d )

μ (μ = 0,±1) is the angular momentum oper-
ator in the dressed-state representation. The angle β is
the Euler angle, which satisfies cos β = �z/� and sin β =√

2(�2
R + �2

C − 2�R�C cos �φ)/�. A detailed derivation of
Eq. (7) is given in Appendix A. In the dressed-state represen-
tation, the total magnetic-field–atom interaction Hamiltonian
can be written into the rotating frame with frequency �, in
which the main rf fields determine the center frequency and
the sideband interval of the transmission spectrum. After scan-
ning the probing field, three kinds of transitions corresponding
to the resonant frequencies 2ω − �, 2ω, and 2ω + � ap-
pear. However, only transitions with 2ω ± � cause changes
in atomic alignment [55]. The two sidebands are known as the
AT doublet response with a center frequency of 2ω and a span
of 2�.

C. Transmission spectrum of the system

In our system, considering the weak pumping intensity of
linearly polarized light, the multipole moments of the ground-
state atoms can be reduced to second order. According to
[43,56–58], the absorption coefficient α of the system in the
laboratory frame xyz can be expanded using multipole mo-
ments as

α = α0(14m0,0 −
√

77m2,0), (8)

where α0 is a constant. The monopole moment m0,0 is a coeffi-
cient linearly related to the total population of the ground-state
atoms. The multipole moment m2,0 describes the atomic align-
ment. Under the condition of steady state, m0,0 is a constant,
while m2,0 is the only dependent factor of the absorption
coefficient. The time-independent component of m2,0 in the
laboratory frame xyz is given by

m(dc)
2,0 = 3 cos2 β − 1

4

{
�0

3γ0
− �0γ1�

2
p

16γ 2
0

[
(1 − cos β )2

γ 2
1 + (δp + �)2

+ (1 + cos β )2

γ 2
1 + (δp − �)2

]}
. (9)

Here, m(dc)
2,0 represents the dc signal of the magnetic-resonance

transmission spectrum in the laboratory frame xyz. The co-
efficients �0, γ0, and γ1 are the alignment relaxation rates
related to the optical pump relaxation process and the ground-
state spin-exchange collision relaxation process of the system.
A detailed derivation of Eq. (9) is given in Appendix B.
Equation (9) indicates that the AT doublet appears when the

FIG. 3. Experimental setup. DL pro, grating-stabilized tunable
single-mode diode laser; HWP, half-wave plate; PBS, polarization
beam splitter; FM, flat mirror; Digilock 110, feedback controller
Digilock 110; GTP, Glan-Taylor prism; cell 1, vacuum chamber filled
with cesium atoms; cell 2, cesium atomic cell coated with paraffin;
PD, photodetector; DDS, direct digital frequency synthesizer; PCS,
precision current source; OSC, digital storage oscilloscope. All de-
tails can be found in the text.

probing field meets the resonance condition. The AT spec-
trum of the magnetic resonance based on the interference
between Raman and cascade two-photon processes has prop-
erties similar to that based on a single-photon processes [55].
The distinction between them is that the relative phase �φ

between Raman and cascade two-photon processes can de-
termine the AT splitting and realize periodic control of the
sideband interval of the AT doublet. However, this phase-
controlled regulation of AT splitting cannot be realized in
the magnetic resonance based on a single two-photon process
(Raman or cascade) or a single-photon process. In addition,
since Raman two-photon resonance modes are not unique,
there are two schemes for realizing the AT spectrum of mag-
netic resonance based on the interference between Raman
and cascade two-photon processes. Particularly, the scheme
involving two transverse rf fields can realize the cancellation
of the ac Zeeman shift by stabilizing a specific amplitude ratio
between the two transverse rf fields.

III. EXPERIMENT

A. Experimental setup

The experimental setup of the system in Fig. 1 is mainly
composed of the optical part and the circuit-instrument part, as
schematically shown in Fig. 3. For the optical part, a Toptica
DL pro 894-nm laser is used as the light source. The laser
beam from the beginning is split into two subbeams: one sub-
beam is used for saturated absorption frequency stabilization
[59], while the other subbeam is used for the magnetic res-
onance. A Toptica Digilock 110 is utilized to implement the
frequency lock with an accuracy of about 500 kHz in the ex-
periment. The linearly polarized light prepares cesium atoms
with an incident power of about 25 µW with a spot diameter
of 5 mm and then is received by a photodetector (Newport
optical receiver 2031). The atoms used are a cesium atomic
vapor housed in a cylindrical and paraffin-coated cell with a
length of 30 mm and diameter of 25 mm (cell 2 in Fig. 3).
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For the circuit instrument part, two direct digital frequency
synthesizers (DDSs) with double output channels (RIGOL
DG4062 and RIGOL DG4162) are used as the excitation
sources for generating rf magnetic fields. To ensure the co-
herence between the main rf magnetic fields, the synchronous
output of DDS1 is used as the external clock source of
DDS2. The transverse rf fields are generated by three pairs of
Helmholtz coils driven by DDS1 and DDS2. Helmholtz coils
with an average diameter of 88 mm are wound with equal
turns at an inclination angle of 63.4◦ on a 3D-printed mold.
The longitudinal rf field is generated by the outer solenoid
coils driven by DDS1, while the offset field is generated by
the inner solenoid coils driven by a precision current source
(Keysight B2912A). As shown in Fig. 3, the transverse field
and longitudinal field of the rf fundamental wave are output by
two channels of DDS1 set in the same phase, while the trans-
verse third-harmonic field is output by one channel of DDS2
and the transverse probing field is output by another channel
of DDS2. Because the clocks of DDS2 and DDS1 are synchro-
nized, the step control of the relative phase can be realized by
setting the phase step of the transverse third-harmonic field.
To isolate the system from environmental magnetic fields in
the laboratory, the solenoids with Helmholtz coils are placed
in a magnetic shield with four layers of μ-metal cylinders,
whose fluctuation of magnetic field in the middle zone is about
2 nT/cm when the offset field is about 50 000 nT. The dc
component is filtered out and amplified from the magnetic-
resonance signal received by the photodetector before being
input to the digital storage oscilloscope.

In our experiment, the Rabi frequencies of rf fields need to
be calibrated and determined. The transverse rf field is gen-
erated by a standard Helmholtz coil, and its Rabi frequency
can be measured via the AT splitting of magnetic-resonance
spectra dressed by a rf field [55]. The longitudinal rf field
is generated by a standard solenoid coil, and its Rabi fre-
quency can be calibrated and measured via AT splitting of
magnetic-resonance spectra dressed by a single rf two-photon
process [38].

B. Experimental results and analyses

We first explore the magnetic-resonance AT spectrum of
the system with different ac Zeeman shifts and verify the
relationship between the sideband interval and the relative
phase under the condition that the ac Zeeman shift is about
0 Hz. Then the relationship between the sideband interval
and the longitudinal rf component is investigated under the
condition of two different relative phases.

According to Eq. (5), under the premise of �0 � ��0

and the resonance condition, ��0 can be approximately
considered to be related to only the amplitudes of the trans-
verse rf fields. In our experiment, �0 = 2π×100.161 kHz
is the center frequency obtained from the magnetic res-
onance excited only by the transverse probing field Bp.
As shown in Fig. 4, the longitudinal Rabi frequency
�L = 2π×6.236(5) kHz and the transverse Rabi frequency
�T 2 = 2π×12.910(5) kHz remain unchanged, and the set-
tings for the transverse Rabi frequency �T 1 are 2π×9.223(5),
2π×9.992(5), and 2π×10.711(5) kHz, corresponding to ac
Zeeman shifts of about −50, 0, and 50 Hz, respectively. There
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FIG. 4. AT spectra vs the frequency of the probing field Bp.
(a) The pink circles represent the measured data of ��0

2π
≈ −50 Hz;

the resonant frequencies of the left and right sidebands are about
99 427 and 100 796 Hz, respectively. (b) The blue circles represent
the measured data of ��0

2π
≈ 0 Hz; the resonant frequencies of the left

and right sidebands are about 99 450 and 100 872 Hz, respectively.
(c) The purple circles represent the measured data of ��0

2π
≈ 50 Hz;

the resonant frequencies of the left and right sidebands are about
99 477 and 100 946 Hz, respectively. All data are measured under
the condition of �φ = π . The fitting curves are the line shapes with
γ1 ≈ 2π×45 Hz from Eq. (9).

are three kinds of ac Zeeman shifts. With �T 1/�T 2 <
√

3/5,
the blueshift caused by BT 1 is weaker than the redshift caused
by BT 2, and the overall shift effect of the ground-state sub-
levels behaves as a redshift, corresponding to the situation in
which the center frequency of the AT doublet is less than the
Larmor precession frequency �0, as shown in Fig. 4(a). With
�T 1/�T 2 = √

3/5, the blueshift equals the redshift, so the ac
Zeeman shift is canceled, corresponding to the situation in
which the center frequency of the AT doublet locates at �0,
as shown in Fig. 4(b). With �T 1/�T 2 >

√
3/5, the blueshift

surpasses the redshift, and the overall shift effect behaves as
a blueshift, corresponding to the situation in which the center
frequency of the AT doublet is more than �0, as shown in
Fig. 4(c).

Figure 5 shows that the mixing process based on the in-
terference of Raman and cascade two-photon processes is
controlled by the relative phase �φ. According to Eq. (4),
the phase felt by atoms in the Raman process is the phase
difference of BT 2 and BL, i.e., (θ − ϕ), and that in the cascade
process is the phase sum of BT 1 and BL, i.e., 2ϕ. Since the Ra-
man two-photon process and the cascade two-photon process
resonate in the same sublevel frame, the mixing process of the
two different nonlinear resonant processes can be analogous
to that of two monochromatic waves with phases (θ − ϕ)
and 2ϕ, respectively. AT splitting dressed only by a Raman
or cascade two-photon process cannot be regulated by the
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FIG. 5. Sideband interval vs relative phase. The blue solid dots
represent the measured data with a step of π/9. All data are mea-
sured under the resonance condition with �0 = 2π×100.161 kHz,
�L = 2π×6.236(5) kHz, �T 1 = 2π×9.992(5) kHz, and �T 2 =
2π×12.910(5) kHz. The red fitting curve is the theoretical fit of
Eq. (6).

phase of the single nonlinear process. The phase control of
AT splitting must be on the basis of two distinct two-photon
processes in cooperation.

In the scheme in Fig. 1, the longitudinal rf field BL par-
ticipates in both Raman and cascade two-photon process.
According to Eqs. (5) and (6), under the resonance condition,
the longitudinal Rabi frequency �L acts on the AT splitting �

as a linear term and is not affected by the relative phase. Under
the condition of two different relative phases, the relationship
between the sideband interval and �L shows good linearity, as
shown in Fig. 6.

IV. CONCLUSION

In this paper, a scheme for realizing an atomic mixer based
on the interference between Raman and cascade two-photon
processes was studied theoretically and experimentally. The
scheme was implemented on a laser-detected magnetic-
resonance system for Fg = 4 of the D1 line of cesium atoms,
and the absolute measurement for the relative phase between
the fundamental-wave fields and a third-harmonic field was

1 2 3 4 5 6
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1400

Data of Δ  = π/2
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ΩL (2π kHz)

Data of Δ  = π
Fitting

FIG. 6. Sideband interval vs longitudinal Rabi frequency.
The blue diamonds represent the measured data with �φ = π ;
the purple circles represent the measured data with �φ =
π/2. All data are measured under the same resonance condi-
tion with �0 = 2π×100.161 kHz, �L = 2π×6.236(5) kHz, �T 1 =
2π×9.992(5) kHz, and �T 2 = 2π×12.910(5) kHz. The fitting
curves are the theoretical fits of Eq. (6).

achieved by detecting the transmission spectra of the system.
The Raman and cascade two-photon processes mix in the
same resonance frame of the atomic ground state and form
an interference field to dress the ground-state sublevels. By
scanning the probing field, the AT spectra of the magnetic-
resonance system can be obtained. The sideband interval of
the AT doublet of the system is regulated by the relative
phase between the rf harmonics. Moreover, the sideband in-
terval of the AT doublet is linearly related to the longitudinal
fundamental-wave field with the two-photon resonance at any
relative phase.

Due to the opposite directions of the ac Zeeman shifts
caused by the transverse fundamental-wave field and its third-
harmonic field, scheme I discussed above can realize the
elimination of the total ac Zeeman shift of the system by
stabilizing a specific amplitude ratio of the two transverse rf
fields. If the direction of the third-harmonic field in the above
scheme is changed from transverse to longitudinal, the system
can still construct the interference field of two Raman and
cascade two-photon processes and realize the atomic mixer
based on phase control as well. However, the ac Zeeman
shift of the system cannot be completely eliminated with only
one transverse rf field. In addition, in scheme II, which has
only one transverse rf field, only under certain relative phase
values can the AT splitting of the system be linear with the
amplitude of the longitudinal rf field. Scheme II is detailed in
Appendix C.
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APPENDIX A: DERIVATION OF EQUATION (7)

The angular momentum operators in the bare-state and
dressed-state representations are defined by

Fμ =
∑

m

2
√

5C4m+μ
4m1μ |m + μ〉〈m|,

F (d )
μ =

∑
m(d )

2
√

5C4m(d )+μ

4m(d )1μ
|m(d ) + μ〉〈m(d )|, (A1)

respectively. Here, |m + μ〉〈m| and |m(d ) + μ〉〈m(d )|(m,

m(d ) = −4, . . . , 4) are the transition operators in the bare-
state and dressed-state representations, respectively. C[··]

···· is
the Clebsch-Gordan coefficient of Fg = 4. Since the main
magnetic-field–atom interaction Hamiltonian HBm dominates
the evolution of the system’s transmission spectrum, the effec-
tive Hamiltonian H eff

Bm
can be performed on the diagonalization

operation in the frequency-rotating frame of frequency δ,
specifically, (

eiδF0t H eff
Bm

e−iδF0t
)|m(d )〉 = λ|m(d )〉. (A2)

Here, e−iδF0t is the rotating operator with frequency δ in the
bare-state representation. The eigenvalue satisfies λ = m(d )�,
where � is the splitting of the neighboring dressed-state sub-
levels, which is given by Eq. (6). The state vector |m(d )〉 is the
eigenvector in the dressed-state representation, which is given
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by

|m(d )〉 =
∑

m

[
D(4)

mm(d ) (β )
]∗|m〉, (A3)

where function D(4)
mm(d ) (β ) is the Wigner D function [51] with

the Euler angle β, which satisfies cos β = �z/� and sin β =√
2(�2

R + �2
C − 2�R�C cos �φ)/�. According to Eqs. (A1)

and (A3), the relation of the angular momentum operators
between the bare-state representation and the dressed-state
representation is given by

F0 = cos βF (d )
0 + sin β√

2
F (d )

+1 − sin β√
2

F (d )
−1 ,

F+1 = − sin β√
2

F (d )
0 + 1 + cos β

2
F (d )

+1 + 1 − cos β

2
F (d )

−1 ,

F−1 = sin β√
2

F (d )
0 + 1 − cos β

2
F (d )

+1 + 1 + cos β

2
F (d )

−1 . (A4)

According to Eqs. (1)–(3) and (A4), The total magnetic-field–
atom interaction Hamiltonian in the dressed-state representa-
tion is given by Eq. (7).

APPENDIX B: DERIVATION OF EQUATION (9)

In the dressed-state representation, the master equation for
the evolution of the systematic density matrix is

ρ̇ (d ) = −i
[
H (d )

Btot
, ρ (d )

] + L(d )
ρ , (B1)

where L(d )
ρ represents the systematic relaxation process in

the dressed-state representation. According to the theory of
state multipoles [60], the density-matrix element ρ (d ) can be
expressed in the representation of multipole moments m(d )

k,q

through a set of complete irreducible tensor bases T (d )
k,q , i.e.,

ρ (d ) = ∑2F
k=0

∑k
q=−k m(d )

k,qT (d )
k,q . Then the evolution of atomic

second-order multipole moments takes the following form:

ṁ(d )
2,−2 = (2iξ0 + γ2)m(d )

2,−2 −
√

2iξ−1m(d )
2,−1,

ṁ(d )
2,−1 = (iξ0 + γ1)m(d )

2,−1 +
√

2iξ+1m(d )
2,−2 −

√
3iξ−1m(d )

2,0,

ṁ(d )
2,0 = γ0m(d )

2,0 +
√

3iξ+1m(d )
2,−1 −

√
3iξ−1m(d )

2,1 + �0m(d )
0,0,

ṁ(d )
2,1 = (−iξ0 + γ1)m(d )

2,1 −
√

2iξ−1m(d )
2,2 +

√
3iξ+1m(d )

2,0,

ṁ(d )
2,2 = (−2iξ0 + γ2)m(d )

2,2 +
√

2iξ+1m(d )
2,1, (B2)

with

ξ0 =
[
� + sin β

4
�p(eiδpt + e−iδpt )

]
,

ξ−1 = �p

4
√

2
[(1 + cos β )eiδpt − (1 − cos β )e−iδpt ],

ξ+1 = �p

4
√

2
[(1 − cos β )eiδpt − (1 + cos β )e−iδpt ], (B3)

where the coefficient γi (i = 0, 1, 2) is the alignment re-
laxation rate in the dressed-state representation, which is
mainly determined by the optical pump relaxation process
[61] and the ground-state spin-exchange collision relax-
ation process [46] of the system. The monopole moment

FIG. 7. Theoretical model geometry of scheme II with only one
transverse rf field.

m(d )
0,0 is an injection of the alignment, and the coefficient

�0 is the monopole moment relaxation rate related to the
optical pump relaxation process. Considering the probing
field is much weaker than the main fields, one can solve
Eq. (B2) by using the perturbation approximation and Floquet
method approach [62] with m(d )

2,q(t ) = ∑∞
l=−∞ m(d )(l )

2,q (t )eilδt ,
q = −2,−1, 0, 1, 2. The steady-state second-order perturba-
tion solution of m(d )

2,0 is then given by

m(d )
2,0 = − �0

3γ0
+ �0γ1�

2
p

16γ 2
0

×
[

(1 − cos β )2

γ 2
1 + (δp + �)2

+ (1 + cos β )2

γ 2
1 + (δp − �)2

]
. (B4)

By performing the inverse rotation transformation on the
steady-state solution, the time-independent component of m2,0

in the laboratory frame xyz is given by

m(dc)
2,0 = 1 − 3 cos2 β

4
m(d )

2,0.
(B5)

APPENDIX C: SCHEME II WITH ONLY
ONE TRANSVERSE rf FIELD

In the rotating frame x′y′z′ shown in Fig. 7, the
physical quantities of the system in scheme II can be
expressed as Bx′ = [BT cos(ωt + ϕ) + Bp cos(ωpt )]ex′ and
Bz′ = [B0 + BL1 cos(ωt + ϕ) + BL2 cos(3ωt + θ )]ez′ . Then
the total Hamiltonian of the system is given by

H (II)
Btot

= H (II)
Bm

+ H (II)
Bp

, (C1)

with

H (II)
Bm

= [�0 + �L1 cos (ωt + ϕ) + �L2 cos (3ωt + θ )]F0

+
[

�T√
2

cos (ωt + ϕ)

]
(F−1 − F+1), (C2)

H (II)
Bp

= �p√
2

cos(ωpt )(F−1 − F+1), (C3)
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FIG. 8. Sideband interval in scheme II vs relative phase.
The blue solid dots represent the measured data with a step
of π/9. All data are measured under the resonance condi-
tion with �0 = 2π×100.160 kHz, �L1 = 2π×2.630(5) kHz, �L2 =
2π×8.040(5) kHz, and �T = 2π×3.875(5) kHz. The red fitting
curve is the theoretical fit of Eq. (C6).

where the symbol satisfies � j = μBgF Bj ( j=0, L1, L2, T, p).
Following the effective Hamiltonian theory [52,53] and the
rotating-wave approximation, the effective Hamiltonian of
H (II)

Bm
is given by

H (II)eff
Bm

≈��
(II)
0 F0 − [

�
(II)
R ei(δRt+θ−ϕ) + �

(II)
C ei(δCt+2ϕ)]F−1

+ [
�

(II)
R e−i(δRt+θ−ϕ) + �

(II)
C e−i(δCt+2ϕ)]F+1, (C4)

with

��
(II)
0 = �0�

2
T

4
(
�2

0 − ω2
) , �

(II)
R = �L1�T

12
√

2ω
,

�
(II)
C = �L2�T

4
√

2ω
. (C5)

After diagonalization of the effective Hamiltonian H (II)eff
Bm

,
the AT splitting of scheme II can be given by

�(II) =
√

�
(II)2
z + 2

(
�

(II)2
R + �

(II)2
C + 2�

(II)
R �

(II)
C cos �φ

)
,

(C6)
where �(II)

z = ��
(II)
0 + �0 − 2ω and ��

(II)
0 is the ac Zeeman

shift of the system in scheme II. The relative phase still satis-
fies �φ = θ − 3ϕ.

The experimental setup of scheme II is basically the same
as that of scheme I. The only difference is that there are two
pairs of Helmholtz coils in scheme II, corresponding to the
generation of the transverse rf field BT and probing field Bp,
and the outer solenoid coils are two layers, corresponding to
the generation of the longitudinal rf fields BL1 and BL2 shown
in Fig. 3.

Under the resonance condition with ��
(II)
0

2π
≈ 50 Hz, the

variation trend of the sideband interval with �φ is shown in
Fig. 8. The regulation of AT splitting by the relative phase
appears to be out of phase compared to that in scheme I.
Since the Rabi frequency determining the ac Zeeman shift of
the system is related to only the transverse component, the ac
Zeeman shift in scheme II cannot be canceled completely.

According to Eqs. (C5) and (C6), there is only the trans-
verse rf component linearly regulating AT splitting at any
relative phase. However, since the variation of the trans-
verse rf component will change the ac Zeeman shift of the
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FIG. 9. Sideband interval vs longitudinal Rabi frequency. The
blue diamonds represent the measured data with �φ = 0; the pur-
ple circles represent the measured data with �φ = π/2. (a) is the
measurement under the fitting value of �L2 = 2π×7.480(5) kHz;
(b) is the measurement under the fitting value of �L1 =
2π×3.256(5) kHz. All data are measured under resonance condi-
tions with �0 = 2π×100.110 kHz, �T = 2π×7.750(5) kHz, and
��

(II)
0

2π
≈ 200 Hz. The fitting curves are the theoretical fits of Eq. (C6).

system, the equivalent Larmor precession frequency of the
two-photon resonance will also be changed. When the initial
frequencies ω and 3ω resonant with the system are deter-
mined and fixed, the transverse rf component and the AT
splitting do not satisfy the linear relationship because once
the transverse rf component changes, �(II)

z in Eq. (C6) will
also be changed, and the original linear relationship will be
broken. Therefore, in the actual measurement, it is difficult to
satisfy the linear relationship between the transverse rf com-
ponent and the AT splitting in scheme II. For the longitudinal
rf fields in scheme II, only with the condition of �φ = 0
or π can the linear relationship between each longitudinal
rf component and the AT splitting be satisfied, as shown
in Fig. 9.

In fact, scheme I and scheme II include two manners for
measuring the longitudinal rf component based on a single
two-photon process. It is necessary to retain only the rf mag-
netic fields that generate a single Raman process or cascade
process with a weak transverse rf field probing; using the
sideband interval of the AT doublet, the linear measurement of
the longitudinal rf component can also be achieved. Although
the linear measurement based on a single two-photon process
is not affected by the relative phase, it also has the defect
that the ac Zeeman shift of the system cannot be canceled
completely.

In terms of measuring the relative phase of the rf field,
scheme I and scheme II are essentially the same with an
equivalent measurement effect. That is, both of them mea-
sure the rf phase by using the AT splitting induced by the
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interference field between the effective field �C of the cascade
two-photon process and the effective field �R of the Raman
two-photon process. Due to the existence of the transverse rf
field, both scheme I and scheme II will inevitably bring ac
Zeeman shift to the system. The difference is that scheme I
can use the amplitude ratio between the two transverse rf fields
to eliminate the ac Zeeman shift of the system, but scheme

II cannot. In addition, since there is only one longitudinal
rf field in scheme I, the longitudinal Rabi frequency �L is
the greatest common divisor of the AT splitting � accord-
ing to Eqs. (5) and (6). Thus, the amplitude measurement
of the longitudinal rf field in scheme I does not depend on
the relative phase �φ and meets the requirements of linear
measurement.
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