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High-order harmonics generated by a long intense femtosecond laser are known experimentally to create
attosecond pulse trains (APTs). In the time domain, an APT consists of a sequence of sharp attosecond bursts
that are equally separated by each half optical cycle. Here we show that such well-known features can be modified
when a longer wavelength driving laser is used. From our simulations, we show that multiple shorter attosecond
sub-bursts exist in the femtosecond pulse train within each half optical cycle and the duration of each sub-burst
scales approximately as λ−2

0 with the driving laser wavelength λ0. We show that such sub-bursts can be found
using quantitative rescattering model for harmonics generated from a single atom, and their origin is due to the
interference of the quantum orbits from first two returns of the recombining electron. We further show that such
sub-bursts can be phase matched under proper laser focusing condition and the position of the gas cell, thus,
such new features should be observable experimentally.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a nonlinear op-
tical phenomenon resulting from the interaction of atoms or
molecules with an intense femtosecond laser field [1–6]. Due
to its unique plateau structure in the spectrum, HHG has been
served as coherent light sources in the extreme ultraviolet
(XUV) and soft x-rays [7–10]. It has also been used for the
generation of attosecond light pulses in the form of attosecond
pulse trains (APTs) [11] and isolated attosecond pulses (IAPs)
[12] to provide important tools for detecting and controlling
ultrafast electronic dynamics inside atoms, molecules, and
materials [13–16]. In the development of attosecond light
sources, one of the motivations is to reduce their pulse du-
ration to provide better time resolution for probing physical
processes. A general scheme for generating attosecond pulses
is to spectrally filter the coherent high harmonics. To reduce
its duration, extension of harmonics in the plateau region
is required according to the uncertainty principle. To date,
shortest durations of about 43 as [17] and 53 as [18] have
been reported, even though precise characterization of such
short pulses remains a contentious issue [19]. These ∼50
as pulses are generated by synthesizing a broad bandwidth
(>100 eV) of soft x-ray (SXR) high harmonics from atoms
driven by intense long-wavelength 1.8-μm lasers. However,
further reduction of the duration of attosecond pulses has been
hindered by the existence of attochirp of high harmonics [20].
Therefore, it is highly desirable to look for other means to
reduce the duration of an attosecond pulse.

*Corresponding author: cjin@njust.edu.cn

It is well known that harmonic emission from a single
atom can be well described by a three-step model [21,22].
In the first step, the electrons are released to the continuum
by tunneling ionization; in the second step, the electrons are
accelerated in the laser field to obtain higher kinetic energy;
in the third step, the electrons recombine with the parent ions
and emit high-energy photons, i.e., the high harmonics. For
each harmonic order, an electron can follow multiple quantum
paths in the continuum [23–34]. According to the excursion
time, the first two shortest paths are usually called “short”
and “long” orbits (or trajectories). These orbits are for elec-
trons that first return to recombine with the parent ions after
strong field ionization. When an electron visits the parent ion
more than once, higher-order return orbits can contribute to
harmonic generation. We can categorize them by the second
return, the third return, and so on, and each return has a “short”
and a “long” orbit. There has been continuing interest on
the effect of multiple quantum orbits in strong field phenom-
ena. For example, Zaïr et al. [31] observed experimentally
quantum-path interference between “short” and “long” orbits
in the HHG, which could be used to characterize the full
single-atom dipole moment. Hickstein et al. [30] showed that
low-energy features in the measured photoelectron angular
distribution are clear signatures giving direct visualization of
an electron passing by its parent ion more than once before
strongly scattering from it. Petrakis et al. [32] experimentally
demonstrated a method of spectral control and selection of
high harmonics from distinct quantum paths by varying the
laser frequency chirp of an intense laser pulse.

The higher-order returns, in which the electron spends
more time than one optical cycle, become more obvious if the
driving laser is a multiple-cycle pulse. Use of a long-duration
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driving laser usually results in an APT by spectral filtering
high harmonics. Attosecond pulses thus appear in each half
optical cycle of the driving laser in the APT. When the wave-
length of the driving laser is increased, the spectral region of
HHG is greatly extended since the photon energy of harmonic
cutoff is scaled as λ2

0, where λ0 is the laser wavelength. This
condition becomes a prerequisite for reducing the duration of
attosecond pulses in the APT. On the other hand, the effects
of higher-order returns are more evidently manifested in the
HHG process when the driving laser has a long wavelength.
For example, Hernández-García et al. [25] reported a route
to generate zeptosecond waveform structure in the temporal
pulse of x-ray high harmonics by controlling the duration and
carrier-envelope offset of >7 μm driving laser pulses, which
is due to the interference of x-ray emissions from multiple
scattering events. In a later theoretical work, He et al. [24]
showed that the weight of the contribution from the elec-
tron’s higher-order returns to the HHG increases with the
laser wavelength. With the development of laser technology in
optical parametric amplification (OPA) and optical parametric
chirped pulse amplification (OPCPA), long-wavelength mid-
infrared (MIR) lasers have become largely available in the
laboratory [7,35,36]. It is thus of great interest to explore the
possibility of generating sub-bursts inside each pulse train by
taking advantage of ascending contribution from higher-order
quantum orbits with long-wavelength MIR driving lasers.

To fully describe the generation of HHG, or the attosecond
pulse, one also needs to consider the propagation effect of
high harmonics in a macroscopic nonlinear medium [37–39].
Efficient generation of HHG is mainly determined by good
phase matching between the geometric phase of the focused
driving laser and the induced-dipole phase accumulated due
to the motion of the electron in the continuum. The latter
phase is approximately proportional to the laser intensity and
becomes larger for the higher-order return quantum orbit as
the electron spends more time in the continuum [40]. Thus
phase-matching conditions are quite different for high har-
monics due to different quantum orbits. Since high harmonics
caused by higher-order return quantum orbits have relatively
large phases, they are generally difficult to phase match in
the gas medium. The meaningful control of the duration of
attosecond pulses by selecting high harmonics from higher-
order returns obtained from single-atom theory should be
examined by including propagation effects. To date this has
rarely been performed

In this work, our main goal is twofold. First, we will
demonstrate that contribution of higher-order returns to HHG
driven by MIR lasers can be utilized to produce attosecond
sub-bursts in a femtosecond pulse train (FPT) at the level of
single-atom response. Such a pulse train occurs in every half
optical cycle. Second, we will calculate the HHG phase due
to higher-order return orbits and will seek conditions for good
phase matching.

This paper is arranged as follows. In Sec. II, we will give
the theoretical methods for simulating single-atom HHG, the
macroscopic propagation in the gas medium, and the far-field
harmonic emissions. In Sec. III, we will first discuss the gen-
eration of attosecond sub-bursts due to the interference of high
harmonics from the first and second return orbits using long-
wavelength MIR driving lasers at the single-atom response.

We will then calculate the phases for different quantum orbits,
which are then used to analyze phase-matching conditions
(or the spatial map of coherence length) of HHG. We will
finally show the results of attosecond pulses in the far field af-
ter macroscopic propagation under favorable conditions. The
conclusions will be given in Sec. IV.

II. THEORETICAL METHODS

A. Theory of single-atom HHG response

To simulate the response of a single atom under an ultrafast
intense laser pulse, the most accurate way is to numeri-
cally solve the time-dependent Schrödinger equation (TDSE).
However, this approach is quite time consuming and the
physics of electron dynamics is not easy to uncover. Alterna-
tively, a model based on the strong-field approximation (SFA)
proposed by Lewenstein et al. [41] has been widely applied
for simulating single-atom HHG. A quantum orbital (QO)
model [42–46] has been further established by applying the
saddle-point approximation to separate harmonic emissions
from different quantum paths. To overcome the drawback
of the SFA, a quantitative rescattering (QRS) model [46–48]
has been developed in which the interaction of the returning
electron and the ionic core has been properly treated. The QRS
model has been confirmed by comparing with those from solv-
ing the three-dimensional TDSE and with many experiments;
see Ref. [49].

1. Quantitative rescattering (QRS) model

In the QRS model [46–48], the induced-dipole moment of
an atomic target under a linearly polarized laser can be written
as

x(ω) = W (ω)d (ω), (1)

where d (ω) is the complex photorecombination (PR) transi-
tion dipole matrix element, which reflects the properties of
the target, and W (ω) is the complex microscopic wave packet,
which is mostly determined by the laser and the ionization
potential of the target.

In the QRS model, d (ω) can be precisely calculated by
solving the time-independent Schrödinger equation under the
single-active electron (SAE) approximation, in which the in-
teraction between the electron and the atomic ion is described
by a model potential [50]. dSFA(ω) in the Lewenstein (or SFA)
model is obtained by assuming that the continuum state of
the ionized electron is a plane wave, which is not accurate.
Meanwhile the wave packet W (ω) in the QRS model is the
same as that in the SFA model, and it can be calculated using
the Lewenstein model or the quantum orbit model:

W (ω) = xSFA(ω)

dSFA(ω)
(2)

or

W (ω) = xQO(ω)

dSFA(ω)
. (3)

Here xSFA(ω) and xQO(ω) are complex induced-dipole mo-
ments, and dSFA(ω) is a pure imaginary or a pure real number.
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2. Lewenstein (or SFA) model

According to the Lewenstein model under the strong-field
approximation (SFA) [41], the time-dependent induced dipole
moment can be written in the form of the following integral:

x(t ) = −i
∫ t

−∞
dt ′

( −2π i

t − t ′ − iε

)3/2

d∗
x [ps + A(t )]

× dx[ps + A(t ′)]E (t ′)e−iS(ps,t,t ′ ) + c.c., (4)

where E (t ) is the applied laser field, A(t ) is the vector poten-
tial, ps is the saddle-point solution for momentum, which is
given by

ps = − 1

t − t ′

∫ t

t ′
A(t ′′)dt ′′, (5)

and S(ps, t, t ′) is the classical action of the electron during
propagation in the electric field, which is expressed as

S(ps, t, t ′) =
∫ t

t ′
dt ′′

(
1

2
[ps + A(t ′′)]2 + Ip

)
, (6)

where Ip is the ionization potential of the target, and t ′ and
t are the ionization and recombination moments of the elec-
tron, respectively. Note that in Eq. (4) one can truncate the
excursion time of the electron to select contribution to the
single-atom HHG (or the electron wave packet) from different
returns.

For hydrogenlike atoms, the dipole matrix element describ-
ing the transition from the ground state to the continuum is
given by

d (p) = 〈p|d̂|g〉 = i

(
27/2(2Ip)5/4

π

)
p

(p2 + 2Ip)3 . (7)

3. Quantum orbit (QO) model

Applying the saddle-point approximation, the following
two equations can be obtained for the harmonic with angular
frequency ω [42–46]:

1
2 [ps + A(t ′)]2 = −Ip, (8)

and
1
2 [ps + A(t )]2 = ω − Ip. (9)

Here the first equation corresponds to the quantum effect of
tunneling ionization of the electron, and the second equa-
tion represents the energy of the photon (ω) emitted by the
recombination of the electron and the parent ion.

The induced-dipole moment in the frequency domain can
be expressed as

x(ω) =
∑

s

2π√
det (S′′)

( −2π i

ts − t ′
s

)3/2

d∗
x [ps + A(ts)]

× dx[ps + A(t ′
s )]E (t ′

s )e−i�(ps,ts,t ′
s ), (10)

where each pair (ts, t ′
s ) determines a unique quantum orbit rep-

resented by s, the phase factor �(ps, t, t ′) = S(ps, t, t ′) − ωt ,
and the calculation of the determinant det(S′′) is straight-
forward. In Eq. (10), one can select the contribution to the
single-atom HHG (or the electron wave packet) either from
one specific quantum orbit or from multiple quantum orbits.

B. Propagation equations of the high-harmonic field

We assume that the laser beam is not affected when it
propagates in a macroscopic gas medium. By employing a
moving coordinate frame (z′ = z and t ′ = t − z/c) and apply-
ing the paraxial approximation, Maxwell’s wave equations for
a high-harmonic field in the frequency domain are [51–54]

∇2
⊥Ẽh(r, z′, ω) − 2iω

c

∂Ẽh(r, z′, ω)

∂z′ = −μ0ω
2P̃nl (r, z′, ω),

(11)
where

Ẽh(r, z′, ω) = F̂ [Eh(r, z′, t ′)], (12)

P̃nl (r, z′, ω) = F̂ [Pnl (r, z′, t ′)], (13)

and

Pnl (r, z′, t ′) = n0x(r, z′, t ′). (14)

Here F̂ is the Fourier transform operator acting on the tem-
poral coordinate, Pnl (r, z′, t ′) is the nonlinear polarization
defined in Eq. (14), and n0 is the neutral atom density.
x(r, z′, t ′) is the induced-dipole moment in the time domain
obtained with a local laser field at the spatial position (r, z′),
and it can be related to x(ω) in Eq. (1) by an inverse
Fourier transform. Once Eq. (11) is solved, the harmonic field
Ẽh(r, z′, ω) at the exit face of the gas medium is called the
near-field harmonic.

C. Far-field harmonic emission

The propagation of a high-harmonic field in a gas medium
can be simulated rigorously by solving Maxwell’s wave equa-
tions. Its propagation in the vacuum can be carried out using
Huygens integral under the paraxial and Fresnel approxi-
mations. The harmonic in the far field is obtained by the
near-field harmonic by

E f
h (r f , z f , ω)

= ik
∫

Ẽh(r, z′, ω)

z f − z′ J0

(
krr f

z f − z′

)
exp

[
− ik

(
r2 + r2

f

)
2
(
z f − z′)

]

× r dr, (15)

where J0 is the zero-order Bessel function of the first kind, z f

and z are the far-field and near-field positions from the laser
focus, and r f is the transverse coordinate in the far field.

III. RESULTS AND DISCUSSION

A. Generation of attosecond sub-bursts in the pulse train
by the interference of quantum orbits

We first calculate HHG and attosecond pulses at the level
of single-atom response. In the calculation, the electric field
of the laser pulse takes the form

E (t ) = E0cos2
(πt

τ

)
cos(ωt + ϕ). (16)

Here τ is the total duration, which is 2.75 times the full-
width-at-half-maximum (FWHM) duration of the laser pulse,
ϕ is the carrier-envelope phase (CEP), and E0 is the peak
strength. The target is a neon atom. The laser peak intensity is
1.5×1014 W/cm2, the total duration is 30 optical cycles, and
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FIG. 1. Time-frequency analysis of single-atom harmonic emission due to first-return orbits (a), the second-return orbits (b), and the orbits
of both returns (c). The results for including all orbits are in (d). Note that the values in (a)–(d) are normalized individually. (e) Temporal
profiles of the attosecond pulses synthesized from single-atom high harmonics from different orbits in (a)–(d). The width of the attosecond
sub-burst is 30 as due to the interference of quantum orbits from the first and second returns. Here the 1600-nm laser has the intensity of
1.5×1014 W/cm2 and the total pulse duration is 30 cycles. The QRS model is applied, in which the microscopic wave packet is computed by
truncating the electron excursion time in the standard SFA model to select contributions from a specific return.

the CEP is fixed at 0. With the QRS model, the simulated
HHG and attosecond pulses are shown in Fig. 1 using a driv-
ing laser with a wavelength of 1600 nm. The time-frequency
analysis of high harmonics due to quantum orbits from the
first return is shown in Fig. 1(a), and for the second return
in Fig. 1(b). In Figs. 1(c) and 1(d), quantum orbits from the
first and second returns, and from all returns, are included,
respectively. Here, contribution from a specific return is se-
lected by truncating the electron excursion time in the SFA
model. One can see that the first and second returns give quite
different harmonic cutoffs, see Figs. 1(a) and 1(b). Harmonic
emissions due to these two returns are well resolved even
after all quantum paths have been included; see Figs. 1(c)
and 1(d). We synthesize high harmonics with photon energies
above 0.3Up + Ip, where Up is the ponderomotive energy of
the electron. The intensity of the resulting attosecond pulses
can be explicitly calculated as

IAPT s(t ) =
∣∣∣∣
∫ ∞

ω′
ω2x(ω)eiωt dω

∣∣∣∣
2

, (17)

where ω′ = (0.3Up + Ip)/h̄, and the results are shown in
Fig. 1(e). Including quantum orbits from an individual first or
second return, a single pulse (red or blue line) occurs within
each half optical cycle of the driving laser. By considering
the interference of quantum paths from both first and second
returns, multiple fine oscillatory temporal structures (purple
line) with FWHM of about 30 as over each half optical cycle
appear. The strength of such temporal structures (to be called
“attosecond sub-bursts” from here on) are slightly modified
(black line) if higher returns (more than two) are added, but
the number and the width of attosecond sub-bursts are not
changed.

The attosecond sub-bursts appearing in the time interval
of electron recombination, i.e., about half optical cycle, can
be interpreted quantitatively. For simplicity, we only consider
the interference of two harmonic cutoffs generated by the first
and second returns. The period of an attosecond sub-burst is
given by

T1 = 2π

ω1 − ω2
= 2π h̄

(3.17Up + Ip) − (1.54Up + Ip)

= 2π h̄

1.63Up
. (18)

Note that the central photon energy of the synthesized pulse
train can be estimated as 1.735Up + Ip, thus the corresponding
period is about twice the FWHM duration of the attosecond
sub-burst according to Eq. (18). Here ω1 and ω2 represent the
angular frequencies of the two harmonic cutoffs, with 3.17Up

and 1.54Up being the maximum electron kinetic energies from
first and second returns, respectively. T1/2 is approximately
the FWHM of the attosecond sub-burst, which is calculated
to be 35 as with Up = 35.85 eV by using the given laser
parameters. The number of attosecond sub-bursts in the time
range from 0.15 to 0.25 cycles [grey area in Fig. 1(e)] can be
calculated as

n =
[

0.1T0

T1

]
=

[
0.2π

ω0T1

]
, (19)

where T0 and ω0 are the period and the angular frequency of
the driving laser, respectively. The calculated number n is 8 (n
is rounded up to an integer). Both the number of attosecond
sub-bursts and the width of each calculated one from simple
formulas agree very well with those shown in Fig. 1(e). We
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FIG. 2. Time-frequency analysis of single atom HHG driven by lasers with wavelengths of 2000 nm (a), 2400 nm (b), and 3200 nm (c).
The intensity and number of cycles of the total duration are kept the same as those in Fig. 1. (d)–(f) Temporal profiles of attosecond pulses
by spectral filtering high harmonics from different quantum orbits at different wavelengths as indicated. The widths of attosecond sub-bursts
due to the interference of the first and second return orbits are 20, 14, and 8 as at the three different driving wavelengths, respectively. (g) The
intensity ratio of HHG due to the second return and first return orbits as a function of the wavelength.

have also checked that the depletion of the ground state can be
neglected when forming the attosecond sub-burst structure.

We next calculate attosecond sub-bursts by increasing the
wavelength of the driving laser, with fixed peak laser intensity
and fixed number of optical cycles. Time-frequency analyses
of high harmonics are shown in Figs. 2(a)–2(c) for the driving
wavelengths of 2000, 2400, and 3200 nm, respectively. In the
calculations, the quantum orbits from all returns are included.
Interference of harmonic emissions from quantum orbits of
first and second returns can be clearly seen. By spectral fil-
tering the high harmonics, the temporal pulses are plotted
(black lines) in Figs. 2(d)–2(f). One can see that, as laser
wavelength is increased, the number of attosecond sub-bursts
is increased in the fixed time range measured by the optical
cycles, while their FWHM duration is scaled approximately
as λ−2

0 as indicated in the figure, where λ0 is the wavelength
of the driving laser. The structure of the attosecond sub-burst
is caused mostly by the interference of high harmonics due to
quantum orbits of first and second returns; see purple lines in
Figs. 2(d)–2(f).

We also check the intensity ratio of high harmonics
due to the second and first returns. This ratio is defined
to be the integrated harmonic intensity due to the second
return from 0.3Up + Ip to 1.6Up + Ip with respect to first
return from 2.0Up + Ip to 3.2Up + Ip. Figure 2(g) shows the

intensity ratio as the laser wavelength is increased, meaning
the importance of second return increases with wavelength
in comparison to first return. This conclusion is consistent
with the finding of He et al. [24] that the yield weight of
harmonics generated by higher-order return orbits increases
with the wavelength. Therefore, one can expect that interfer-
ence effect in attosecond sub-bursts due to the first and second
return orbits becomes more important with the increase of
laser wavelength.

To verify the accuracy of the QRS model employed in the
above calculations, we simulate single-atom HHG by using
the TDSE method. Comparison of time-frequency analysis
of harmonic emissions from the QRS model and the TDSE
method are shown in Figs. 3(a) and 3(b). Harmonic emissions
from first, second, and higher returns from the two calcu-
lations clearly agree with each other quite well, including
the trajectory structures and the relative strengths of har-
monic emissions from different returns. We further show the
temporal attosecond sub-bursts in Fig. 3(c), where the num-
ber of attosecond sub-bursts and the width are also in good
agreement. Thus, the QRS model can be used to correctly
predict the behaviors of quantum orbits in the HHG process
driven by MIR lasers. Note that Hernández-García et al. [25]
theoretically predicted similar sub-bursts with zeptoseconds
duration using the longer wavelength of a 3.9-μm laser. Their
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FIG. 3. Time-frequency analysis of single-atom HHG obtained
from the QRS model (a) and from the TDSE method (b). (c) Tem-
poral profiles of attosecond sub-bursts by spectral filtering high
harmonics in (a) and (b). The laser parameters are the same as those
in Fig. 1 except that the FWHM duration is 3 optical cycles.

calculation was performed using the SFA+ approach [55].
They attributed such sub-burst structure to the interference
of x-ray harmonic emissions from multiple quantum orbits,
including first-return, second-return, and third-return orbits.
However, we have identified that harmonic emissions from
third-return orbits are very weak for the wavelength of the
driving laser we considered.

B. Phase-matching analysis of HHG from different
quantum orbits

1. Induce-dipole phase

In this section we examine whether the attosecond sub-
burst waveforms in the pulse train identified in single-atom
response can be realized in actual experiments. For this pur-
pose, we first analyze phase-matching conditions for high
harmonics from each of multiple quantum orbits upon propa-

gation in a gas medium. In quantum orbit theory, the phase of
the induced dipole is larger when the quantum orbit in the con-
tinuum is longer, which in turn makes phase matching more
difficult, and the far-field harmonics are emitted at a greater
divergence angle [46,56–59]. The induced-dipole phase can
be calculated in the frame of the SFA by using the classical
trajectory of the electron under the external electric field as
[40,60,61]

ϕi(ps, t, t ′) = S(ps, t, t ′) − qω0t, (20)

where i = S1, L1, S2, L2, S3, L3, ..., standing for different
quantum orbits, and t ′ and t are the electron ionization and
recombination times, respectively, obtained by solving New-
ton’s equation of motion. Here, S1 refers to the short quantum
orbit in the first return, L1 the long quantum orbit in the first
return, and so forth. In Fig. 4(a), the induced-dipole phase of
harmonic order 23 (H23) as a function of laser peak intensity
is shown for the first six quantum orbits at 800 nm. The phase
depends linearly on the laser intensity, and can be written as

ϕi = αi,q×I. (21)

Here αi,q is the phase coefficient for qth harmonic order and
I is the laser intensity. The values of αi,q extracted from
Fig. 4(a) are listed in Table I.

The phase coefficient αi,q also can be extracted from the
intensity-dependent induced-dipole moments calculated by
the SFA (or QRS) model and the TDSE method. The contribu-
tion from the phase component αi,q over a range of intensities
close to I0 can be expressed as follows [62–66]:

Dq(αi,q, I0) =
∫

xq(I ) exp(iαi,qI )G(I − I0)dI, (22)

where xq(I ) represents the induced-dipole moment of the qth
harmonic, and G(x) = e−x2/(4a) is the Gaussian window func-
tion with an adjusted parameter a. By employing a trapezoidal
pulse shape for the driving laser, the quantum path distribu-
tions in terms of αi,q and I0 are simulated by the SFA model
and the TDSE method in Figs. 4(b) and 4(c), respectively. The
values of αi,q for different quantum orbits are indicated (white
dashed lines) in these figures. It can be seen that for laser in-
tensities generating H23 in the plateau, the αi,q from classical

FIG. 4. (a) Induced dipole phase as a function of laser intensity for different quantum orbits (indicated by S1, L1, ...) calculated using
classical trajectories. The distributions of quantum orbits characterized by the laser intensity I0 and the phase coefficient α simulated by the
SFA theory (b) and by the TDSE method (c). Note that the QRS model gives the same distribution of quantum orbits as the SFA model at a
given harmonic order. The wavelength of the driving laser is 800 nm and the harmonic order is H23.
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FIG. 5. Distributions of quantum orbits simulated by the SFA model at the laser wavelengths of 1200 nm (a), 1600 nm (b), and 2000 nm
(c) for the selected harmonic orders. The corresponding induced dipole phases calculated by the classical trajectory for different quantum
orbits are shown in (d)–(f).

trajectories are in a general agreement with the distributions
of quantum paths for both the SFA and TDSE results. The
quantum-path distributions simulated by the SFA model are
plotted for the laser wavelengths of 1200, 1600, and 2000 nm
in Figs. 5(a)–5(c), respectively. The selected harmonic orders
are labeled in these figures. Note that the coefficients αi,q

do not depend much on the harmonic order. The white lines
are the extracted coefficients αi,q from the induced-dipole
phases by the classical trajectories as shown in Figs. 5(d)–5(f).
These values are also listed in Table I. With the increase
of laser wavelength, the orbital feature in the distribution of
|Dq(αi,q, I0)|2 becomes more obvious. A general agreement
between the distribution of quantum orbits and the classical
value of αi,q is also achieved. In addition, from Table I, for
a given quantum orbit, the coefficient α approximately scales
as λ3

0.

2. Coherence length of HHG for different quantum orbits

For phase matching of HHG, we consider the effect caused
by the geometric phase of the driving laser beam and the

TABLE I. According to the classical model, the calculated α

coefficients of each orbits at 800, 1200, 1600, and 2000 nm. Here
the unit of the α coefficient is rad W−1cm2.

λ0 (Hq) αS1 αL1 αS2 αL2 αS3 αL3

800 nm (H23) 1.5 23.5 25 32 34 48
1200 nm (H83) 5 80 84 109 113 162
1600 nm (H175) 12 190 199 259 268 383
2000 nm (H321) 26 370 388 506 526 748

intrinsic induced-dipole phase accumulated by the electron
following the specific quantum orbit. For our purpose here we
ignore contributions from the neutral atom dispersion and the
plasma defocusing. This model is valid when the gas pressure
is low and the laser intensity is low.

The phase mismatch of wave vectors between the qth har-
monic and the fundamental driving laser can be expressed as
[51,52,67,68]

δkq(r, z) = kq − |qk1 + K|, (23)

where kq = qω0/c, k1 is the total wave vector of the driving
laser and K is the effective wave vector of single-atom re-
sponse. k1 is explicitly expressed as

k1(r, z) = k0ez − ∇ϕ(r, φ, z), (24)

where ez is the unit vector along the z direction, ϕ(r, z) is
the geometric phase of the driving light, and k0 = ω0/c. The
wave vector K describing the spatial dependence of the atomic
phase is given by

K(r, z) = ∇ϕq,dip(r, z). (25)

Here ϕq,dip(r, z) is the intrinsic induced-dipole phase accumu-
lated by an electron moving along a given quantum orbit in
the laser field. Its dependence on the laser intensity is written
as

ϕq,dip(r, z) = −αi,qI (r, z), (26)

where I (r, z) is the spatial peak intensity of the driving laser.
Finally, the coherence length of HHG can be defined as

Lq,coh(r, z) = π

|δkq(r, z)| . (27)
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FIG. 6. Map of coherence length of harmonic H65 generated by
different quantum orbits. From top to bottom rows, the first, second,
and third returns are plotted. The left column is for “short” orbits,
and the right column is for “long” ones. The red arrow indicates
the direction of the harmonic wave vector. The peak intensity and
the beam waist at the focus of the 1600-nm Gaussian beam are
1.5×1014 W/cm2 and 130 μm, respectively.

The phase-matching conditions of HHG can be optimized
by varying the macroscopic parameters. Below we will show
two examples to demonstrate that good phase-matching con-
ditions for HHG due to high-order return quantum orbits can
be achieved. We first simulate the coherence length of high
harmonics generated by a 1600-nm driving laser; see Fig. 6.
The laser beam is assumed Gaussian, its beam waist at the
focus is w0 = 130 μm, and peak intensity at the focus is
1.5×1014 W/cm2. In Fig. 6, the spatial distributions of co-
herence length by “short” orbits are shown in the left column
and those by “long” orbits are shown in the right column, for
the first three returns, respectively. The direction of the arrow
in the figure gives the direction of the wave vector of the har-
monic, determining its divergence in the far field. What we are
interested in here is to selectively maintain the contributions to
the HHG from quantum orbits other than S1, i.e., the “short”
orbit in the first return. This can be achieved by varying the
position of a gas target relative to the laser focus since the
size of a gas jet is usually much shorter than the Rayleigh
range of the driving laser. For all quantum orbits other than
the S1, a narrow good phase-matching region (white strip)
starting from the off-axis position before the laser focus and
continuing until near the laser focus and close to the axis is
observed. Only in the white strip region can phase mismatch
caused by the induced-dipole phase of long quantum orbits
be mostly compensated by that due to the geometric phase of
the driving laser. On the other hand, the direction of harmonic
wave vector is quite different before laser focus for different

FIG. 7. Same as Fig. 6 but for a 2000-nm driving laser with a
beam waist of 200 μm and a harmonic order of 131.

long quantum orbits. If the gas medium is put before the laser
focus, the harmonics from different quantum orbits cannot
interfere coherently because they have different divergence
angles. Thus, one would choose to put the gas medium at the
focus to minimize the diverging effects of HHG from different
quantum orbits.

Similarly, we carry out similar simulations using a
2000-nm driving laser; see Fig. 7. To improve phase matching
of quantum orbits with longer wavelength, a more loosely
focused beam is required. The beam waist of the driving laser
is thus set to 200 μm, with the same peak intensity. The
behaviors of coherence lengths are very similar to Fig. 6, so
the gas should be placed also at the laser focus. Note that the
evolution of high-harmonic field in a gas medium is reflected
in the coherence length map, which was demonstrated in our
previous works [51,52]. With the guidance of the coherence
lengths in Figs. 6 and 7, we will next show the results of HHG
and attosecond pulses by performing numerical simulations
by solving Maxwell’s wave equations of the high-harmonic
field.

C. Macroscopic HHG and attosecond pulses
after propagation in the gas medium

1. HHG in the far field

With the macroscopic parameters used in Fig. 6, we simu-
late the HHG in Fig. 8 by setting the center of a 1-mm-long
gas jet at the laser focus. In the simulations, we first solve
Maxwell’s wave equations of the high-harmonic field in the
gas medium, and then obtain the spatial distributions of HHG
in the far field by using Huygens integration. The single-atom
induced dipoles are calculated by the QRS model with the sep-
aration of quantum paths in the frame of the quantum orbits
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FIG. 8. (a) Intensity distribution of the macroscopic HHG in the far field generated by including all quantum orbits. Intensity distributions
of the far-field HHG generated by individual “short” orbits from the first three returns are shown in (b)–(d), and those results by individual
“long” orbits are plotted in (f)–(h). (e) HHG spectra by integrating the harmonic yield over the divergence angle are shown for quantum orbits
from different returns. The driving laser has a wavelength of 1600 nm; other laser and macroscopic parameters can be seen in the text.

model. Figure 8(a) gives the intensity distribution of far-field
high harmonics by including all quantum paths. Figures 8(b)–
8(d) show the intensity profiles due to the “short” orbits, S1,
S2, S3, respectively, and the results for the “long” orbits L1,
L2, L3 are plotted in Figs. 8(f)–8(h). One can see that only the
harmonics generated from S1 have small divergence, while all
the other orbits result in similar and larger divergence in the
far field. For the L1 shown in Fig. 8(f), the spectrum is wider
when the divergence angle is small, and becomes narrower
when the divergence angle is increased. Figure 8(e) gives the
integrated HHG spectra over the divergence angle by quantum

orbits from three different returns separately. One can see that
at the desired macroscopic conditions the harmonic yields of
the second-return orbits after propagation can be comparable
to that of the first-return ones, which provides the prerequi-
site for the conspicuous interference between quantum orbits.
Meanwhile the harmonic yields of the third-return orbits are
relatively low, so they do not have considerable contribution
to the total harmonic yields after macroscopic propagation.
Note that the sensitive dependence of the phase-matching
condition on the location of the gas medium has been in-
tensely discussed [69,70], and it has been known that the

FIG. 9. Similar to Fig. 1 but for the macroscopic HHG at 1 mrad in the far field.
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FIG. 10. (a) Intensity profile of the far-field HHG obtained by including all quantum orbits. (b) Time-frequency analysis of the correspond-
ing far-field HHG at 1 mrad. (c) Temporal profiles of attosecond sub-bursts with the duration of 22 as obtained by spectral filtering far-field
harmonics at 1 mrad. The driving laser field has the wavelength of 2000 nm with the peak intensity of 1.5×1014 W/cm2. See text for other
simulation parameters.

good phase matching for the “long” orbits in the first return
can be achieved when the gas medium is located at the laser
focus [42].

2. Macroscopic attosecond sub-bursts

We choose a divergence angle of 1 mrad to analyze the
temporal structure of attosecond sub-bursts synthesized by the
macroscopic HHG in Fig. 8. The time-frequency analysis of
the high-harmonic field generated by the quantum orbits from
separated first and second returns and by both return orbits are
shown in Figs. 9(a)–9(c), respectively. The results of including
all orbits are shown in Fig. 9(d). One can see that harmonic
emissions by the second return orbits are well maintained after
the macroscopic propagation, and they are comparable to that
by the first return ones. Figure 9(e) shows the temporal pulses
over half optical cycle of the 1600-nm laser. Attosecond
sub-bursts with a width of about 33 as appear when the in-
terference between the first return and the second return orbits
is included. Further adding the contribution from higher-order
return orbits does not change the structure of attosecond sub-
bursts much. However, attosecond sub-bursts are absent when
first return or second return orbits are considered individually.
In short, the behaviors of attosecond sub-burst waveforms
in the macroscopic pulse train are very similar to that in
the single-atom response under the conditions of favorable
phase matching. Thus, to observe attosecond sub-bursts ex-
perimentally, it is necessary to use good phase matching by
properly adjusting macroscopic parameters and laser focusing
condition as illustrated.

In Fig. 10, we show another example with a 2000-nm laser
using macroscopic parameters in Fig. 7. A 1-mm-long gas
medium is set at the focus. The far-field harmonic distribution
with all quantum orbits included is shown in Fig. 10(a). We
select a divergence angle of 1 mrad, as shown by a white line
in Fig. 10(a), and the time-frequency picture of the HHG is
plotted in Fig. 10(b). The harmonic emissions from the second
return orbits are comparable to those from the first return ones.
The interference between them leads to attosecond sub-bursts
with a duration of about 22 as in the pulse train in Fig. 10(c).
These are very close to the attosecond sub-bursts in Fig. 2(d)

obtained in the single-atom response. These results are exactly
like what we have shown in Fig. 9.

IV. CONCLUSIONS

In summary, we have shown the existence of attosecond
sub-bursts in femtosecond pulse trains (FPTs) using high har-
monics generated by long wavelength lasers. Unlike pulse
trains generated by 800-nm lasers where irregular and few
sharp bursts appears at each half optical cycle, in the FPTs
generated by long wavelength lasers a large number of regular
attosecond sub-bursts appear inside of individual femtosecond
pulse profiles and each attosecond sub-burst can have a du-
ration of few attoseconds, which is scaled by λ−2

0 with laser
wavelength λ0. The existence of attosecond sub-bursts has
been found to result from the interference of high harmonics
due to quantum orbits that undergo first return and second
return, with minor corrections from higher returns. These
results can be obtained for high harmonics generated from a
single atom using the SFA and the QO theories, as well as
the QRS model, and the latter has been shown to agree with
ab initio calculations from solving the TDSE. To establish that
the single-atom predictions can be observed experimentally,
we have carried out phase-matching analysis and performed
macroscopic propagation simulations. By simulating the de-
pendence of the single-atom induced dipole phase from an
individual quantum orbit on the laser intensity by using the
classical-trajectory approach, the SFA model, and the TDSE
method, the phase coefficients extracted from different meth-
ods reach a reasonably good agreement. We showed that the
phase coefficient for a given quantum orbit is approximately
scaled as λ3

0. This has been used to construct the map of
coherence length of HHG for each individual quantum or-
bit and to identify the good phase-matching condition. We
have shown that good phase matching of harmonics at small
divergence angles can be found for multiple long quantum
orbits if the gas jet is placed at the laser focus. Thus multiple
attosecond sub-bursts can occur over half an optical cycle of
the driving laser in the far-field macroscopic pulse train and
maintain pulse width similar to the single-atom one. Note that
if the gas jet is put after the laser focus, there would be no
attosecond sub-burst structure in the pulse train since only
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high harmonics due to the “short” orbit in the first return can
be well phase matched.

With the advances in mid-infrared lasers, we expect that
shorter-duration sub-bursts down to hundreds of zeptoseconds
could be generated by spectral filtering high harmonics in
a much broader spectral region. This may also be achieved
experimentally by controlling the phase matching of different
quantum orbits through properly selecting the laser parame-
ters and setting the position of the gas medium. This could
be realized in two different ways. One way is to increase
the intensity of driving laser while the laser wavelength
is not increased such that its spatiotemporal waveform is
modified upon the propagation in the medium [71,72]. The
effect of free electron cannot be neglected in the analysis of
phase matching, so the conditions of reaching good phase
matching for longer quantum orbits need to be adjusted. The
other way is to maintain the low laser intensity and then
increase the laser wavelength. The theoretical methods may be

improved to account for magnetic field [73] and the prediction
of this work might have to be modified. While the present
study is interesting in predicting new features of FPT gen-
erated by long-wavelength lasers, it remains to be seen in
experiment. At this time, it is too early to speculate what appli-
cations can use such femtosecond pulse trains with attosecond
sub-bursts.
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